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ABSTRACT The main challenge for hardware implementation of non-binary LDPC decoding is the
high computational complexity and large memory requirement. To address this challenge, five new low
complexity LDPC decoding algorithms are proposed in this paper. The proposed algorithms are developed
specifically towards the low complexity, yet effective, decoding of the NB LDPC codes. The proposed
decoding algorithms update, iteratively, the hard decision received vector to search for the valid codeword in
the vector space of Galois field (GF). The selection criterion for least reliable symbol positions is based on
the information from the failed checks and the reliability information from the Galois field structure as well
as from the received channel soft information. To choose the correct value for the candidate symbol, two
methods are used. The first method is based on the prediction of the error symbol from the set of Galois field
symbols which maximize an objective function. In the second method, individual bits are flipped based on
the reliability information obtained from the channel. Algorithms 1 and 2 flip a single symbol per iteration
whilst the other three algorithms 3,4 and 5 flip multiple symbols in each iteration. The proposed voting
based Algorithms 1,2 and 5 first short list the unreliable positions using a majority voting scheme and
then choose the candidate symbol value from the set of the symbols in GF(q) while not violating the field
order q. These methods simplify the decoding complexity in terms of computation and memory. Results and
analysis of these algorithms show an appealing tradeoff between computational complexity and bit error rate
performance for NB LDPC codes.

INDEX TERMS Multiple vote, non-binary LDPC, iterative reliability decoding, symbol flipping, sum
product algorithm, low complexity decoding.

I. INTRODUCTION
Reliable and efficient communication depends on the perfor-
mance of forward error correction (FEC) codes. Among error
correction codes, non-binary (NB) LDPC codes have shown
an excellent bit error rate (BER) performance, especially in
comparison to binary LDPC codes [1]–[3]. An important
feature of NB LDPC is that they have good performance
for short and medium length codes [4]. The performance of
LDPC codes depend on the type of decoders used. One of the
good decoders is the q−ary sum-product algorithm (QSPA)
decoder which passes a vector of q probability messages over
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each edge of the Tanner graph, representing the probability
of all q elements of GF(q). However, the high check node
computational complexity of the QSPA decoder is a major
obstacle to their finding a place in practical applications.
After the invention of the NB LDPC codes [1], most of
the research has focused on how to reduce the computa-
tional complexity of the check node processing. To lower
the complexity of QSPA, a Fast Fourier transform based
SPA (FFT-SPA) algorithm was proposed in [5] to reduce the
check node computational complexity from order of O(q2)
to O(q log q) for each check node update. Other low com-
plexity algorithms called extended min-sum (EMS) [6], [7],
trellis based EMS [8], bubble check EMS [9] and min-max
algorithms [10] were proposed but they have a performance
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degradation in comparison to QSPA. Further, the complexity
of the computations of all these algorithms is still too high
for hardware implementation. On the other hand, reliability
based message passing algorithms [11]–[14] and the symbol
flipping algorithms [15], [16] are simple and computation-
ally very fast for NB LDPC codes but at a cost of reduced
performance.

Reliability based majority logic decoding algorithms
offer low complexity as they send only the most reliable
field message and in this respect are similar to mes-
sage passing decoding algorithms. In the iterative major-
ity logic decoding (MLgD) algorithm for non-binary LDPC
codes, each symbol is iteratively updated by the extrinsic
information-sums (EXIs) with the most reliable field element
along each edge of the Tanner graph. The iterative reliability
based hard (IHRB) and soft (ISRB) majority logic decod-
ing (MLgD) algorithms [17] have lower complexity but suffer
from performance degradation. Some performance improve-
ments to IHRB-MLgD and ISRB-MLgD algorithms have
been presented in [11]–[14]. To improve the performance
of IHRB-MLgD algorithm, an enhanced (E-IHRB-MLgD)
algorithm is presented in [12] by introducing soft reliability at
the initialization and re-computing the extrinsic-information.
The enhanced IHRB algorithm has the same complexity as
that of IHRB except at the initialization but it has an improved
performance which is close to ISRB algorithm. The majority
logic decoding algorithms are particularly suitable for parity
check matrices with high column weight, constructed based
on finite fields [18] and finite geometries [19]. These algo-
rithms suffer from performance loss for codes with small
column weight.

Better performing, low complexity message passing
decoding algorithms were presented in [20]. These algo-
rithms introduce reliability updates in terms of the bit rather
than symbols and are termed as bit reliability based (BRB)
algorithms. The BRB algorithm require integer and Galois
field operations only, which reduces the computational com-
plexity. The performance of the BRB algorithm is improved
by multiplying the extrinsic information-sum by Ham-
ming distance based weighted coefficients. This weighted
BRB (wBRB) algorithm shows improved performance over
ISRB and BRB and does not suffer from error floor for
parity check matrices with small column weight. A full
bit-reliability based decoder [21] is the binary form of
weighted BRB as this algorithm uses the binary represen-
tation of the non-zero entries of the parity check matrix to
facilitate hardware implementation.

Symbol flipping (SF) decoding algorithms have low com-
plexity as compared to the bit reliability based decoding
algorithms [20], [21] and the q-ary belief propagation [1],
[5] message passing algorithms but at the cost of reduced
bit error rate performance. In the symbol flipping decoding
algorithm presented in [22], the least reliable position is
determined by majority decision, while the flipped symbol
value is computed from the reliability of the received bits.
The weighted algorithm B (wt.Algo B ) in [15] introduces

the binary Hamming distance and plurality logic to improve
performance. The parallel symbol flipping decoding (PSFD)
algorithm [16] uses majority voting to get better flipping
decision but this algorithm performs better only if the parity
check matrix has a large column weight. The PSFD algo-
rithm is improved further by using multiple votes in [23]
and performs better even for the LDPC parity check matrix
with small column weight. The non-binary LDPC decoder
based on symbol flipping with multiple votes (MV-SF) [24]
performs better thanMV-PSFD but at the cost of an increased
complexity and memory size especially for the higher order
Galois field.

The other recently developed symbol flipping algorithms
(D-SFDP and P-SFDP) [25] offer better performance than
most of the existing symbol flipping algorithms, but a major
disadvantage is the exhaustive and computationally complex
prediction mechanism. The complexity of these algorithms
[25] depend on the size of the Galois field order q and
length n of a codeword. A decision-symbol reliability-based
SFD (DRB-SFD) algorithm [26] is aimed to show better
performance in applications like data storage based onNAND
flash memory. Paper [26] is focused on an algorithm for
NAND flash memory and the BER performance has not been
compared with existing algorithms like MV-SF, MV-PSFD,
and D-SFDP.

The objective of this paper is to propose algorithms with
good performance and low complexity to fulfill the require-
ment of low power and efficient memory usage. The proposed
algorithms can be divided into three categories; 1) algorithms
using voting and prediction [16], [23] [25]; 2) algorithms
using voting with channel bit reliability [16], [23] [27] and
3) multiple symbol flipping decoding algorithms based on
prediction as well as bit reliability [25], [27].

Algorithm 1 is based on the category 1. In [16] and its
improved version [23], the flipping function is computed for
all the received symbols and the majority voting scheme is
used in parallel to the flipping function to select the flipping
position while in the proposed Algorithm 1, the majority
voting scheme is used only for short listing the least reliable
variable nodes. The flipping function is then computed only
for the short listed variable nodes. Algorithm 2 also belongs
to category 1, but simplifies the flipping function by using
the divide and conquer rule by using the flipping function
for identifying first the symbol positions and then finding the
candidate symbol value. Algorithm 3 is from category 3 but
differs from the algorithm [27] as the proposed Algorithm 3
uses flipping function based on channel reliability informa-
tion as well as information from Galois field structure while
the flipping function in [27] is based on the syndromes and
channel likelihood information. Algorithm 4 is also based on
category 3 and flips multiple symbols per iteration but it uses
the symbol value prediction instead of the bit reliability used
in [27]. Algorithm 5 is based on categories 2 and 3. This
algorithm uses majority voting scheme for short listing the
least reliable symbols unlike in [16] and [23] where they use
voting in parallel with the flipping function. The proposed
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Algorithm 5 flips the unreliable bit of the selected least reli-
able symbol instead of the prediction method adopted in [25].
Algorithm 5 also flips multiple symbols per iteration.

The set of failed parity checks and the infinite loop detec-
tion procedure are applied only when multiple symbols are
flipped in each iteration. In the multiple symbol flipping
decoding algorithms, the set of failed parity checks and infi-
nite loop detection procedures restrict the number of symbols
to be flipped in consecutive iterations. On the other hand,
the proposed algorithms based on the voting scheme except
for Algorithm 5, flip single symbol per iteration and do not
require information from the failed checks and infinite loop
detection procedure.

The rest of the paper is summarized as follows. Section II
summaries the relevant literature on NB LDPC decoding
algorithms whilst Section III presents the proposed algo-
rithms. Section IV compares the complexity and memory
requirement of various algorithms. Section V shows the
results and analysis of the existing and proposed algorithms
in detail. Section VI gives a conclusion of the paper.

II. SYMBOL FLIPPING DECODING ALGORITHMS
A. PRELIMINARIES
LetGF(q) be the Galois field with q elements. Consider a NB
LDPC code C of length n with a regular parity check matrix
H , defined over the GF(q), with m as number of rows and n
as number of columns such that each row of H has a constant
weight of dc and each column of H has a constant weight
of dv. Each element hi,j(1 ≤ i ≤ m, 1 ≤ j ≤ n) of H is
an element over the Galois field GF(q) where q = 2r . The
non-zero entries of H (hi,j 6= 0) in the Tanner graph show the
ith check node (CN) connected to the jth variable node (VN).
For the column weight dv and the row weight dc, the Tanner
graph edge connections are shown as M (j) = {i : 1 ≤ i ≤ m,
hi,j 6= 0} and N (i) = {j : 1 ≤ j ≤ n, hi,j 6= 0} and for regular
matrix m

n =
dv
dc
.

Let ccc = (ccc1,ccc2, . . . ,cccj, . . . ,cccn) be a codeword in
C and the binary representation of jth symbol in ccc is
cccj = (cj,1, cj,2, . . . , cj,t , . . . , cj,r ), 1 ≤ t ≤ r . This
binary sequence is modulated with binary phase shift key-
ing (BPSK), where 1 is modulated as +1 and 0 is mod-
ulated as -1. The BPSK modulated jth symbol xxx j =
(xj,1, xj,2, . . . , xj,t , . . . , xj,r ) is transmitted over additive white
Gaussian noise (AWGN) channel. The received binary
sequence yyyj = (yj,1, yj,2, . . . , yj,t , . . . , yj,n) is obtained
from the transmitted sequence xxx j after adding the addi-
tive white Gaussian channel noise nnn → N (0, σ 2) with
zero mean and two sided power spectral density N0/2 as
yyyj = xxx j + nnnj. The hard decision binary sequence zzzj =
(zj,1, zj,2, . . . , zj,t , . . . , zj,r ) for the jth received symbol yyyj is
given by:

zj,t =

{
1 yj,t ≥ 0
0 yj,t < 0

(1)

The hard decision binary sequence zj,t is mapped to an ele-
ment in GF(q) to obtain the symbol zzzj. The ith syndrome

of the jth hard decision symbol sequence can be defined for
hi,j 6= 0 :

sssi =
∑
j∈N (i)

hi,jzzzj (2)

Here it is important to mention that the value of sssi is also an
element inGF(q). If sssi 6= 0, it means that some of the variable
nodes contributing to this check node are incorrect.

For the given hard decision symbol zzzj, the extrinsic
information-sum(EXI) denoted as σi,j that is passed from ith

check node (CN) to the jth variable node (VN) is given by:

σ
(k)
i,j = h−1i,j

∑
j′∈N (i)\j

hi,j′zzz
(k)
j′ (3)

for 1 ≤ i ≤ m, j ∈ N (i).

B. SYMBOL FLIPPING NON-BINARY LDPC DECODING
ALGORITHMS
The low complexity hard decision symbol flipping decoding
algorithm based on the majority logic decision is known as
generalized algorithm B [15]. This algorithm is based on
plurality logic which counts the number of occurrences of
each symbol. Let τ be a predefined threshold, then if the
number of occurrence of one finite field symbol over GF(q)
exceeds τ , the algorithm chooses that received symbol as reli-
able, otherwise it chooses the same symbol. This algorithm
is further improved by weighting factor θd(α,zzz(k)j ) based on

the Hamming distance between the finite field symbol and
extrinsic information-sum. This improved algorithm is called
weighted algorithm B [15]. In this algorithm, the counts
of occurrence of a finite field symbol is multiplied by the
weighting coefficients assigned to the Hamming distance.
The decision is taken based on the largest product. The
optimal set of weights was not determined in the weighted
algorithm B and is left as future work.

Let d(zzzj, σij,) be the binary Hamming distance between
EXI σi,j and the hard decision symbol zzzj, and θd(zzzj,σi,j) be the
corresponding weighting factor. Denoting ηα as the number
of occurrence of an element α ∈ GF(q) based on the plurality
logic of each element σi,j at the jth variable node, then the
weighted algorithm B (wt.Algo B) decision for an estimated
correct symbol v(k)j at k th iteration is obtained as follow:

v(k)j =

{
α, if ηαθd(α,zzz(k)j ) ≥ τ

zzz(k)j , otherwise.
(4)

Here α corresponds to the largest product of ηαθd(α,zzz(k)j ) and

the preset threshold τ is determined through simulations.
The concept of hard reliability to improve the performance

of the bit reliability based (BRB) decoding algorithm was
introduced in [20]. The binary Hamming distance between
hard decision symbol sequence zzz = (zzz1, zzz2, . . . , zzzj, . . . , zzzn)
and the extrinsic information-sums (EXIs) indicate the hard
reliability of the EXIs. The author in [20] showed that the
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Hamming distance d(zzzj, σi,j) indicates the correct probabil-
ity of extrinsic information-sum σi,j. If pb is raw bit error
probability of variable nodes (VNs) over the Galois field
GF(q = 2r ), then the symbol error probability of the individ-
ual variable node is 1− (1− pb)r . The relationship between
the EXI and Hamming distance [20] is written as:

Pr(σi,j|d(zzzj, σi,j) = u)

=
pubq

pubq− (1− pb)u−r + (1− pb)−pr+r+u
(5)

for 1 ≤ u ≤ r .
Different from the wt.Algo B which only considers the

information before flipping, the recent algorithms (D-SFDP
and P-SFDP) [25] use both the information before and after
flipping. These algorithms also take into account the hard reli-
ability to evaluate correctly the contribution of the unsatisfied
checksums. For the received hard decision symbol sequence
zzz = (zzz1, zzz2, . . . , zzzj, . . . , zzzn), (q − 1) values for each symbol
of the sequence is predicted through an exhaustive search
for the symbol value which maximizes an objective function.
The flipping function derived in [25] predicts symbols for
each position of the received hard decision sequence zzz(k)j such

that zzz(k)j 6= z̈zz(k)j and z̈zz(k)j has all possible symbol values of

the GF(q) except for the symbol value of zzz(k)j ∈ GF(q).
Therefore, there are q−1 possible values for each position of
z̈zz(k)j which can be written as:

0̈
(k)
j = {z̈zz

(k)
j : z̈zz

(k)
j εGF(q), z̈zz

(k)
j 6= zzz

(k)
j } (6)

Define the binary operator for hard decision symbol zzz(k)j and
its corresponding channel soft symbol information yyyj as:

zzz(k)j � yyyj =
r−1∑
t=0

(2z(k)j,t − 1)yyyj,t (7)

To include the reliability derived from the structure of the
Galois field, a vector of extrinsic weighting coefficients are
defined as θθθ = [θ0, θ1, . . . , θk , . . . , θr ]. Here θk shows the
extrinsic weighting factor corresponding to d(zzz(k)j , σ

(k)
i,j ) = k

for 0 ≤ k ≤ r . According to equation (5), d
θ (zzz(k)j ,σ

(k)
i,j )
≥

2 does not carry much useful information and it has very
low probability to be corrected [20]. According to this, the
weighting coefficients are distributed as θ = [θ0, θ1, θ2]
for the extrinsic information-sum and are optimized through
simulation.

The flipping function of the D-SFDP algorithm introduced
the hard reliability to predict the most reliable candidate
symbol and can be written as follow:

E (k)
j (z̈zz(k)j , zzz

(k)
j )

= z̈zz(k)j � yyyj +
∑
i∈Mj

θd(z̈zz(k)j ,σ
(k)
i,j )

−zzz(k)j � yyyj −
∑
iεMj

θd(zzz(k)j ,σ
(k)
i,j )

(8)

For plurality logic P-SFDP algorithm, the extrinsic weight-
ing coefficients are defined as ηηη = [η0, η1, . . . , ηl, . . . ηdc ]
where ηl shows the weighting coefficient corresponding to
the number of occurrence of α ∈ GF(q) in the extrinsic
information-sum σ ki,j for 0 ≤ l ≤ dc. Now equation (8) can
be re-written to include the hard reliability, the number of
occurrence of the element α ∈ GF(q), of the jth symbol as
follow:

E (k)
j (z̈zz(k)j , zzz

(k)
j ) = z̈zz(k)j � yyyj + ηηηl(z̈zz

(k))

−zzz(k)j � yyyj − ηηηl(z̈zz
(k)) (9)

To predict all the q − 1 values of z̈zz(k)j for each symbol in
zzz = (zzz1, zzz2, . . . , zzzj, . . . , zzzn), the algorithm becomes compu-
tationally very complex and also requires more memory to
store the processed values. For large values of GF(q) and
length of the code n, the algorithm [25] is very slow to find
the candidate symbol value for the position to be flipped. The
flipping functionE (k)

j of the jth symbol and its relevant flipped

value v(k)j are calculated as follows:

E (k)
j = max

z̈zz(k)j ∈0̈
(k)
j

E (k)
j (z̈zz(k)j , zzz

(k)
j ) (10)

v(k)j = argmax
z̈zz(k)j ∈0̈

(k)
j

E (k)
j (z̈zz(k)j , zzz

(k)
j ) (11)

The flipping function E (k)
j is very complex in computation

and secondly a large memory is required to store all the q−1
predicted values for n symbols.

C. CANDIDATE SYMBOLS SHORT-LISTING BY VOTING
In the voting scheme [16], [23], each unsatisfied check node
gives one vote to the relevant variable node. The jth variable
node then collects all the votes, sayV (k)

j , from the failed check
nodes at k th iterations.

V (k)
j =

∑
i∈M (j)

V (k)
i,j (12)

where V (k)
i,j = 1 if sss(k)i 6= 000, otherwise V (k)

i,j = 0. For the

accumulated voting V (k)
j equal or greater than a predefined

threshold Vth, those variable nodes fulfilling the condition
Vj ≥ Vth will be passed to calculate the flipping function E

(k)
j

through equations (7) and (8). Suppose δδδ stores the positions
of all the variable nodes for Vj ≥ Vth, then the values of δδδ at
k th iteration can be calculated as follows:

δδδ
(k)
j′ = V (k)

j , if Vj ≥ Vth (13)

for 1 ≤ j′ ≤ p and p shows the total number of the short
listed variable nodes. This method reduces the computational
complexity from n number of variable nodes to just few
variable nodes p. Here δ(k)j′ ∈ δδδ

(k) shows the position of each
short listed variable node and δδδ(k) contains all those positions
of the variable nodes. In other words, δδδ(k) have all the posi-
tions of variable nodes having less reliable information and
must be replaced with reliable symbols from zzz∗(k)j′ ∈ 0

∗(k)
j′ .
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The multiple voting method presented in [23] defines two
voting levels ζ0 > ζ1 > 0, using the same voting function
defined in (12). For s(k)j 6= 0, V (k)

ij = ζ0 with the largest

flipping function and V (k)
ij = ζ1 for the VN with the second

largest flipping function. In the proposed algorithms, a single
level voting scheme is used for short listing of least reliable
symbols which reduces the memory consumption and com-
putational complexity.

III. PROPOSED ALGORITHMS
A. VOTING BASED SYMBOL VALUE PREDICTION
ALGORITHM
In this proposed algorithm, the least reliable variable nodes
are short listed by majority voting and the candidate symbol
value is selected by prediction method. The prediction based
symbol flipping algorithms (D-SFDP and P-SFDP) [25] offer
reasonably better performance than most of the symbol flip-
ping algorithms in literature but at the cost of exhaustive and
computationally complex prediction mechanism. The other
disadvantage of the algorithms in [25] is the high memory
requirement to store the matrix of predicted values for all
symbols in the codeword. A voting based approach is used
in this proposed algorithm, to lower decoding latency and
computational power by short listing the symbols with low
reliability. The flipping function E (k)

j (z̈zz(k)j , zzz
(k)
j ) in equation

(8) is calculated q − 1 times for the jth variable node of
the codeword n, including the information before and after
the flipping to predict correctly the most reliable symbol
during each iteration. After calculating E (k)

j (z̈zz(k)j , zzz
(k)
j ) for all

the variable nodes, a matrix of size n(q − 1) is formed and
must be stored for further processing.

The complexity of the flipping function E (k)
j (z̈zz(k)j , zzz

(k)
j ) can

be lowered from n to p by first short-listing the candidate
symbols through voting as given in equation (11) and (12)
respectively. This method also reduces the memory require-
ment from n(q−1) to p(q−1). This newly improved algorithm
is termed as voting based symbol flipping decoding(V-SFD)
algorithm. The new rule to calculate the flipping function and
the corresponding flipped value for j′ ∈ δ(k) is given by:

E (k)
j′ (z̈zz(k)j′ , zzz

(k)
j′ )

= z̈zz(k)j′ � yyyj′ +
∑
i∈Mj′

θd(z̈zz(k)
j′
,σ

(k)
i,j′

)

−zzz(k)j′ � yyyj′ −
∑
iεMj′

θd(zzz(k)
j′
,σ

(k)
i,j′

) (14)

The above flipping metric is calculated for the short listed
symbols only, resulting in low complexity and memory. The
flipping function E (k)

j gives the reliability measure of the jth

symbol to be flipped to the value v(k)j .

E (k)
j′ = max

z̈zz(k)
j′
∈0̈

(k)
j′

E (k)
j′ (z̈zz(k)j′ , zzz

(k)
j′ ) (15)

This flipping function is similar to the maximum likelihood
method and the maximum value of the flipping function for

all the possible candidate symbols z̈(k)j shows themost reliable
variable node update.

v(k)j′ = arg max
z̈zz(k)
j′
∈0̈

(k)
j′

E (k)
j′ (z̈zz(k)j′ , zzz

(k)
j′ ) (16)

Here j′ shows the short listed least reliable variable nodes
and the flipping function is calculated only for those selected
variable nodes, thus reducing tremendously the computa-
tional complexity and memory requirement. In this paper, the
Hamming distance based reliability information are used as
in D-SFDP algorithm and the plurality logic based reliability
information used in the P-SFDP algorithm is left intentionally
as intuitively the later will show the same performance with
the proposed schemes.

Proposed Algorithm 1 (V-SFD)
1. Initialization: For the received symbol yyyj =

{yj,1, yj,2, . . . , yj,r }, the hard decision symbol zzzj is calculated
by using (1) for 1 ≤ t ≤ r, 1 ≤ j ≤ n.
2. For iteration k = 1 to Imax .
3. Syndrome Check-Sum: if sss(k)i = 000 or if k = Imax , stop
decoding and output zzz(k) as codeword.
4. Determine the un-reliable symbol δ(k)j′ using the voting
scheme by (12) and (13).
5. Calculate E (k)

j′ (z̈zz(k)j′ , zzz
(k)
j′ , ) for δδδ symbols by (14) and then

calculate E (k)
j′ by (15).

6. Find its flipped value v(k)j′ by (16) and update zzz(k+1) with

v(k)j′ .
7. k = k + 1 and go to step 3.

B. VOTING BASED SIMPLIFIED SYMBOL VALUE
PREDICTION ALGORITHM
This algorithm further reduces the complexity of the flipping
function in Algorithm 1 by applying a divide and conquer
strategy. Equation (14) is divided into two parts: first the
algorithm finds the unreliable positions to be flipped and then
predicts the candidate symbol for that position. The unreliable
symbol position is determined by the following equation.

E (k)
j′ (zzz(k)j ) = zzz(k)j′ � yyyj′ +

∑
i∈Mj′

θd(zzz(k)
j′
,σ

(k)
i,j′

) (17)

E (k)
j′ = min

1≤j′≤δ
(E (k)

j (zzz(k)j′ )) (18)

Equation (18) will determine the most unreliable position to
be flipped. From the set 0̈(k)

j of q − 1 predicted symbols,
a candidate symbol value is selected as the correct symbol
which maximize the flipping function in equation (19). After
a symbol value is predicted for each unreliable position, then
the hard decision sequence is updated with that symbol at
every k th iteration.

E∗kj′ (z̈zz
(k)
j′ ) = z̈zz

(k)
j′ � yj′ +

∑
i∈Mj′

θd(z̈zz(k)
j′
,σ

(k)
i,j′

) (19)
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After calculating the flipping function E∗kj′ (z̈zz
(k)
j′ ), the position

for the candidate symbols which maximize E∗kj′ is given by:

E∗(k)j′ = max
z̈zz(k)
j′
∈0

(k)
j′

{E∗(k)j′ (z̈zz(k)j′ } (20)

The predicted symbol value v̈(k)j′ from the set of the predicted

values 0̈(k)
j′ is found through the following equation:

v̈(k)j′ = arg max
z̈zz(k)
j′
∈0

(k)
j′

E∗(k)j′ (z̈zz(k)j′ ) (21)

The functionE∗(k)j′ in (20), determines the position of themost
unreliable jth symbol and equation (21) selects the flipped
value v̈(k)j′ .

The voting scheme, used in this paper, helps to further
reduce the computational complexity of the decoder. The
voting scheme also helps in saving the memory consumption
as the reliability information related to the selected least
reliable variable nodes, are stored for further processing.

Equations (17), and (18) are computed only for δδδ positions
of the received codeword sequence instead of all the symbols
of codeword having length of n. After selecting the most
unreliable symbol position, a reliable symbol value from the
set of possible predicted q − 1 values such as zzz(k)j′ 6= z̈zz(k)j′ ,
is computed using equations (19), (20) and (21) respectively.
Since equations (19), (20) and (21) are computed for a single
variable node with possible q − 1 values, the proposed
Algorithm 2 further reduces the decoder computational com-
plexity.

Proposed Algorithm 2 (Simplified V-SFD)
1. Initialization: For the received symbol yyyj =

{yj,1, yj,2, . . . , yj,r }, the hard decision symbol zzzj is calculated
by using (1) for 1 ≤ t ≤ r, 1 ≤ j ≤ n.
2. For iteration k = 1 to Imax .
3. Syndrome Check-Sum: if sss(k)i = 000 or if k = Imax , stop
decoding and output zzz(k) as codeword.
4. Determine the unreliable symbol δ(k)j′ using the voting
scheme by (12) and (13).
5. For j′ ∈ δδδ, find the unreliable positions E (k)

j′ (zzz(k)j′ ) for δδδ
symbols by (17) and (18).
6. Calculate the predicted candidate symbol position
E∗(k)j′ (z̈zz(k)j′ ) by (19) and (20).

7. Find predicted flipped value v̈(k)j′ by (21) and update zzz(k+1)

with v̈(k)j′ .
8. k = k + 1 and go to step 3.

C. MULTIPLE SYMBOL FLIPPING BIT RELIABILITY BASED
DECODING ALGORITHM
In this section, a multiple symbol flipping decoding algo-
rithm for NB LDPC decoder is proposed which flips the
unreliable bit of a symbol by using the channel bit reliability

information. Variable node short listing by voting is not used
in this algorithm. This algorithm finds positions of symbols
with less reliability using the information before flipping and
then selects the reliable symbol values for those positions
based on the information after flipping. The computational
cost of this proposed algorithm is smaller than most of the
NB LDPC decoding algorithms in literature as this algorithm
compare and flips individual bit of a symbol. This algorithm
also gives the advantage of multiple symbol flipping in each
decoding iteration. The unreliable multiple symbol positions
are determined by the following equations:

E (k)
j (zzz(k)j ) = zzz(k)j � yyyj +

∑
i∈Mj

θd(zzz(k)j ,σ
(k)
i,j )

(22)

E (k)
j = min

1≤j≤n
{E (k)

j (zzz(k)j )} (23)

Let τ be the threshold, then the number of flipping positions
can be determined based on the column weight dv and the
number of variable nodes contributing to the failed checks.
If ρ is the maximum number of the symbols to be flipped per
iteration then it is determined as follows:

ρ =

{
ρ1 if τ ≥ ε1dv
ρ2 else

(24)

where ε1 is an integer value. Equation (24) can also be used
directly with ρ = β where β is an integer value. Based on
the value of ρ, the unreliable multiple flipping positions are
determined by (23).

The number of symbols to be flipped is further restricted
in the loop detection procedure (34) and secondly if the
flipping positions are not in the set of the failed checks. The
ith syndrome of the jth hard decision symbol at k th iteration
can be defined as:

sss(k)i =
∑
j∈N (i)

hi,jzzz
(k)
j (25)

A valid codeword is received if m-tuple sss(k)i = 000 for 1 ≤
i ≤ m. The cause of the failure of check sum is due to the
contribution of the variable nodes in error. All those variable
nodes are given as follow:

υ = {i : sssi 6= 000, 1 ≤ i ≤ m, j ∈ M (i)} (26)

The variable nodes contributing to the successful check-sum
are given by:

ῡ = {i′ : sssi = 000, 1 ≤ i ≤ m, j ∈ M (i′)} (27)

Supposeψψψ is the vector containing all the flipping positions
found by (23) and ῡ contains all the correct variable nodes
contributing to sss(k)i = 000, then those variable node contributing
to the failed checks to which ψψψ must belong as a subset, are
defined as:

T = {υ(j)\υ ∩ ῡ} (28)

Equation (28) identifies and removes those variable nodes
which are common in equation (26) and (27). This helps
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to decide the number of flipping positions in ψψψ as subset
to T . Once the flipping positions are identified, the symbol
values are updated by flipping that individual bit of symbol
with the smallest absolute value. The absolute channel soft
values are termed as reliability information. The smaller the
absolute value of the bit, the less is the reliability of that bit
and vice versa. For jth received symbols yyy(k)j , the bit closer to
zero or having the minimum absolute value is expressed for
1 ≤ t ≤ r as:

ý(k)j,t = min
1≤t≤r

|yyy(k)j | (29)

The corresponding bit z(k)j,t in the hard decision symbol z(k)j
is then flipped. The expression for the flipped bit is written
as:

ź(k)j,t =

{
1, if z(k)j,t = 0

0, otherwise.
(30)

Flipping the bit in the hard-decision symbol can cause
oscillating behaviour. Therefore, the channel soft reliability
information yyy(k+1)j is also updated using equation (31) or (32):

y(k+1)j,t = −(y(k)j,t ) (31)

y(k+1)j,t =

{
−1− y(k)j,t , if z(k)j,t = 0

1+ y(k)j,t , if z(k)j,t = 1.
(32)

In this paper equation (32) is used. The new hard decision
symbol sequence will be updated for the next (k + 1)th

iteration as:

zzz(k+1) = (zzz(k)1 , zzz
(k)
2 , . . . , ź́źz

(k)
j , . . . , zzz

(k)
n ) (33)

If sss(k)i 6= 000, then decoding failure due to some of the
variable nodes (VNs) contributing to check nodes (CNs) will
have occured. The information of the successful and failed
syndromes are stored for further processing. Normally if
construction of the parity check matrix H is 4 cycles free,
then the variable nodes contributing to the failed checks can
easily be identified. The process for isolating the incorrect
symbols (variable nodes) is done by identifying only those
variable nodes contributing to the failure of check nodes.
Unique variable node positions contributing to the failure of
check nodes are stored and are used further for comparison
with the least reliable symbol positions identified through the
flipping function.

The proposed multiple symbol flipping algorithm signifi-
cantly lowers the complexity by selecting multiple positions
and then flips the less reliable bit of each of the selected sym-
bols. This newly proposed algorithm is termed as B-MSFD
algorithm. Since the prediction mechanism of the D-SFDP
algorithm [25] is complex in computation, this method makes
an effective tradeoff between complexity and performance.

In symbol flipping decoding algorithms, the flipping posi-
tion might be the same for successive iterations when the
decoder is trapped in an infinite loop. To avoid the decoding
being trapped in successive iterations, the symbol positions

Proposed Algorithm 3 (B-MSFD)
1. Initialization: For the received symbol yyyj =

{yj,1, yj,2, . . . , yj,r }, the hard decision symbol zzzj is calculated
by using (1) for 1 ≤ t ≤ r, 1 ≤ j ≤ n
2. For iteration k = 1 to Imax
3. Syndrome Check-Sum: if sss(k)i = 000 or if k = Imax , stop
decoding and output zzz(k) as codeword
4. Calculate E (k)

j (zzz(k)j ) by (22) and determine the number of

symbol positions ρ to be flipped by (24) and calculate E (k)
ρ

by (23).
5. Findψψψ (k) positions by (28) and then corresponding flipped
values by (29) and (30).
6. Update zzz(k+1) with źzz(k)j and the soft channel information

yyy(k+1) with ýyy(k)j by (33) and (32) respectively.
7. k = k + 1 and go to step 3.

to be flipped are recorded and are compared with the next
iteration to make sure that the same symbol is not flipped
in consecutive iterations. Therefore a symbol is flipped in
iteration k only if

ψ
(k)
b 6= ψ

(k−1)
b (34)

for 1 ≤ b ≤ ρ, k > 1. At first iteration k = 1 all the
selected symbols positions will be flipped based on the preset
threshold but in successive iterations (k > 1), the number of
symbol positions to be flipped depends on condition (34).

D. MULTIPLE SYMBOL FLIPPING PREDICTION BASED
ALGORITHM
Different from Algorithm 2 which flips single symbol per
iteration and uses the voting scheme to short list the variable
nodes before computing the flipping function, this proposed
Algorithm 4 flips multiple symbols per iteration and does
not short list the least reliable variable nodes for computing
the flipping function. This proposed algorithm for non-binary
LDPC decoder is primarily divided into two steps. In the first
step, the positions of the least reliable symbols are selected
and in the second step, the most reliable symbol value for
those position are predicted.

In this algorithm, the successful and failed checks are
isolated as shown in equations (26),(27) and (28). The set of
the variable nodes that contributed to the failed checks, helps
to decide which symbol position should be flipped and how
many positions needs to be flipped. The unreliable symbols’
positions are determined by the following equations.

E (k)
j (zzz(k)j ) = zzz(k)j � yyyj +

∑
i∈Mj

θd(zzz(k)j ,σ
(k)
i,j )

(35)

E (k)
j = min

1≤j≤n
(E (k)

j (zzz(k)j )) (36)

This proposed algorithm is used to flip multiple symbols in
each iteration and the number of flipping symbols depend on
a pre-defined threshold ρ.
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After finding all the unreliable symbol positions ρ, those
candidate symbol values are chosen for which the flipping
function is maximized. A symbol value is predicted for
each of the unreliable positions and then the hard decision
sequence is updated with those symbols at every k th iteration.

E∗(k)j (z̈zz(k)j ) = z̈zz(k)j � yj +
∑
i∈Mj

θd(z̈zz(k)j ,σ
(k)
i,j )

(37)

E∗(k)j = max
z̈zz(k)j ∈0

(k)
j

(E∗(k)j (z̈zz(k)j )) (38)

v̈(k)j = arg max
z̈zz(k)j ∈0

(k)
j

E∗(k)j (z̈zz(k)j ) (39)

In (37), the function E∗(k)j measures the position of the

most unreliable jth symbol to be flipped to the value v̈(k)j .
In this proposed prediction based multiple symbol flipping
decoding(P-MSFD) algorithm, symbols are predicted for ρ
positions only which makes the algorithm very efficient and
less complex in computation at the order of O(ρq) and is
independent of the length of the code n. For understanding,
let ρ = 1, so only q− 1 values for the positionψψψ = j,ψψψ ∈ υ
at k th iteration will be calculated by (38) and (39).
Equation (37) predicts the most reliable position for sym-

bol which maximize the function and then (38) determines
the candidate symbol value zzz∗(k)j 6= zzz(k)j for that position. The
new hard decision symbol sequence will be updated for the
next (k + 1)th iteration as:

zzzk+1 = (zzz(k)1 , zzz
(k)
2 , . . . , z̈zz

(k)
j , . . . , zzz

(k)
n ) (40)

Proposed Algorithm 4 (P-MSFD)
1. Initialization: For the received symbol yyyj =

{yj,1, yj,2, . . . , yj,r }, the hard decision symbol zzzj is calculated
by using (1) for 1 ≤ t ≤ r, 1 ≤ j ≤ n.
2. For iteration k = 1 to Imax .
3. Syndrome Check-Sum: if sss(k)i =

∑
j∈N (i) hi,jzzz

(k)
j = 000 or if

k = Imax , stop decoding and output zzz(k) as codeword.
4. Calculate E (k)

j (zzz(k)j ) by (37) and determine the number of

symbol positions ρ to be flipped by (24) and calculate E (k)
ρ

by (35) and (36).
5. Calculate E∗(k)ρ (zzz∗(k)ρ ) and E∗(k)ρ by (37) and (38) respec-
tively for z̈zz(k)ρ ∈ 0

∗(k)
ρ .

6. Determineψψψ (k) positions by (34) and then its flipped value
v̈(k)ψψψ by (39). Update zzz(k+1) with v̈(k)ψψψ .
7. k = k + 1 and go to step 3.

E. VOTING BASED B-MSFD ALGORITHM
The bit error rate performance and complexity of B-MSFD
algorithm is further improved and simplified by using the
voting scheme to flipmultiple symbols in each iteration. Once
these positions are selected, the bit with less reliability in
each symbol is chosen to be flipped based on the channel
reliability information. This algorithm is termed as voting
based multiple symbol flipping decoding (VB-MSFD). The

least reliable symbol positions are short-listed by (12) and
(13). The selected p number of unreliable positions δδδ, are
used only to find the flipping values using the bit reliabil-
ity information and the flipping function is not required to
determines the least reliable symbols. This algorithm does
not need the loop detection procedure and also does not
need to isolate the failed and successful variable nodes as
in B-MSFD, resulting in further simplification. Finding the
flipped value from the channel reliability information is the
same as for the B-MSFD algorithm. The proposed algorithm
significantly lowers the decoder computational complexity
as well as memory requirement to store the information for
further processing.

Proposed Algorithm 5 (VB-MSFD)
1. Initialization: For the received symbol yyyj =

{yj,1, yj,2, . . . , yj,r }, the hard decision symbol zzzj is cal-
culated by using (1) for 1 ≤ t ≤ r, 1 ≤ j ≤ n.
2. For iteration k = 1 to Imax .
3. Syndrome Check-Sum: if sss(k)i = 0 or if k = Imax ,
stop decoding and output zzz(k) as codeword.
4. Determine the un-reliable symbol δ(k)j′ using the vot-
ing scheme by (20) and (21).
5. Find the flipped values by (29) and (30) for each
candidate symbol.
6. Update zzz(k+1) with źzz(k)j′ and the channel soft informa-

tion yyy(k+1) with ýyy(k)j′ by (33) and (32) respectively.
7. k = k + 1 and go to step 3.

IV. COMPLEXITY ANALYSIS
In this section, we evaluate the decoding computational com-
plexity and memory requirement of the proposed algorithms
in comparison with various existing NB LDPC decoding
algorithms. The complexity analysis is carried out in terms
of numerical operations per decoder iteration. Consider a NB
LDPC code C forGF(q) = 2r having a parity check matrixH
of size m× n. Focusing on the regular LDPC code with con-
stant column weight dv and constant row weight dc, the total
number of edges of the Tanner graph is γ = dvn = dcm. In a
single iteration, computational complexity of the proposed
algorithms aremainly involved in the equations (14),(17),(22)
and (35).

To get the hard decision symbol sequence zzz at the decoder
initialization, the proposed algorithms require nr real com-
parisons. To calculate the syndrome check-sum for valid
codeword, mdc Galois field multiplication and m(dc − 1)
Galois field additions are required. To get the extrinsic
information-sums(EXIs), the decoder requires mdc Galois
field multiplications and mdc Galois field additions.
The major complexity of the algorithm in [25] involves

computation of the binary Hamming distance d(zzz(k)j , σ
(k)
i,j )

for each edge, the binary function zzz(k)j � yyyj for n number

of symbols and the second binary function z̈zz(k)j � yj for nq
predicted values.
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Therefore the total complexity of the algorithms in [25]
are in order of O(nq) when all q − 1 values are computed
to predict the candidate symbol value while the proposed
Algorithms 1, 2 lower this complexity to order of qp where
p shows the number of unreliable variable nodes and is much
less than n (p� n). The other two proposedAlgorithms 3 and
5 further reduces the complexity as they do not require any
prediction but simply flip a bit within each selected symbol.

In Algorithm 1, to compute the flipping function
E (k)
j (z̈zz(k)j , zzz

(k)
j ), the binary functions zzz(k)j � yyyj for the symbol

values before flipping and z̈zz(k)j �yyyj for the predicted values of

z̈zz(k)j ∈ 0 are calculated. Ignoring multiplication of the plus
or minus one, r real additions are required for the binary
function before flipping and r(q− 1) addition are required to
compute the z̈zz(k)j � yyyj for all the predicted symbols. In step 1
of the algorithms in [25], n(3+dv)r additions are required for
all the symbols while p(3 + dv)r additions for the proposed
Algorithm 1 and only δr additions for proposed Algorithm 5
as it does not require information after flipping.

For the decodingAlgorithm 1, letE (k)
j (z̈zz(k)j , zzz

(k)
j ) = F1−F1

where F1 = zzz(k)j � y(k)j +
∑

i∈M (j)
θd(zzz(k)j ,σ

(k)
i,j )

and F2 = z̈zz(k)j �

y(k)j +
∑

i∈M (j)
θd(z̈(k)j ,σ

(k)
i,j )

. To compute F1, pdv real additions

are required and to compute F2, pdv(dv + q) real additions
are required. Computation of all values of F1 − F1, requires
p(dv + q) real additions. For each symbol in the received
sequence, the function E (k)

j (z̈zz(k)j , zzz
(k)
j ) requires (dv + q) com-

parisons. The functionE (k)
j , for received sequence of length n,

p(dv+q−1) real comparisons are required. Since Algorithms
1, 3 and 5 also do not need any loop detection procedure, the
decoder computational complexity is further reduced.

The proposed algorithms for NB LDPC codes also signif-
icantly lower the memory consumption. Suppose r bits are
required to store each of the GF(q) element where q = 2r

and b bits are required for storing floating-point values for
each of the reliability metric. These algorithms require nrb
bits to store the received sequence. The hard decision symbol
sequence zzz(k)j and the extrinsic information-sums σ (k)

i,j require
nr and ndvr bits respectively.

For the weighting coefficients θd of the binary Hamming
distance, dvb bits are required to store the values. For the
received sequence of length n, only p elements need to be
stored. qb bits memory is required for each E (k)

j (z̈zz(k)j , zzz
(k)
j )

and pqb bits for all the values. Similarly pb and pr bits of
memory are required for storingE (k)

j and v(k)j respectively.The
proposed algorithms reduce the memory requirement from n
to p only. The smaller are the number of variable nodes in
error, the less is the value of the p in comparison to the length
of the received sequence n. The proposed Algorithms 3 and 5
significantly lower the memory consumption as these algo-
rithm does not need to store the set of the predicted values z̈zz(k)j .
TheAlgorithms 3 and 5 require only r bits to store the value

for the flipped symbol v(k)j . Algorithm 5 offers significantly
lower complexity as it does not calculate the flipping function

for δ selected variable nodes. On the other hand, Algorithm 3
stores all the p number of selected variable nodes δδδ to be used
in finding the least reliable variable node during computation
of the flipping function E (k)

j (z̈zz(k)j , zzz
(k)
j ).

V. RESULTS AND DISCUSSION
In this section, the performance and complexity of the pro-
posed algorithms are compared with various algorithms in the
literature. An all zeros codeword is transmitted over additive
white Gaussian channel(AWGN) using BPSK modulation
(1 → +1 and 0 → −1). In the proposed prediction based
algorithms, all the q− 1 possible values such as zzz∗(k)j 6= zzz(k)j
from GF(q) are considered to predict the correct candidate
symbol value. The other two Algorithms 3 and 5 do not use
the symbol prediction method but only the less reliable bit
of erroneous symbol is flipped. In the proposed algorithms,
to predict the correct symbol, all possible q− 1 values of zzz(k)j
from 0̈

(k)
j are considered. However, only those values from

the GF(q) table can be considered whose binary representa-
tion is one bit different from the binary representation of zzz(k)j
as there is higher chances of thier occurrence under AWGN.
For example, in the hard decision symbol sequence, if the cur-
rent value before prediction of the jth symbol zzz(k)j is 101 for the
code overGF(8), then the predicted values look like 100, 001,
and 010. The maximum number of iterations in the following
examples is determined through computer simulation and
is set to 15. The Algorithms converge before 15 iterations.
For comparison we have included the low complexity bit
reliability based majority logic decoding algorithm (wBRB)
which shows performance close to q-ary SPA.

FIGURE 1. BER performance of NB LDPC code (204,102) over GF(16).

Example 1: In order to demonstrate the effective perfor-
mance of the proposed algorithms, BER performance of NB
LDPC decoding algorithms under additive white Gaussian
noise as shown in Figure 1. The results are for a regular
Gallagar code C1 (204, 102) [23] over GF(16) with code
rate 1/2. The code has a constant column weight dv = 3
and constant row weight dc = 6. The extrinsic weighting
coefficientsθθθ = [θ0, θ1, θ2] of the newly proposed algorithms
are set as θθθ = [2, .75, 0.5] for d

θ (zzz(k)j ,σ
(k)
i,j )
≥ 2.

Figure 1 illustrates the bit error rate performance of
NB LDPC decoding algorithms. We see that the proposed
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TABLE 1. Computational complexity per iteration for various non-binary LDPC decoding algorithms.

TABLE 2. Memory required for deocding of non-binary LDPC Algorithms.

Algorithms 2 and 4 are close in performance to the D-SFDP
algorithm while Algorithms 1, 3 and 5 perform better than
BRB, MV-SFDP, PSFD, and D-SFDP. Algorithm 5 is out-
performing all existing symbol flipping algorithms including
MV-SF and wBRB. Similarly, the proposed Algorithm 1 per-
forms close toMV-SF at the beginning and after 4.5 dB, it out-
performs the MV-SF algorithm. The proposed Algorithms 3,
4 and 5 are multiple symbol flipping algorithms and perform
better than BRB, ISRB, PSFD, MV-PSFD. At the BER 10−6,
the proposed Algorithm 5 outperforms by about 1.5 dB and
0.65 dB in comparison to D-SFDP, MV-SF and wBRB algo-
rithms respectively. TheMV-PSFD algorithm performs better
than PSFD and the performance gap between them is about
0.5 dB but less in performance to the proposed algorithms.
Example 2: In this example, the performance of the pro-

posed algorithms is shown for a quasi cyclic (QC) NB LDPC
code (120,60) over GF(128). This is a regular parity check
matrix with constant column weight dv = 4 and constant
row weight dc = 8 with code rate 1/2. The performance of
the proposed algorithms is compared with reliability based
algorithms like BRB and ISRB. The extrinsic weighting coef-
ficient are set as θ = [2, .75, 0.5].

FIGURE 2. BER performance of NB LDPC code (120,60) over GF(128).

From the curves in the Figure 2, we see that all the proposed
algorithms outperform than BRB and ISRB algorithms and
are better than wBRB after 4.5 dB. At the bit error rate per-
formance of 10−4, the proposed Algorithms 1 and 5 achieves
performance gain of about 2.2 and 3 dB over BRB and ISRB
respectively. The performance gap between the proposed
Algorithm 2 and BRB algorithm at BER 10−4 is around
1.3 dB and from the ISRB algorithm, the gap is around 1.8 dB.
The Algorithms 3 and 4 have similar performance trend and
show significant performance gain over all the algorithms in
Figure 2. It is also observed that the decoding Algorithm 1
performs better than Algorithm 5. The reason for this is the
higher order Galois field ( q = 2r = 128, r = 7) where each
symbolSj is composed of 7 bits (e.g.Sj =b0b1b2b3b4b5b6b7).
The proposed Algorithm 5 correct one bit in each symbol
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per iteration and there are more chances to get more than
one bit in error. The more are the number of bits in symbols,
the more iterations are required to correct that symbol using
Algorithm 5 in comparison to Algorithm 1 which is using
the maximum likelihood technique. The Algorithm 1 try one
by one each of the symbols z̈zz(k)j 6= zzz(k)j ∈ GF(128) for the
selected unreliable position and chooses the best candidate
symbol value for the selected position. Due to this fact, Algo-
rithm 1 performs better than Algorithm 5 for higher order
Galois field GF(q).

FIGURE 3. SER performance of NB LDPC code (120,60) over GF(128).

Similarly, Figure 3 shows the symbol error rate perfor-
mance (SER) of the proposed algorithms in comparison to
BRB and ISR algorithms. The performance curves show
similar trends as the BER curves in Figure 2. The proposed
decoding algorithms SER performance is also better than the
BRB and ISRB algorithms in the literature.
Example 3: In this example the average number of itera-

tions versus BER and SNR are plotted to show the complexity
and convergence of the proposed NB LDPC decoding algo-
rithms in comparison to some other algorithms in the liter-
ature. The code for Example 2 with the extrinsic weighting
coefficient set as θθθ = [2, .75, 0.5] is used here as well. From
the curves in the graphs shown in Figures 4 and 5, we see
that the proposed Algorithm 5 converges slowly compared
to the other proposed algorithms as well as to BRB and ISRB
algorithms. BRB algorithm is the fast converging algorithm
followed by ISRB while the proposed algorithms conver-
gence speed is slower than BRB and ISRB but faster than
D-SFDP.

Since the proposed Algorithms 1 and 2, flip a sin-
gle symbol per iteration, the average number of itera-
tions shown in Figures 4 and 5 are more than the proposed
Algorithm 3 and 4 which flip multiple symbols in each iter-
ation. Algorithm 5 flips a single bit in each of the multiple
selected symbols and that is why it takes more iterations for
higher order Galois field. At the BER 10−4, for the given

FIGURE 4. BER versus average number of iterations for NB LDPC code
(120,60) over GF(128).

FIGURE 5. SNR versus average number of iterations for NB LDPC code
(120,60) over GF(128).

average number of iterations, the computational complexity
of BRB, ISRB and the proposed Algorithms 3 and 4 is lower
than the D-SFDP and the Algorithms 2 and 5. As shown in
Figure 5, we see that the Algorithm 5 performs better than
other algorithms in terms of the average number of iterations,
especially at the lower SNR. At higher SNR, the average
number of iterations, except for Algorithm 5, exhibits almost
the same trends.

TABLE 3. Computational complexity per iteration of various algorithms at
the BER 10−4 for code(120,60) over GF(128).

Table 3 summarizes the complexity per iteration of
the various algorithms in comparison to the proposed
Algorithms 1 and 5. At BER 10−4, the typical value for the
p is around 6 to 15 at the first iteration and decreases after
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every iteration if the symbol flipped at the previous iteration
is correct.

From the analysis of the performance curves in graphs,
the proposed algorithms show an appealing trade-off between
complexity and performance and therefore can be recom-
mended as good candidates for applications like data storage
and communication systems.

VI. CONCLUSION
In this paper, low complexity symbol flipping decoding algo-
rithms have been proposed. Incorporating the voting scheme
to short list the least reliable symbols improves BER perfor-
mance and reduces decoding latency. The voting scheme also
helps in reducing memory requirements for storing the reli-
ability values and extrinsic information for processing. Also,
multiple symbol flipping decoding algorithms are proposed
which helps in reducing the overall computational complex-
ity of the NB LDPC decoder. Simulation results illustrate
that the voting based proposed algorithms outperform all the
existing symbol flipping decoding algorithms except Algo-
rithm 2 whose performance is less than [24]. However, the
Algorithm 2 is much superior when compared to the decoder
complexity of [24]. The other proposed Algorithms 3 and 4,
achieve the BER performance close to the algorithm [25]
with significantly reduced complexity. From the results and
complexity analysis, the proposed Algorithms 1 and 5 have
shown an appealing trade-off between BER performance and
computational complexity and are more suitable for practica-
ble applications.
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