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ABSTRACT Many decision making situations are characterized by a hierarchical structure where a
lower-level (follower) optimization problem appears as a constraint of the upper-level (leader) one. Such
kind of situations is usually modeled as a BLOP (Bi-Level Optimization Problem). The resolution of the
latter usually has a heavy computational cost because the evaluation of a single upper-level solution requires
finding its corresponding (near) optimal lower-level one.When several objectives are optimized in each level,
the BLOP becomes a multi-objective task and more computationally costly as the optimum corresponds to a
whole non-dominated solution set, called the PF (Pareto Front). Despite the considerable number of recent
works in multi-objective evolutionary bi-level optimization, the number of methods that could be applied to
the combinatorial (discrete) case is much reduced. Motivated by this observation, we propose in this paper an
Indicator-Based version of our recently proposed Co-Evolutionary Migration-Based Algorithm (CEMBA),
that we name IB-CEMBA, to solve combinatorial multi-objective BLOPs. The indicator-based search
choice is justified by two arguments. On the one hand, it allows selecting the solution having the maximal
marginal contribution in terms of the performance indicator from the lower-level PF. On the other hand,
it encourages both convergence and diversity at the upper-level. The comparative experimental study reveals
the outperformance of IB-CEMBA on a multi-objective bi-level production-distribution problem. From the
effectiveness viewpoint, the upper-level hyper-volume values and inverted generational distance ones vary in
the intervals [0.8500, 0.9710] and [0.0072, 0.2420], respectively. From the efficiency viewpoint, IB-CEMBA
has a good reduction rate of the Number of Function Evaluations (NFEs), lying in the interval [30.13%,
54.09%]. To further show the versatility of our algorithm, we have developed a case study in machine
learning, and more specifically we have addressed the bi-level multi-objective feature construction problem.

INDEX TERMS Combinatorial bi-level multi-objective optimization, computational cost, indicator-based
evolutionary algorithms, population decomposition, migration schemes.

I. INTRODUCTION
Bi-level optimization, as the name reflects, deals with the
minimization or the maximization of two interconnected
hierarchical levels: (1) a leader, called the upper-level prob-
lem, and (2) a follower, called the lower-level problem. The
objective is to find the optimum of an upper-level problem,
subject to the optimality of the corresponding lower-level
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problem. The two levels of the problem have their own
objective(s), variable(s), and constraint(s). Several problems
from the domain of transportation [1], logistics [2], engi-
neering [3], industry [4], and economics [5] have inher-
ent nested structure which needs them to be modeled as
bi-level problems. In addition to complexity and increas-
ing size of such problems, other difficulties could occur
such as conflecting relationship between objectives of the
two levels, non-linearity and/or multimodality in one or
both levels, NP-hardness of BLOPs [6], deceptiveness of
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the lower-level fitness landscape, etc. The BLOPs resolution
dates back to the 1970s. Indeed, a variety of methods have
been proposed such as Karush-Kuhn-Tucker method [7],
the Branch-and-Bound [8], the trust region method [9], etc.
However, all these methods are sensitive to the mathematical
features of constraint and objective functions such as dimen-
sionality, non-linearity, non-differentiability, etc. Encouraged
by the fact that Evolutionary Algorithms (EAs) are less sensi-
tive to these features, researchers have used them for BLOPs
resolution such as [10]–[12], and [13]. We assume that,
from an effectiveness viewpoint, the results are promising.
However, from an efficiency viewpoint, the computational
cost is very high, and a largeNFEs is needed [14].Minimizing
the computational overhead of the follower EA, and reducing
the required number of evaluations have been themost impor-
tant key pursuits in this domain, and a variety of works have
been proposed using different techniques such as hybridiza-
tion with local search [15], the quadratic approximation
method [16], the use of surrogates [17], multi-parametric
programming [18], and the use of multicriteria optimization
principle [19]. In fact, many decision making situations such
as road pricing network problems [20], stone industrial park
location problems [21], construction site layout and security
planning problems [22], and distribution networks problems
with grid-connected microgrid [23]; the upper-level and/or
the lower-level involve the optimization of more than one
objective. However, few papers have considered BLOPs with
multiple objectives [24]–[27], and even the majority of pro-
posed works tackled the continuous case of Multi-Objective
Bi-level optimization Problems (MOBPs). Indeed, the reason
behind this lack of works is that the bi-level problem becomes
both computationally and mathematically intractable even
by simplifying assumptions like convexity, continuity, etc.
In a MOBP, when evaluating a single upper-level solution,
all the lower-level Pareto optimal solutions are considered at
the upper-level problem. As follows, the leader will choose
a follower solution randomly from the received lower-level
Pareto set, which cannot ensure diversity and convergence
aspects of the upper-level PF (cf. definition 4 in Appendix C).

Recently, we have proposed a new EA to tackle
single-objective BLOPs called CEMBA [28]. Our pro-
posed approach has demonstrated its effectiveness and effi-
ciency in generating good solutions, best upper-level fitness,
best lower-level reaction, and less NFEs as described in
Appendix A.Motivated by this idea, we propose in this paper,
a new version of our CEMBA approach [28] for MOBPs. Our
algorithm is termed IB-CEMBA, as it uses, in each level,
two populations, and an indicator-based approach. In fact,
the reason behind using indicator-based approaches is that
these latter ones help the algorithm to approximate the upper-
level front and to return the lower-level solution with the best
marginal contribution in terms of a multi-objective quality
indicator that will be sent to the upper-level. In other words,
the solution sent from the follower to the leader is the onewith
the best indicator contribution and it is not chosen randomly,
which is not the case for existing approaches. Indeed, each

leader population works with its correponding follower one.
Also, a migration scheme is applied in order to guarantee the
existence of optimal solutions. The main contributions of this
paper are the following:

1) Proposing an efficient approach called IB-CEMBA for
combinatorial MOBPs;

2) Preserving the efficiency of the baseline algorithm
CEMBA in terms of the NFEs for the multi-objective
case (cf. details in Appendix A);

3) Reporting and analyzing comparative results of
IB-CEMBA on theMulti-objective Bilevel Production-
Distribution Planning problemmodel with Equilibrium
between Supply and Demand, and Workload Balance
objective (MBPDPESDWB);

4) Illustrating the versatility of IB-CEMBA on a machine
learning case study consisting in solving the Multi-
objective Bi-level Feature Construction problem.

II. RELATED WORK
A. MOBP: BASIC DEFINITIONS
Formally, a BLOP consists in optimizing the leader objec-
tive function, under some constraints, where one of these
constraints represents a nested optimization problem, called
the follower. In many practical problem situations, the leader
and the follower of a bi-level problem might face multiple
objectives. This gives rise to the multi-objective case of
bi-level optimization problems. As a definition, the MOBP
is a problem with two levels of multi-objective optimization
problems in which the lower-level optimal solution represents
a feasible space for the upper-level optimization problem.
Fig. 1 illustrates the two levels of a MOBP. It explains the
fact when all the pareto-optimal solutions of the lower-level
are considered at the upper-level. A general MOBP is defined
as follows [27]:

Minxu,xlF(x) = (F1(x), . . . ,FM (x))

s.t G(x) ≤ 0,H (x) = 0,

xl ∈ argminxl ,

{f (x) = (f1(x), . . . , fm(x))|g(x) ≤ 0, h(x) = 0},

x(L)i ≥ xi ≥ x
(U )
i , i = 1, . . . , n. (1)

FIGURE 1. Illustration of the two levels of a bi-level optimization problem
with two objectives at both levels (inspired by [29]).
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Each level has its corresponding objectives, variables, and
constraints. The manuscripts u and l are used for the
upper-level problem, and the lower-level one, respectively.
Consequently, the upper-level variables are represented by xu,
whereas, xl denotes the lower-level variables. In the previ-
ous formulation, F denotes the set of upper-level objective
functions that contains M objectives, and f represents the m
follower objective functions. In fact, the two levels cannot
have common objectives since each level corresponds to an
actor. For example, in game theory applications (Stackelberg
games), the two actors are in competition. In such situation,
one of the actors has more power than the other and acts
as a clear leader [14], [30]. For this reason, even if the
actors have the same objective function (e.g., cost minimiza-
tion), these objectives do not have the same meaning since
the two actors are in competition. The follower inequality
and equality constraints are given by g, and h, recpectively,
whereas, G, and H denotes the leader inequality and equality
constraints, respectively. It should be noted that the follower
optimization problem is optimized using the xu variable vec-
tor as a fixed parameter with respect to the xl variables. The
upper-level problem is optimized by taking the lower-level
pareto-optimal set as feasible solutions, and determining its
pareto-optimal set by using its objective functions set F
and its constraints. We mention here that an explanation of
multi-objective optimization aspects is given in Appendix C.

B. EXISTING MULTI-OBJECTIVE BI-LEVEL OPTIMIZATION
METHODS
Few papers have considered bi-level optimization problems
with multiple objectives on both levels. These works can be
classified into two categories: (1) classical approaches, and
(2) evolutionary approaches.

1) CLASSICAL APPROACHES
Some of the MOBP studies which exist in literature are
mostly directed towards development of classical meth-
ods. Reference [24] solved a simple multi-objective bi-level
problem using a numerical optimization technique at the
lower-level, and an adaptive exhaustive search method at the
upper-level. The proposed method is a nested one, in which
the lower-level problem is solved to Pareto-optimality. Unfor-
tunately, this solution is non-scalable to large-scale problems.
Another method was proposed by [31] which consists in
transforming the MOBP into an ε-constraint bi-level prob-
lem. Indeed, the decision maker chooses the ε-parameter, and
after that the lower-level problem is replaced by its Karush-
Kuhn-Tucker (KKT) conditions. These classical approaches
require several executions with several parameters to obtain
new pareto fronts. Also, the majority of these approaches
tackled the continuous non-linear case and not the discrete
one.

2) EVOLUTIONARY APPROACHES
With the surge in the power of computation, different evolu-
tionary approaches have been proposed forMOBP resolution.

Reference [32] proposed an evolutionary algorithm for a
MOBPwith a single-objective at the lower-level, andmultiple
objectives at the upper-level. The suggested approach is a
genetic algorithm for a transportation planning and manage-
ment problem. Reference [33] proposed a new evolutionary
approach for MOBP. Indeed, they use a specialized linear
Particle SwarmOptimization (PSO)multi-objective approach
in order to solve a multi-component chemical system. Refer-
ence [34] proposed an adaptive scalarization based-approach
in order to solve a bi-level problem with multiple objectives
at both levels. Also, a surrogate-assistance technique is used
to minimize the computational cost. Most of the proposed
evolutionary approaches cannot be used for the discrete case
as they require the gradient information computation.

3) SHORTCOMINGS OF EXISTING APPROACHES
Fewer are works that tackled the combinatorial multi-
objective case of BLOPs due to computational and decision
making complexities. This observation is explained by the
fact that combinatorial BLOPs are known to be strongly
NP-hard, and even the evaluation of a solution represents
also an NP-hard task [16]. Table 1 summarizes existing
multi-objective bi-level optimization approaches that could
be applied for the combinatorial case since they do not
require the gradient information. We mention here that the
cited works are classified into four types of approaches:
(1) EXact methods (EX), (2) Trajectory-basedMetaheuristics
(TM), (3) Evolutionary Metaheuristics (EM), and (4) Hybrid
Metaheuristics. It is shown from the table that there is a
lack of trajectory metaheuristics and the majority of existing
approaches are following a nested structure. For this reason,
they are very computationally expensive. The main issue
in MOBPs is that the lower-level Pareto-optimal solution
set is considered in the upper-level optimization problem.
In this case, existing approaches select a lower-level solution
randomly from the follower Pareto-optimal set. This solution
will be used for the upper-level problem. However, the fact of
choosing a solution randomly cannot ensure convergence and
diversity of the upper-level PF. In summary, the research gaps
in existing combinatorial multi-objective bi-level approaches
are the following: (1) the nested structure of algorithms that
makes these latter ones very computationally expensive and
(2) the choice of the lower-level solution from the follower
PF is randomly. We mention here that existing exact methods
transform the bi-level problem to a single-level one. For this
reason, the solution selection is Not Applied (N/A). In fact,
the difference between our proposed approach and existing
ones is explained as follows. Our algorithm structure is not a
nested one, but it is a decomposition-based co-evolutionary
structure. Also, the lower-level solution is not chosen ran-
domly, but we are choosing the lower-level solution having
the best contribution in terms of an indicator quality. In sum-
mary, in our proposed approach, the computational cost is
reduced using decomposition, co-evolution, and migration
schemes, while diversity and convergence aspects are ensured
using indicator-based approaches.
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TABLE 1. Existing multi-objective bi-level optimization approaches that could be used to solve combinatorial MOBPs.

III. PROPOSED ALGORITHM
A. MAIN IDEA AND MOTIVATIONS
The main motivation behind this work is to exploit the effi-
ciency of our previously proposed single-objective bi-level
algorithm CEMBA [28] to solve MOBPs. The main chal-
lenge is how to extend the algorithmic scheme of CEMBA
when passing to the multi-objective bi-level case, while pre-
serving its efficiency in terms of the NFEs (Appendix A
illustrates the efficiency mechanism of CEMBA). To achieve
this goal, we need two kinds of multi-objective metaheuristic
algorithms:

1) For the upper-level, we need a multi-objective EA that
is able to approximate the PF with enough convergence
and diversity (cf. Appendix C); while

2) For the lower-level, we need a multi-objective algo-
rithm that is able to return the solution having the
best contribution in terms of a multi-objective quality
indicator to the corresponding upper-level problem.

Motivated, by the ability of indicator-based algorithms in
transforming a multi-objective vector into a scalar value [39]
expressing its marginal contribution in terms of quality with
respect to a set (population) of solutions, we choose to
use IBEA (Indicator-Based Evolutionary Algorithm) [39]
for PF approximation at the upper-level and IBMOLS
(Indicator-Based Multi-Objective Local Search) [40] (i.e.
a population-based local search) at the lower-level. In this
way, the evaluation of each upper-level solution works in
two steps: (1) The upper-level variables are first sent to the
lower-level and then (2) IBMOLS approximates the solution
having the maximum marginal contribution in terms of the
multi-objective quality indicator and send it to the upper-level
to be able to terminate the quality evaluation of the considered
upper-level solution. We notice here that the indicator-based
approach allows respecting the bi-level nature of the opti-
mization problem since it returns a single solution to the
upper-level instead of whole set of non-dominated solution
(i.e. a whole Pareto Front). As, in this work, the neighborhood
size is negligible (much smaller) with respect to (than) the
population size, both IBEA [39] and IBMOLS [40] have
the same time complexity that is O(N 2), where N is the
population size. This further motivates the need to an effi-
cient bi-level algorithmic scheme that significantly reduces

the NFEs as possible. This algorithmic design choice allows
IB-CEMBA to preserve the population decomposition and
migration strategies of the baseline CEMBA [28], which
makes it able to solve combinatorial MOBPs with the least
possible NFEs. In details, IB-CEMBA uses two populations
in each level where each leader population works with its
corresponding follower one. The migration scheme is peri-
odically applied in order to guarantee the existence of the
optimal follower solutions in the corresponding lower-level
population and not in the mismatched one (cf. Appendix A
for further details).

B. IB-CEMBA ALGORITHMIC SCHEME
In this subsection, we present the flowchart of IB-CEMBA
in Fig. 2, and we describe the IB-CEMBA working principle
using a number of steps as follows:

1) Step 0: Upper and lower population initial-
ization: Initialize the upper-level population (UP)
and the lower-level population (LP) using DSDM
(Discrete Space Decomposition Method) [41]
(cf. details in Appendix B) two times in order to obtain,
at each level, two initial populations (UP1, UP2),
(LP1, LP2). The reason behind using a decomposi-
tion method is to ensure a uniform coverage of the
decision space, and to obtain, as possible, a uniformly
distributed solutions set in each level decision space.

2) Step 1: Lower-level fitness assignment: In a BLOP,
the evaluation of each upper-level solution requires
running a whole lower-level algorithm, and this fact
represents the main difficulty of BLOP. Motivated
by this observation, and in order to handle this
issue, we decompose each level of the problem by
using two populations. To evaluate lower solutions,
the lower-level algorithm of each LPi (with i belongs to
{1,2}) uses the leader solutions from the corresponding
UPi. In other words, we assign the fitness of LPi solu-
tions with respect to the UPi solutions.

3) Step 2: Local search procedure: As we use the
IBMOLS [40] principle for the lower-level algo-
rithm, we apply the local search procedure for each
lower-level population LPi (with i belongs to {1, 2})
as illustrated in Fig. 3. Indeed, we start first by the
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FIGURE 2. The main algorithmic scheme of IB-CEMBA.

FIGURE 3. Local-Search-Step iteration of IBMOLS at the lower-level of IB-CEMBA.

computation of the normalized objective function val-
ues. Consequently, we generate a neighborhood for
each lower solution, then, we compute its fitness value
based on an indicator I, and the normalized values of the
objective function. After that, we update the fitness val-
ues, we remove the worst solution, and we update the
fitness values again. We mention here that the genera-
tion of neighborhood stops in two cases: (1) when the
entire solution neighborhood is explored, or (2) when
an improving neighboring solution (with respect to I)
is found. The entire local search pocedure is termi-
nated when all the lower-level members are visited.
We mention here that the use of this indicator-based
approach helps to obtain a follower solution with the

best indicator contribution which is not the case for
existing approaches. In other words, instead of ran-
domly choosing a solution from the optimal lower
front, the IBMOLS helps the algorithm to obtain a sin-
gle lower solution (with the best indicator contribution)
that will be sent to the upper-level.

4) Step 3: Best indicator contribution lower-level solu-
tion determination: As the evaluation of leader solu-
tions fromUPi (with i belongs to {1,2}) necessitates the
approximation of each corresponding follower solu-
tions from LPi, the lower-level solutions are evaluated
with respect to the upper-level members.

5) Step 4: Upper-level indicator-based procedure:
After receiving the lower-level solutions with the best
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FIGURE 4. Illustration of the migration strategy in IB-CEMBA.

indicator contribution from the follower problem, each
upper-level population UPi (with i belongs to {1,2})
executes its algorithm based on the IBEA princi-
ple [39]. Indeed, we determine the individual with the
smallest fitness value, we remove it, then we update
the remaining individuals fitness values until we reach
the stopping criterion. After that, we apply the mating
selection, and the variation. We mention here that the
use of IBEA helps the algorithm to approximate the
optimal upper front.

6) Step 5: Migration strategy (each α generations):
Since we use two leader populations, and two follower
populations, the best lower-level solution set could be
in the mismatched follower population as illustrated
in Fig. 4. For this reason, we apply a migration strategy
after a fixed number of generations. Thus, we use a
β parameter in order to select a solution set which
contains β solutions from the follower objective space.
This selected solution set is used in the migration step.
In other words, we determine for each upper-level
solution, its best solution set in each LPi population
(with i belongs to {1,2}). Then, we compare the two
solution sets, if the best follower solution set for a fixed
leader solution belongs to the Mismatched follower
Population (MP), this solution set is migrated to the
Corresponding lower Population (CP). To keep balance
between the two lower-level populations, we determine
the worst follower solution set for the fixed upper-level
solution, and we migrate it from CP to MP.

We mention here that our proposed algorithm is imple-
mented using a multithreading (pseudo-parallel) mechanism
in which the two sub-populations work in a parallel manner
by the use of multiple threads.

IV. EXPERIMENTAL STUDY
To investigate the performance of our proposed IB-CEMBA,
a set of experiments has been performed on a new model of
the one proposed by [42]. In this section, we first describe the

benchmark problems, the performance metrics, and the algo-
rithms under comparison. Second, we describe the parameter
settings, the statistical test method, and the obtained results.

A. RESEARCH QUESTIONS
The objective of this experimental study is to answer to three
main questions:

1) RQ1: How does IB-CEMBA perform compared to
other bi-level optimization algorithms regarding the
upper-level?

2) RQ2: How does IB-CEMBA perform compared to
other bi-level optimization algorithms regarding the
lower-level?

3) RQ3: How does IB-CEMBA perform compared to
other bi-level optimization algorithms regarding the
NFEs?

B. BENCHMARK PROBLEMS
The Multi-objective Bilevel Production-Distribution Plan-
ning Problem with Equilibrium between Supply and
Demand (MBPDPESD) is a problem that describes the rela-
tionship between a distribution company, a manufacturing
plant, and retailers. As a bi-level problem, the leader is repre-
sented by the distribution company, while the manufacturing
plant is the follower. MBPDPESD was described by [42]
with one objective at the upper-level, and two objectives
at the lower-level. Indeed, the manufacturing company is
composed from several plants that produce several types
of products. These productions are based on the orders
which are given by the distribution companies in order to
satisfy the retailers demands. For this reason, the production
company (follower) has two objectives to be optimized: (1)
the minimization of the overall production cost which is
the cost of manufacturing the product types in plants, and
(2) the minimization of the storage cost of products in plants.
For the upper-level, the distribution company (leader) has
to serve a number of retailers, geographically dispersed,
with their demands. In fact, it needs to purchase products
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from plants, transport them to their depots, and then, deliver
these products to retailers. According to [42], the distribution
company has just one objective to be optimized which is the
minimization of the transportation cost. In our experimental
study, we have chosen to evaluate our IB-CEMBA on a
multi-objective bi-level problem that contains two objectives
at each level. For this reason, we have proposed a new version
of the MBPDPESD [42], that we named MBPDPESDWB
(Multi-objective Bilevel Production-Distribution Planning
Problem with Equilibrium between Supply and Demand, and
Workload Balance) in which we add to the leader problem
a second objective. This added leader objective is the work-
load balance proposed, recently, by [43]. In fact, the ideal
case in the previous objective is when the workload is equally
distributed in plants and depots, respectively. That means,
all the plants are at the same capacity level, and each plant
production is proportional to its capacity, while the retail-
ers’ demands are almost distributed among all the depots.
As following, the distribution company has two objectives
in the new MBPDPESDWB problem: (1) the minimization
of the transportation cost, and (2) the balance of the total
workload assigned to plants and depots. Despite the fact that,
to balance the total workload, all depots must be used, it could
be desired to use only a depots subset in order to minimize the
transportation cost. Table 2 illustrates the MBPDPESDWB
notations. The new MBPDPESDWB problem is formulated
in Pages 8 and 9. The interaction between the two levels
of the proposed model is given by Appendix F. The two
levels of the MBPDPESDWB model are given separately.
In fact, Equations (2), as shown at the bottom of the page,
and (3), as shown at the bottom of the next page, represent
the upper-level problem (the distribution company), while
Equations (4) and (5), as shown at the bottom of the next page

represent the lower-level problem (the manufacturing plant).
Indeed, the leader objective functions are given by Equa-
tion (2), while its constraints are represented by Equation (3).
For the lower-level problem, Equation (4) represents the two
follower objective functions, while Equation (5) explains the
different constraints for the lower-level problem. We mention
here that the feasibility of our proposed model is ensured by
the constraint handling technique described in Appendix D.

To experiment the IB-CEMBA efficiency, the compared
algorithms were tested by utilizing ten instances which have
been previously used in literature in order to solve similar
production-distribution planning problems [43], [44]. The
description of these instances is given by Table 3 where NV
represents the number of vehicules and C is their capacities.

C. PERFORMANCE METRICS
In order to evaluate the performance of the different algo-
rithms used in our comparison, we choose two performance
metrics as follows:

• The HyperVolume (HV) [45]: The HV indicator mea-
sures the hypercube volume which is covered by a
non-dominated set of solutions noted Q. The HV indi-
cator expression is given as follows [46]:

HV = Volume(∪|Q|i=1vi) (6)

where i represents a solution that belongs to the
non-dominated set Q and it represents the diagonal cor-
ners of the hypercube Vi which is constructed with a ref-
erence point noted W. To compute the HV metric value
for our bi-objective case, a reference pointW = (w,w) is
needed. It is worth noting that the reference point value
should be properly and precisely defined as it heavily

minxF(x, y) = (F1(x, y),F2(x, y))



F1(x, y) =
∑
d∈D

(
∑
p∈P

∑
t∈T

feepdt ypdt +
∑
r∈R

∑
t∈T

sdrt xdrt )+
∑
d∈D

∑
p∈P

∑
t∈T

opt ypdt

⇒ It explains the first upper-level objective corresponding to the minimization of the
transportation cost between: (1) retailers and depots, and (2) depots and plants.
F2(x, y) = BP(y) + γBD(x)
⇒ It explains the second upper-level objective that is the workload balance objective.

Such that:



BP(y) = max
p∈P
|

max
5
pi∑

pi∈P

max
5
pi

∑
r∈R

br −
∑
d∈D

ypd |

⇒ It computes the maximum deviation for the plants.

BD(x) = max
d∈D
|

∑
rz∈R

brz

|D|
−

∑
v∈Vd

∑
rj∈Rv

∑
rz∈Rv

xdrj e
v
rjrz |

⇒ It computes the maximum deviation for the depots.
γ is a numeric value that is used to standardize the units in the sum.

(2)
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s.t.



∑
d∈D

xdrt ≥ mrt ; r ∈ R; t ∈ T

⇒ It explains the limit of each retailer’ demand: the products of type t delivered to retailer r
must satisfy the r demand.∑
r∈R

cdt xdrt ≤ qdt ; d ∈ D; t ∈ T

⇒ It describes the limit of each depots’ volume: for the depot d, the volume occupied by the
products cannot exceed the available volume of the depot l.
xdrt ≥ 0; d ∈ D; t ∈ T ; r ∈ R
⇒ It explains the non-negativity constraint of the upper-level variables.∑
d∈D

ypd ≤
max
5
p∈P
; p ∈ P

⇒ It represents the fact that, for each plant, the produced quantity does not exceed its maximum
manufacturing capacity.∑
p∈P

ypd ≥
∑
v∈Vd

∑
r∈R

br ; d ∈ D

⇒ It garantees the fact that the demand of retailers assigned to each depot is satisfied.∑
r∈Rd

evdr ≤ 1; v ∈ Vd ; d ∈ D

⇒ It represents the retailer assignment to the different depots.∑
d∈D

evdkdl = 0; v ∈ Vd ; dk , dl ∈ D

⇒ It forbids the inter-flow between depots. In other words, the shipments between depots are
not allowed.∑
rj∈Rv

xdr
∑
rz∈Rv

evrjrz ≤
max
Q
v
; v ∈ V

⇒ It represents the constraints of each vehicle’s capacity: the vehicle v serving two retailers
respects its maximum capacity.
ypd ≥ 0; p ∈ P; d ∈ D;
⇒ It explains the non-negativity of the manufacturing variables.

(3)

minyf (x, y) = (f1(x, y), f2(x, y))



f1(x, y) =
∑
p∈P

∑
d∈D

∑
t∈T

gpt ypdt

⇒ It explains the first lower-level objective corresponding to the
minimization of the production cost.
f2(x, y) =

∑
p∈P

(
∑
t∈T

∑
d∈D

wpt ypdt )

⇒ It explains the second lower-level objective corresponding to the
minimization of the storage cost of the product of type t in palnt p.

(4)

s.t.



∑
t∈T

∑
d∈D

npt ypdt ≤ hp; p ∈ P

⇒ It explains the volume limit at each plant: the volume used in plant p
cannot exceed the t limit volume.∑
d∈D

∑
p∈P

∑
t∈T

ypdt =
∑
r∈R

∑
d∈D

∑
t∈T

xdrt

⇒ It explains the equilibrium between the retailers’ demands, and the
amount of products manufactured by plants: the total amount of products
for the plant p should be delivered to retailers in order to satisfy the
demands.
ypdt ≥ 0; p ∈ P; d ∈ D; t ∈ T
⇒ It explains the non-negativity constraints of the lower-level variables.

(5)
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TABLE 2. Notations used in the model.

TABLE 3. Description of the MBPDPESDWB benchmarks.

influences the outcome of the HV computation. For a
fair comparison, we have adopted the recently proposed
formulation designed by [47]. In such formulation,
w = 1 + (1/H ) where H is a user-specified parameter.
Based on the recommendations in [48], H = 5 and then
w = 1.2 andW = (1.2, 1.2). The larger the obtained HV

value is, the better the algorithm performance is.We note
here that this measure determines both convergence and
diversity.

• The Inverted Generational Distance (IGD) [49]: The
IGD gives a measure of the distance between the true
Pareto front and its closest individual in an approxima-
tion set. The IGD measures not only the diversity but
also the convergence. Let F∗ be a set of points that
are uniformly distributed over the Pareto Front and S
represents the obtained solution set. The IGDmetric can
be formulated as follows [50]:

IGD =

∑
x∗∈F∗

dist(F∗, S)

|F∗|
(7)

In the previous formulation, dist(F∗, S) represents the
Euclidean distance between a point from F∗ (x∗ ∈ F∗)
to its nearest solution in S. We mention here that when
the IGD values are low, then, better sets are obtained.
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D. ALGORITHMS UNDER COMPARISON
To validate the IB-CEMBA performance, we conduct
a comparative experimental study between the proposed
IB-CEMBA, and the Indicator-Based (IB) extensions of the
three BLOPs combinatorial algorithms to which we have
previously compared our CEMBA algorithm [28] and to
a bi-level algorithm that applies the well-known approach
NSGA-II [51]. Indeed, the compared algorithms description
is given as follows:

• An IB-nested approach: An indicator-based extension
of the simple nested algorithm. This algorithm considers
the optimality condition of the lower-level as a con-
straint, and tries to find best variables of the upper-level.

• IB-CoBRA: An Indicator-Based extension of the
Co-evolutionary Bi-level method using Repeated
Algorithms [52]. The working principle of CoBRA
is based on five components: (1) a co-evolutionary
scheme, (2) level-specific selection operators, (3) an
archiving strategy, (4) a stopping criterion, and (5) two
specific algorithms. This combinatorial algorithm seeks
to produce solutions with good quality. Then, it archives
the best obtained solutions, applies a selection oper-
ator, and co-evolves both sub-populations at the final
iteration.

• IB-CODBA-CRO: An Indicator-Based extension of
the CO-evolutionary Decomposition-Based Algorithm
with Chemical Reaction Optimization [53]. The
CODBA-CRO lower-level working principle is based on
three main mechanisms: (1) the decomposition, (2) the
multi-threading, and (3) the co-evolution scheme. This
algorithm decompose a molecule population into several
well-distributed sub-populations using a decomposition
method. After that, these sub-populations evolve using
several threads. Then, each thread (cluster) applies
chemical reaction optimization in order to find optimal
solutions.

• N-NSGA-II: It is a Nested bi-level algorithm that uses
the Non-dominated Sorting Genetic Algorithm II [51] at
each level of the problem. In fact, NSGA-II is a multi-
objective evolutionary algorithm that uses three main
mechanisms: (1) recombination operators to generate
offsprings, (2) non-dominated sorting to classify the
population into several fronts, and (3) niching strategy in
order to choose individuals that have the largest crowded
distance in the front. The NSGA-II is a method for
diversity and an elitist approach.

E. PARAMETER SETTING AND STATISTICAL TEST METHOD
The parameter values can largely influence the performance
of an algorithm, for this reason, a good way for tuning
parameters must be chosen [54]. On this subject, the different
parameter settings used for each algorithm are detailed in the
following. We must mention here that a trial-and-error [54]
strategy-based Taguchi method [55] for tuning parameters
values is used (cf. details in Appendix E). In Table 4,

TABLE 4. Default parameters settings.

the design parameters for algorithms under comparison are
illustrated. In order to achieve more accurate and stable
results, the same terminal criterions are considered. When we
are testing the HV values, the IGD values, and the CPU time,
we use 5.12 E+6 NFEs as a stopping criterion. For the NFEs
test, we use, for each instance, the upper reference HV value
as a stopping criterion. To provide amaking quantitative deci-
sions system about the process, a statistical test is needed. For
this reason, we used in a pairwise fashion the Wilcoxon rank
test [56] in order to check whether there is a statistical differ-
ence between the obtained samples results. In fact, the choice
of a Wilcoxon rank test is explained by the fact that this test
works on the values’ ranks and not on the values themselves.
In this experimental study, 31 runs were launched for each
couple (algorithm, problem) as recommended in [56]. After
that, the obtained results were analyzed using the median
value as a measure of central tendency. In fact, the median
value represents the middle score for a data set, and it is not
distorted by the skewed data and the outliers [57]. As follows,
the p-value of the 2 following hypothesis is computed using
the MATLAB rank sum function:
• H0: median (Algorithm 1) = median (Algorithm 2).
• H1: median (Algorithm 1) 6= median (Algorithm 2).

In fact, we talk about two different cases. In the first case,
the obtained p-value is equal or less than 0.05, and here
H1 is accepted, while H0 is rejected. So that, the two algo-
rithms median are different from each other. In the second
case, the obtained p-value is greater than 0.05, and here H1
is rejected, while H0 is accepted, and we cannot say that
one of the two algorithms is better than the other. We note
here that we have coded our IB-CEMBA and the other used
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TABLE 5. Median HV values for IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested algorithm, and N-NSGA-II on MBPDPESDWB benchmarks.

TABLE 6. Median IGD values for IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested algorithm, and N-NSGA-II on MBPDPESDWB benchmarks.

algorithms in Java programming langage, while we have
performed the different simulations on the same machine:
Intel(R) Core(TM) i5-4210 CPU 2.40GHz,4 GO RAM. The
comparison results are represented by (+) (significance) and
(−) (no significance). We note here that the (+) symbol
indicates that H0 is rejected while the (−) symbol means that
H0 is accepted.

F. COMPARATIVE UPPER AND LOWER RESULTS
To answer RQ1, we detail the IB-CEMBA performance along
with four competitive algorithms. In our experimental study,
the upper-level performance is tested using the HV and the
IGD metrics. Table 5 illustrates the normalized median HV
values obtained by the five compared algorithms.Wemention
here that we use 5.12 E+6 NFEs as a stopping criterion. Com-
pared to the indicator-based extensions of CODBA-CRO,
CoBRA, and the nested approach, and to the N-NSGA-II
algorithm, IB-CEMBA has the best overall performance in
terms ofHV leader values. Indeed, in nine instances out of ten
ones, our proposed IB-CEMBA reaches the best HV values,
and generates best pareto-fronts regarding the used algo-
rithms. For the other instance, IB-CEMBA generates the sec-
ond best HV value. The previous results are confirmed by
Table 6 that illustrates the IGD values for all algorithms under
comparison. We mention here that the IGD metric requires a
true PF in the calculation. For this reason, we have filtered
the non-dominated (Pareto-optimal) solutions obtained by all
algorithms, during all the executions. The filtering process
is done by eliminating dominated solutions and preserving
the non-dominated ones which are used as reference PF
to compute the IGD value in each experiment. As illus-
trated in Table 6, our proposed approach has the best IGD

values compared to other approaches. This observation is
explained by the fact that IB-CEMBA consists in applying an
indicator-based approach at the lower-level in order to choose
the solution with the best marginal contribution in terms of
the HV value from the obtained lower-level PF. This solution
will be sent to the upper-level in order to approximate the
leader PF. It is worth mentioning that it is not the case for the
other approaches since they randomly choose a lower-level
solution from the follower PF which is not an optimal choice.
We can say that good upper-level results which are obtained
by IB-CEMBA are explained by the advantages of using
two leader populations with an indicator-based approach at
each upper population. In fact, the use of an indicator-based
co-evolutionary scheme, helps IB-CEMBA to choose the
best solutions. Tables 5 and 6 clearly demonstrate the ability
of IB-CEMBA to ensure convergence and diversity of the
upper-level PF.

To study the lower-level behaviour of IB-CEMBA, and to
answer RQ2, we use the HV indicator in order to evaluate
the lower-level solutions. In the following, Table 7 illustrates
the obtained normalized HV values. The statistical results
are generated using the NFEs as a stopping criterion, which
is fixed to 5.12 E+6 NFEs. As expected, in all the used
test problems, our IB-CEMBA outperforms the four other
algorithms in terms of the HV values. As shown in table 7,
the worst performance is observed with the N-NSGA-II and
the indicator-based version of the nested algorithm compared
to IB-CODBA-CRO, and IB-CoBRA. This result explains the
fact that N-NSGA-II and the IB-nested algorithm need an
efficient method for the lower-level problem, so that, it can
produce good responses. In the majority of the test problems,
IB-CODBA-CRO outperforms IB-CoBRA. Indeed, all these
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TABLE 7. Median HV lower values for IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested algorithm, and N-NSGA-II on MBPDPESDWB benchmarks.

FIGURE 5. The average convergence plots of IB-CEMBA, IB-CODBA-CRO,
IB-CoBRA, IB-nested approach, and N-NSGA-II for the instance number 1.

FIGURE 6. The average convergence plots of IB-CEMBA, IB-CODBA-CRO,
IB-CoBRA, IB-nested approach, and N-NSGA-II for the instance number 6.

observations show the ability of IB-CEMBA in controlling
the directions of search, and approximating the lower-level
solution with the maximummarginal contribution in terms of
the HVmetric.In summary, the use of a local search procedure
at each lower population, helps our proposed IB-CEMBA to
generate a single solution instead of a whole Pareto Front,
while the used migration scheme guarantees the existence
of optimal solutions in the corresponding follower popula-
tion. In order to clarify more the lower-level informations
especially on the convergence characteristic, an average con-
vergence plot on the two lower-level objectives is illustrated
using three types of instances: (1) the instance 1 (small size
instance) represented by Fig. 5, (2) the instance 6 (medium
size instance) represented by Fig. 6, and (3) the instance 10

FIGURE 7. The average convergence plots of IB-CEMBA, IB-CODBA-CRO,
IB-CoBRA, IB-nested approach, and N-NSGA-II for the instance
number 10.

(large size instance) represented by Fig. 7. Indeed, the objec-
tive space proportion of the approximation of solutions with
maximummarginal contributions in terms of theHV indicator
is given by each used algorithm for every number of follower
evaluations. In fact, by using 5.12 E+6 NFEs as a stopping
criterion, it is shown that our proposed IB-CEMBA performs
better on the global approximation.

G. EFFICIENCY COMPARATIVE RESULTS
In addition to the previous results, we are interested to
investigate the performance of the competitive algorithms
in terms of the NFEs in order to answer the RQ3.
Table 8 illustrates the NFEs consumed by IB-CEMBA,
IB-CODBA-CRO, IB-CoBRA, IB-nested approach, and
N-NSGA-II. We mention here that, for each used instance,
we use two different references. Indeed, the first one is the dif-
ficult (d) reference upper HV value (HV = 0.8), and the sec-
ond one is the easy (e) reference upper HV value (HV= 0.6).
In fact, for each instance, we compute the NFEs consumed
by each algorithm in order to reach the difficult, and the easy
HV values. On the used test problems, we observe that our
proposed IB-CEMBA consumes less NFEs than IB-CODBA-
CRO, IB-CoBRA, IB-nested approach, and N-NSGA-II. All
these results are confirmed by Figs 8, 9, and 10, which
describe the NFEs obtained by the confronted algorithms.
In the NFEs experiments, we have chosen for brevity three
test problems, which are: the instance number 1 (small size
instance), the instance number 6 (medium size instance), and

VOLUME 8, 2020 141685



R. Said et al.: Solving Combinatorial MOBPs Using Multiple Populations and Migration Schemes

TABLE 8. NFEs for IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested algorithm, and N-NSGA-II on MBPDPESDWB benchmarks.

FIGURE 8. The NFEs obtained by all algorithms on the instance 1.

FIGURE 9. The NFEs obtained by all algorithms on the instance 6.

the instance number 10 (large size instance) in which the
reference upper HV value is used as a termination criterion.
We explain the obtained results by the ability of IB-CEMBA
in controlling the directions of search, which can hugely
reduce the NFEs. In fact, the decomposition idea that consists

FIGURE 10. The NFEs obtained by all algorithms on the instance 10.

in using two upper populations and two lower populations
where each UPi (with i belongs to {1,2}) works with its
corresponding LPi helps IB-CEMBA to evaluate solutions
with a minimum NFEs. In summary, IB-CEMBA with the
co-evolutionary scheme, and the use of two populations at
each level is able to consume a minimum NFEs.

In addition to the previous results, we need to check the
ability of IB-CEMBA with migration scheme in reducing the
NFEs. For this reason, we have compared two versions of
IB-CEMBA in terms of NFEs: (1) the first version is when
IB-CEMBA applies a migration scheme and (2) the second
one is when IB-CEMBA does not use a migration scheme.
In fact, we have chosen for brevity six instances: (1) two
small size instances (1 and 2), (2) two medium size instances
(3 and 8), and (3) two large size ones (9 and 10). We men-
tion here that we use the upper HV values as a stopping
criterion for each experiment. In fact, for each instance,
we use two upper-level HV references: (1) an easy upper
HV value noted e (HV = 0.6) which is easy to be achieved
and (2) a difficult upper HV value noted d (HV = 0.8) that
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TABLE 9. Added value of the migration strategy in terms of the reduction percentage of the NFEs on six instances using two reference upper HV values (d
means a difficult reference and e means an easy reference).

TABLE 10. Computational time CPU (milliseconds) consumed by IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested algorithm, and N-NSGA-II on MBPDPESDWB
benchmarks.

is difficult to be achieved. Thus, twelve experiments were
performed ((six instances) × (two HV reference values)) to
test the impact of using a migration strategy in the reduction
of NFEs. Table 9 illustrates the obtained NFEs for the two
versions of IB-CEMBA. To show the impact of the migration
scheme, we have calculated the Reduction Ratio (RR) and the
Reduction Percentage (RP) values as follows:

RR =
NFEs without migration - NFEs with migration

NFEs without migration
(8)

RR = 1− (
NFEs with migration

NFEs without migration
) (9)

RP = RR× 100 (10)

As illustrated in Table 9, IB-CEMBA with the use of a
migration scheme has a good reduction of the NFEs. In fact,
the obtained results show that the RP ranges vary in the
interval [30.13%, 54.09%]. We can say that this reduction is
very significant and important because it varies between the
third and almost the half.

To further emphasize our experimental study, Table 10
reports the CPU times obtained at each instance for
IB-CEMBA, IB-CODBA, IB-CoBRA, IB-nested approach,
and N-NSGA-II. We note here that the NFEs is used as
a stopping criterion for all the used algorithms. Indeed,
the commun NFEs is set to 5.12 E+6. As shown in the table,
our proposed IB-CEMBA consumes less CPU time com-
pared to IB-CoBRA, IB-nested algorithm, and N-NSGA-II.
However, the CPU times consumed by IB-CEMBA,

and IB-CODBA-CRO are close to each other. In fact,
the obtained results of IB-CEMBA, and IB-CODBA-CRO
demonstrate that the fact of using a pseudo-parallel mecha-
nism, helps these two algorithms to not waste computational
effort while determining the pareto-optimal sets, which is not
the case for the other algorithms.

V. CASE STUDY: MULTI-OBJECTIVE BI-LEVEL FEATURE
CONSTRUCTION FOR THE CASE OF BINARY
CLASSIFICATION
The case study discussed here represents the multi-objective
bi-level feature construction problem (for the binary classifi-
cation case). In fact, the bi-level feature construction problem
has been tackled only in a single-objective way [58]. Inspired
by works from the field of evolutionary feature selection
and construction [59], [60], we developed, in this paper,
the multi-objective version of the bi-level feature construc-
tion problem. In fact, feature selection and construction are
important techniques in datamining. Indeed, feature selection
consists in selecting a relevant feature subset, while feature
construction consists in generating new high-level features
(constructed features), where each one of them corresponds
to a combination of an original features subset. To reduce
the dimensionality and improve the classification perfor-
mance, feature selection and feature construction are used
together [59]. As described in Fig. 11, in a multi-objective
bi-level feature construction, the upper-level performs feature
selection by minimizing two objectives: (1) the number of

VOLUME 8, 2020 141687



R. Said et al.: Solving Combinatorial MOBPs Using Multiple Populations and Migration Schemes

FIGURE 11. Illustrating the multi-objective bi-level feature construction problem.

TABLE 11. Datasets.

selected features and (2) the classification-error-rate; while
the lower-level searches for optimized constructed features
(combinations of features) by: (1) maximizing relevance
and (2) minimizing redundancy. In the following, each
upper-level solution (feature subset represented by a binary
vector indicating selected features where ‘‘1’’ means that the
corresponding feature is selected and ‘‘0’’ otherwise) is asso-
ciated with an optimal lower-level solution (tree encoding a
constructed feature that represents optimal combinations of
feature subset). Both leader objectives could be conflicting
as the minimization of the number of features may increase
the classification-error-rate due to the removal of relevant
features [60]. A similar observation could be seen for the
follower objectives as maximizing the relevance (correlation
with class labels) may increase the redundancy between
the constructed features of the considered combination tree.

Hence, our problem is a combinatorial MOPB with two (pos-
sibly) conflicting objectives at the upper-level and two other
ones at the lower-level. It is worth noting that for each feature
subset, a whole lower-level is optimized in order to find the
corresponding tree that encodes a constructed feature. In this
way, the bi-level problem will be able to generate a set of
optimized constructed features.

To show the versatility of IB-CEMBA, we have used,
for brevity, two large-dimensional gene expression datasets
described by Table 11 and available at http://csse.
szu.edu.cn/staff/zhuzx/Datasets.html. The
performance of IB-CEMBA is evaluated by comparing it with
IB-CODBA-CRO, IB-CoBRA, IB-nested, and N-NSGA-II
based on the obtained constructed features. The experiments
were conducted using two types of machine learning algo-
rithms: (1) K-Nearest Neighbors (KNN) and (2) Naïve Bayes
(NB). To show the effectiveness of our proposed approach,
we use two performance metrics: (1) classification accuracy
metric and (2) classification-error-rate one. We mention
here that the stopping criterion is fixed to 5.12 E+6 NFEs.
In Table 12, we compare the classification accuracy of the
constructed features obtained by IB-CEMBA with those

TABLE 12. Classification accuracy results of the obtained constructed features.
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TABLE 13. Classification-error-rate results of the obtained constructed features.

produced by IB-CODBA-CRO, IB-CoBRA, IB-nested, and
N-NSGA-II. Table 13 displays the obtained constructed fea-
tures for all algorithms in terms of the classification-error-rate
metric. In fact, the Number of Original Features is given by
column NOF, while the best and median results obtained
by KNN and NB are illustrated by columns ‘‘Best’’ and
‘‘Median’’, respectively. We mention here that the NOF is
the same for the two tables. Indeed, we are using two tables
separately in order to have an idea about the classification
accuracy and the classification error-rate. Compared with
IB-CODBA-CRO, IB-CoBRA, IB-nested, and N-NSGA-II,
the constructed features by IB-CEMBA have higher perfor-
mance on all datasets in terms of classification-error-rate and
classification accuracy. We can say that constructed features
by IB-CEMBA help the two classification algorithms obtain
higher improvement in all datasets due to the decomposition
scheme and the migration strategy.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed a new indicator-based
co-evolutionary migration-based algorithm for combinatorial
multi-objective BLOPs. Due to the lack of works pro-
posed for multi-objective bi-level problems, we have com-
pared our proposed IB-CEMBA to the extensions of three
recently proposed combinatorial bi-level algorithms and to a
nested bi-level algorithm that uses NSGA-II at both levels.
The obtained experimental results show that our proposed
IB-CEMBA algorithm provides competitive results regarding
the used algorithms. In this section, we would like to discuss
the possible threats to validity. These threats could be clas-
sified into three different categories: (1) construct validity,
(2) internal validity, and (3) external one. We mention here
that necessity to construct validity appears because we con-
sidered theHV performancemetric [45] and the IGD one [49],
we did not use other metrics for the evaluation. As follows,
we plan to use additional performance metrics to evaluate
the performance of the proposed algorithm. The stochastic
behavior of our proposed algorithm represents the major
internal threats. In our experimental study, we used the trial-
and-error strategy [45] based Taguchi method [55] to set
the parameter tuning of our proposed IB-CEMBA. In fact,
the obtained results are promising, however, the design of
a parameter control strategy for our IB-CEMBA would

be a challenging perspective. Concerning the generalizabil-
ity of the obtained results which refers to the external
threats, we have used a set of benchmark test problems that
presents various challenging difficulties. In fact, IB-CEMBA
has the best overall performance with respect to the com-
pared algorithms. However, it would be interesting to assess
IB-CEMBA on other benchmark problems.

APPENDIX A
A COMPARISON BETWEEN THE NESTED APPROACH AND
THE CEMBA APPROACH
This appendix explains the difference between a simple
nested approach and our proposed CEMBA [28] as illustrated
in Fig. 12. Starting by the nested approach which is explained
by Fig. 12(a), the fitness evaluation of the upper-level solu-
tion C necessitates approximating its corresponding optimal
lower-level solution noted x∗l (C). In other words, the leader
variable subvector xu(C) is passed as a fixed parameter to the
follower problem. Then, the latter faces a new lower-level
optimization problem that is parametrized by the received
xu(C). The follower algorithm approximates the lower-level
optimal solution x∗l (C) and then sends this approxima-
tion to the leader in order to compute the fitness value of
the upper-level solution C (i.e., F(C) = (xu(C), x∗l (C))).
As follows, for the nested approach, we repeat the two steps
(step 1, and step 2) for each upper-level solution. However,
as illustrated in Fig. 12(b), in our proposed CEMBA [28],
these two steps are repeated for each leader population with
its corresponding follower population. In fact, Pop-Lower1
individuals contribute in the evaluation of Pop-Upper1 ones,
while Pop-Lower2 individuals contribute in the evaluation of
Pop-Upper2 ones.

APPENDIX B
A COMPARISON BETWEEN THE DAS-&-DENNIS AND
DSDM METHODS
This second appendix explains the difference between the
Das and Dennis [61] and the DSDM [41] methods as
shown in Fig. 13. For a continuous search space, the
Das-&-Dennis method could be used. However, for a discrete
search space, the Das-&-Dennis method is inapplicable. The
DSDM method is a variant of the Das-&-Dennis method,
and it is used in order to generate a set of points over the
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FIGURE 12. Illustration how our CEMBA decomposition strategy consumes the half of the
NFEs of the nested approach.

FIGURE 13. Illustration of the difference between the two decomposition methods: (a) the Das-&-Dennis and (b) the DSDM.

whole decision (search) space that are uniformly distributed
as possible. Fig. 13(a) illustrates the distribution of the refer-
ence points for the Das-&-Dennis method with 3-objective
optimization problem (M = 3) and a spacing of δ = 0.2
(P = 5). In fact, 21 reference points (H = 21) are generated
in a normalized hyper-plane. We mention here that lines that
are constructed from the origin to each of these reference
points represent the reference directions. Fig. 13(b) illus-
trates the obtained results for the DSDM method with three
decision variables where the domains are: Dx1 = [0,2,5,13],
Dx2 = [4,7,9,17], and Dx3 = [5,8,11,16]. In a discrete space,
the DSDMmethod needs a uniform spacing noted δi in order
to generate the coordinates of the reference points, this δi is
calculated for each decision variable as follows: δi = maxi/P
(i is the decision variable index, P is a fixed parameter based
on the dimension of the problem). For this reason, the DSDM
method starts by determining the highest value in each

decision variable domain Dxi as follows: max1 = 13,
max2 = 17, and max3 = 16. After that, the uniform spac-
ing values δi are computed (for a P = 3) as follows:
δ1 = 13/3= 4, δ2 = 17/3= 5, and δ3 = 16/5= 5.Wemention
here that each axis division is not the same for other axis
because the division number varies between axes. Based on
the obtained δi values, a range of values set (Ri) is gen-
erated for each decision variable by performing two steps:
(1) the first step consists in adding the first value of Dxi
to the corresponding Ri, and (2) the second step consists in
determining the following members by calculating the sum
of: δi + the latest value added to Ri. If the obtained value
belongs toDxi, this value will be added toRi; otherwise, it will
be replaced by its closest value that belongs to the correspond-
ingDxi. To clarify the previous idea, we generate the range set
R1 for the corresponding Dx1 by performing the following
steps. First of all, the first value in Dx1 is added to R1
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FIGURE 14. Illustration of convergence and diversity concepts in a MOP.

(i.e.R1= [0]). After that, we determine the followingmember
(i.e. δ1+ 0= 4). However, the obtained value does not belong
to Dx1. For this reason, we replace it by the closest value
to 4 that belongs to Dx1 which is 5 (i.e. R1 = [0, 5]). The
same idea is repeated until we reach the upper bound of Dxi
(i.e. δ1 + 5 = 4 + 5 = 9 which does not belong to Dx1,
thus, it is replaced by 13 that represents its closest value in
the Dx1). At this stage, all the values in R1 are generated
because we have reached 13 which is the upper bound of Dx1
(i.e. R1 = [0, 5, 13]). Consequently, the coordinates of the
generated reference points forDx2 andDx3 areR2= [4, 9, 17],
and R3 = [5, 11, 16], respectively. Finally, the obtained solu-
tions for the DSDM example are: (0,4,5), (0,9,11), (0,17,16),
(5,4,5), (5,9,11), and (13,4,5). It is shown fromFig. 13 that the
number of solutions generated by the DSDM method is less
than the one generated by the Das-&-Dennis method. This
observation is explained by the fact that the DSDM method
uses the rounding of values because it is applied in a discrete
search space. We mention here, that having less number of
solutions compared with the Das-&-Dennis method is not
important because the goal behind using the decomposition
method DSDM is to cover the discrete search space.

APPENDIX C
MULTI-OBJECTIVE OPTIMIZATION
AMulti-Objective optimization Problem (MOP) involves the
minimization or the maximization of two or more conflicting
objectives simultaneously. In a MOP, we have two goals to
pursue which are: (1) convergence towards the optimal PF
and (2) diversity along the PF [50]. Indeed, a good conver-
gence means that the obtained non-dominated solutions are

very close to the optimal PF. A good diversity is based on
two factors: (1) a good uniformity of solution distribution,
in other words, the distances separating neighboring solutions
are almost equal; and (2) a good extent along the PF, meaning
that the obtained non-dominated solutions cover the whole
optimal PF. Convergence and diversity concepts are explained
by Fig. 14. In the following, four cases are represented:
(A) poor convergence + good extent + good uniformity,
(B) good convergence + good extent + poor uniformity,
(C) good convergence + poor extent + poor uniformity, and
(D) good convergence + poor extent + good uniformity. To
clarify more the multi-objective aspect, some definitions are
given as follows [62]:
Definition 1 (Pareto Optimality): A solution noted x∗ is

Pareto optimal, if ∀x ∈ � and I = {1, . . . , M} either ∀m ∈ I ,
we have: fm(x) = fm(x∗) or there is at least one m ∈ I such
that fm(x) > fm(x∗).
Definition 2 (Pareto Dominance): A solution noted

u = (u1, . . . , un) is said to dominate the solution v = (v1, . . . ,
vn) (it is denoted by f (u) � f (v)) if and only if f (u) is partially
less than f (v). In other words, fm(u) ≤ fm(v) ∀m ∈ {1, . . . ,M}
and ∃m ∈ {1, . . . ,M} where fm(u) < fm(v).
Definition 3 (Pareto Optimal Set): For a given multi-

objective optimization problem f (x), the Pareto optimal set
is noted P∗: P∗ = {x ∈ �|¬∃x ′ ∈ �, f (x ′) � f (x)}. Where
� represents the feasible search space, and f (x ′) � f (x)
explains the fact that x ′ dominates x.
Definition 4 (Pareto Optimal Front): For a given

multi-objective optimization problem and its corresponding
Pareto optimal set noted P∗, the Pareto Front is PF∗, where
PF∗ = {f (x), x ∈ P∗}.
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FIGURE 15. Results on Taguchi method for parameter tuning of IB-CEMBA.

FIGURE 16. Results on Taguchi method for parameter tuning of IB-CODBA-CRO, IB-CoBRA, IB-nested, and N-NSGA-II.

APPENDIX D
THE USED CONSTRAINT HANDLING STRATEGY
This appendix explains the used constraint handling strategy.
In fact, we use a constraint handling technique for indicator-
based multi-objective evolutionary algorithms which is
inspired by [63]. The used constraint handling strategy works
as follows:

• Step 1:Divide the populationP into two sub-populations
SPi (with i belongs to {1, 2}): (1) a feasible solution
set SP1 (where SP1 = { pi ∈ P | Constraint Violation
(pi) = 0}), and (2) an infeasible solution set SP2 (where
SP2 = { pi ∈ P | Constraint Violation (pi) > 0}).

• Step 2: If the number of feasible solutions is equal or
greater than the number of individuals N (|SP1| ≥ N ),
then, we apply IBEA [39] in order to selectN individuals
out of SP1, we sort the N selected individuals according
to their fitness values, and we put the N sorted individ-
uals into Pt+1.
If the number of feasible solutions is less than the num-
ber of individuals N (|SP1| < N ), then, we preserve all
SP1 individuals, we sort the SP1 individuals according to
their fitness values, and we put the SP1 sorted individ-
uals into Pt+1. After that, we sort the SP2 individuals

according to their constraint violation degree and we
preserve the least infeasible (N - |SP1|) solutions inPt+1.

APPENDIX E
THE USED PARAMETER SETTING METHOD
This appendix explains the used method for tuning parame-
ters for all algorithms under comparison. In fact, the Taguchi
method [55] is a sophisticated kind of the trial-and-error
one [54]. In order to clarify more and verify the proposed
parameter tuning values, we have applied the Taguchi method
in which the Signal-to-Noise Ratio (SNR) parameter is cal-
culated as follows:

SNR = −log10(
1
N

N∑
i=1

(objective function)2i ) (11)

where N represents the number of performed runs. The
SNR parameter reflects the variability and the mean of the
experimental data. The used parameters for tuning are the
following: (1) NFEs (FEs), (2) population size (Pop. size), (3)
upper generation number (UGen. nb), (4) lower generation
number (LGen. nb), and (5) decomposition parameter for the
DSDMmethod (Dec). The considered levels for each parame-
ter are given by Table 14, while the corresponding orthogonal
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FIGURE 17. The interaction of the lower and the upper levels to evaluate the upper-level objective
functions F1 and F2 for a single upper-level solution.

TABLE 14. Design parameters and their levels.

array (L27(35) where we have 27 experiments, 5 variables,
and 3 levels) is given by Table 15. Fig. 15(b) displays the
obtained SNR results for IB-CEMBA. The optimal level with
respect to SNR values is: A(2), B(2), C(2), D(2), and E(2).
Moreover, Fig. 15(a) displays computed results for
IB-CEMBA in terms of mean fitness values of the upper-level
in Taguchi experimental analysis, which confirmed the
achieved optimal levels using SNR parameter. For the other
compared algorithms, Fig. 16(b) displays their optimal SNR
values which are: A(2), B(2), C(2), D(2), and E(2). In fact,
the computed mean upper-level fitness values (cf. Fig. 16(a))
confirmed the acheived optimal level using SNR parameter.

APPENDIX F
THE INTERACTION OF THE LOWER AND UPPER LEVELS
TO EVALUATE THE UPPER-LEVEL OBJECTIVE FUNCTIONS
F1 AND F2 FOR A SINGLE UPPER-LEVEL SOLUTION
To clarify the interaction of the lower and the upper levels
when evaluating the upper-level objective functionsF1 andF2

TABLE 15. The orthogonal array L27.

for a single upper-level solution, we give details in Fig. 17.
We mention here that nd and nv represents the depots num-
ber and the vehicules number, respectively, while nr and np
are the number of retailers and plants, respectively. In a
MBPDPESDWB problem, the leader receives demands from
a set of retailers. First of all, the leader starts by computing the
maximum deviation for depots BD located at the upper-level
independly from the lower-level. However, the maximum
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deviation for plants BP and the F1 values depend on the
lower-level problem. For this reason, the upper-level sends
xdrt to the lower-level. At this stage, the follower computes
f1 and f2 costs in addition to the BP value of the optimal
lower-level solution y∗pdt . After that, the BP value and the
y∗pdt solution are sent to the upper-level. In the following,
the leader computes F1 using y∗pdt and F2 using BD and BP
values. The previous process is applied in order to evaluate
the upper-level objective functions F1 and F2 for a single
upper-level solution.
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