
SPECIAL SECTION ON FEATURE REPRESENTATION AND LEARNING METHODS
WITH APPLICATIONS IN LARGE-SCALE BIOLOGICAL SEQUENCE ANALYSIS

Received July 12, 2020, accepted July 19, 2020, date of publication August 3, 2020, date of current version August 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013666

Disease Cluster Detection and
Functional Characterization
WEI GUO 1,2, TAO ZENG 3, TAO HUANG 4, AND YU-DONG CAI 1
1School of Life Sciences, Shanghai University, Shanghai 200444, China
2Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS),
Chinese Academy of Sciences (CAS), Shanghai 200025, China
3Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
4Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China

Corresponding authors: Tao Huang (tohuangtao@126.com) and Yu-Dong Cai (cai_yud@126.com)

This work was supported in part by the Shanghai Municipal Science and Technology Major Project under Grant 2017SHZDZX01;
in part by the National Key Research and Development Program of China under Grant 2018YFC0910403; in part by
the National Natural Science Foundation of China under Grant 31701151; in part by the Shanghai Sailing
Program under Grant 16YF1413800; and in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS) under Grant 2016245.

ABSTRACT Mechanisms underlying human diseases have been revealed with the development of molecular
biology. The underlying molecular basis of disorders is valuable in prevention, diagnosis, and treatment.
Decade-long efforts have been devoted to investigating disease–gene association through positional cloning
of disease genes and genome-wide association studies. In particular, correlations among different diseases
have been discovered by many clinical cases. The shared disease-associated genes may help reveal the
intrinsic relationship in the genetic level, provide an access to evaluate disease similarity, and establish a
human disease network. Although many methods have been proposed to measure disease similarity, they
only consider the genes or functions directly annotated to diseases but ignore the interactions among genes
or functions. These interactions cause deficiency in disease classification. Basing on network-based disease
module, we presented a systematic research to further investigate the relationship among different human
diseases and explore whether this correlation depends on the functions of corresponding disease genes.
On the one hand, a disease clustering based on the separation score between diseases is applied to divide
299 diseases into 15 relatively separated disease clusters. On the other hand, an optimal clustering scheme
discriminating 15 disease clusters was learned based on disease-associated genes, their GO terms, andKEGG
pathways annotations. The detected key signatures showed the highest relevance to distinguishing distinct
disease clusters and represented the essential functions in corresponding pathogenesis. This study provides
a novel approach to predict the network and function characteristics and reveals the functional essence of
diseases.

INDEX TERMS Disease cluster, feature selection, network embedding, K-means.

I. INTRODUCTION
By the early 1900s, the Mendelian law of inheritance
described the pattern that some traits can be transmitted from
one generation to another. This pattern contributes to build-
ing the linkage between phenotypes and genes. Gene muta-
tions showed strong relevance to human diseases, particularly
for genetically inherited disorders. With the development of
molecular biology, mechanisms underlying human diseases
have been revealed. Biological processes caused by gene
dysfunction result in various diseases [1], [2]. Uncovering
the underlying molecular basis is valuable in the prevention,
diagnosis, and treatment of diseases. Decade-long efforts
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have been devoted to investigate disease–gene associa-
tion through the positional cloning of disease genes and
genome-wide association studies [3]. Since restriction frag-
ment length polymorphisms (RFLPs) were initially pro-
posed to construct the genetic map in human [4], positional
cloning has become accurate, and many disorders have been
traced to a specific region in genome [5], [6]. As summa-
rized in the Online Mendelian Inheritance in Man (OMIM)
database, more than 3000 human diseases with known related
genes have been documented, and these diseases-gene asso-
ciations greatly contribute to the understanding of disease
pathogenesis [7].

The correlation among different diseases has been
discovered by many clinical cases. As a complex and highly
prevalent disorder, metabolic syndrome is involved in the
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pathogenesis and progression of prostatic diseases as indi-
cated by epidemiological data [8]. Diabetes is viewed as a
high risk for heart diseases because the high glucose level in
the bloodstream can damage the arteries [9]. In addition, dia-
betes mellitus is the most common cause of neuropathy, and
the combination ofmetabolic and ischemicmechanisms leads
to severe neuropathy [10]. In addition to such connection at
the phenotype level, genetic factors might partially explain
the co-occurrence of particular diseases. Vascular endothelial
growth factor (VEGF) plays crucial role in the pathogenesis
of diabetes, and the polymorphism of its gene is substantially
correlated to neuropathy, especially diabetic neuropathy;
this finding suggests the potential pathological contribution
of VEGF to disease complication [11]. These shared
disease-associated genes may help reveal the intrinsic rela-
tionship in the genetic level, provide an access to evalu-
ate the disease similarity, and establish the human disease
network.

Many methods have been proposed to measure disease
similarity. The most simple and direct approach is to clus-
ter diseases based on their phenotypic similarity through
clinical observation. Text mining-based method is popularly
applied in the classification of numerous human phenotypes.
Phenotypes refers to the deviation from normal morphology
and reflects the biological representation correlated to dis-
eases [12]. For instance, a text mining approach was devel-
oped based on over 5000 human phenotypes in the OMIM
database, and the built phenomap may be used to predict
candidate genes for diseases [13]. Masino et al. calculated
the relationship between phenotypes depending on the infor-
mation regarding their lowest common-ancestor in human
phenotype ontology, in which human phenotypic abnormali-
ties are described in structured and unified vocabularies [14].
An ontology-based technique also exhibits excellent perfor-
mance inmeasuring disease similarity. Sachin et al. estimated
disease similarity by using an ontological metric to measure
semantic similarity between Gene Ontology (GO) processes
associated with diseases [15]. However, these existing meth-
ods only consider the gene or function directly annotated
to disease but ignore their interactions, which can cause a
deficiency of disease classification.

Genes related to similar diseases display a high likelihood
of physical interactions between their protein products and
a high similarity in the expression pattern, thus support-
ing the existence of distinct disease-specific functional gene
modules [16]. A blueprint of the human interactome was
presented by compiling 141,296 physical interactions among
13,460 experimentally documented proteins [17]. The disease
module was proposed to represent the network of disease-
related genes and their interactions. The distance of two
diseases can be calculated based on the separation degree of
disease module in the network [17]. Basing on this network-
based disease module, we conducted a systematic research
to further investigate the relationship among different human
diseases and explore its dependence on the functionals of
corresponding disease genes. A total of 299 diseases and

2436 disease-associated genes were included in our analysis.
First, disease clustering was performed based on the sepa-
ration score between diseases. The 299 diseases were then
divided into 15 relatively separated clusters as supported by
literature to extend our understanding about disease mech-
anism and their potential relationship. Second, the 15 clus-
ters were deemed as 15 class labels, which were assigned
to each disease. Each disease was represented by features
derived from a protein-protein interaction (PPI) network,
gene ontology (GO) terms and KEGG pathways. Features
and labels were analyzed by several machine algorithms to
extract essential GO terms and KEGG pathways. These sig-
natures with the most relevance to distinguish distinct disease
clusters can represent the essential functions in corresponding
pathogenesis. Our study provides a novel approach to predict
the network and function characteristics and contributes to
revealing the functional essence of diseases.

II. METHODS
A. DATA
A network can be applied to predict disease–disease
relationships by investigating the protein–protein interactions
involved in the disease module [17]. The network-based dis-
tance of two diseases was calculated depending on the sepa-
ration degree of disease-related gene modules. Two diseases
with the overlapping gene modules will have shared clini-
cal characteristics due to the same pathological processes.
OMIM and PheGenI databases are the two main sources of
such gene-disease annotations, and the integrated information
was compiled based on the MeSH vocabulary [17]–[19].
The documented diseases with less than 20 associated
genes were filtered out to improve the accuracy of our
disease cluster analysis. A total of 299 diseases involving
2436 associated genes were included in the computation and
analysis.

B. DISEASE CLUSTERING
On the basis of the network-based diseasemodule, an iterative
clustering algorithm was adopted to divide the 299 diseases
into different categories. Calculation was conducted using
hierarchical clustering with a bottom-up strategy and the
following steps:

(1) Find the pair of diseases (or disease clusters) with
strongest association measured by [17], and put the two
diseases into one cluster;

(2) Re-calculate the associations between diseases in one
disease cluster and diseases outside this cluster, and use
the average association as the new association between of
diseases (or disease clusters);

(3) Repeat the above calculation, until the number of
disease clusters achieve a given value;

In this work, we set the number of disease clusters from
2 to 20, and determine the best cluster number is 15, which is
manually judged based on the biological significance of dis-
ease clusters and applied to give the class label of particular
disease cluster.
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C. DISEASE FEATURE EXTRACTION AND SELECTION
1) FEATURE REPRESENTATION
For each disease, its representation features were extracted
for every disease-associated gene as two categories. One is
using node2vec (https://snap.stanford.edu/node2vec/) [20] on
the STRING PPI network [21] to get 500 network embedding
features for every disease-associated gene, and the other is
using functional enrichment on the direct PPI-neighboring
genes to obtain 297 KEGG [22] features and 20618 GO
[23] features for each disease-associated gene. Finally, each
disease-associated gene has 25915 features in total. The aver-
age of all disease-associated genes’ features was used as the
disease features for a particular disease.

2) BORUTA FOR FEATURE FILTERING
Many features were used to represent each disease-associated
gene, but not all were discriminable for different dis-
eases or clusters. Thus, Boruta feature filtering [24] was
applied to remove features non-relevant to target outputs.
This method works in a wrapper manner and is based
on random forest including mainly three calculation steps:
the production of new shuffled data from original training
data, the calculation of importance score for each feature
on each shuffled data, and the selection of real features
with remarkably high importance scores in the training data.
Finally, the important features are filtered after a few itera-
tions of such three computational steps. The present study
used the Boruta codes downloaded from https://github.com/
scikit-learn-contrib/boruta_py.

3) MINIMUM REDUNDANCY MAXIMUM RELEVANCE
(mRMR) FOR FEATURE RANKING
mRMR [25]–[27] selects informative features on the basis of
two assumptions: those with minimum redundancy among
themselves and those with maximum relevance with class
labels. The features satisfying the two assumptions simul-
taneously are also chosen using mutual information. The
mRMR program used in this study was retrieved from
http://home.penglab.com/proj/mRMR/index.htm.

4) INCREMENTAL FEATURE SELECTION (IFS)
IFS [28] can iteratively determine the best number of selected
features in the order or ranked features. At first, IFS produces
a series of feature subsets from the ranked features. The
first feature subset includes the top-ranked one feature, and
the second includes the top-ranked two features. A series of
clusters on the data is produced with each feature subset,
where the performance of each K-means clustering is evalu-
ated by rand index. Finally, the feature subset with the highest
clustering performance is selected as the optimum.
K-means and rand index evaluation. K-means is one

unsupervised clustering method on data X = [x1, x2, . . . , xN ]
that aims to divide N samples into k clusters C =

{C1,C2, . . . ,Ck} by minimizing the subsequent loss
function:

E =
∑k

i=1

∑
x∈Ci
‖x − µi‖2, (1)

where µi is the central point of cluster Ci such as:

µi =
1
|Ci|

∑
x∈Ci

x (2)

Rand index is an evaluation measurement for clustering on
N samples. For a clustering, let C is the true sample clusters
(e.g., one cluster with one prior-known class label), K is
the calculated clusters, x represents the number of pairs of
samples where two samples have same cluster alignment in
C and K, and y represents the number of pairs of samples
where two samples have different cluster alignment in C and
K. Rand index was then employed to evaluate the consistency
between C and K by using the following calculation:

RI (C,K ) =
x + y(
N
2

) (3)

III. RESULTS AND DISCUSSION
In this study, we used several computational methods to
uncover the functional differences between various diseases.
The entire procedures are illustrated in Figure 1.

A. DISEASE CLUSTER IDENTIFICATION AND
CHARACTERIZATION
An iterative algorithm depending on the association data
of 299 diseases was employed to cluster them into 15 dis-
ease clusters (Supplementary file 1). Each disease cluster
was assigned a class label to ensure that the machine learn-
ing approaches can be used to further extract the essential
biological features and distinguish each disease cluster. The
following two kinds of features were first produced on the
basis of network function: (1) 500 features extracted by
node2vec from STRING PPI network and (2) 297 KEGG
features and 20681 GO features extracted by enrichment on
disease-associated genes. Boruta feature selection was used
to filter non-informative features, thus leaving 1731 features.
mRMR was applied to rank these 1731 relevant features,
and IFS combined with K-means was used to determine the
best number of features and corresponding clustering scheme
based on the ranked feature list, where the performance was
evaluated by Rand index. The Rand index was able to achieve
the best score (0.7150) when the 65 top-ranked features were
used for K-means (Figure 2 and Supplementary file 2),
including 58 GO features, 3 KEGG features, and 4 network
features (Supplementary file 3).
Abnormality of gene regulation is the cause of human

diseases. Therefore, genes that play roles in certain disease
must be identified to reveal the pathogenesis. Evidence has
revealed that a disease is rarely caused by an aberration
of single gene and mostly the consequence of interac-
tion of multiple molecular activities [29], [30]. Therefore,
a disorder is a complex and multi-step biological process
involving various gene functions. Studies on human dis-
eases have discovered many relevant genes by animal exper-
iments or genome sequence analysis. Many databases were
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FIGURE 1. Entire analysis procedures. All 299 diseases are first clustered into 15 classes. Then, each disease is encoded into a vector, which is refined
from the vectors of its related genes. The gene vector is derived from the PPI network, GO and KEGG enrichment. Finally, the disease vectors together
with its labels are analyzed by two feature selection methods, yielding a feature list. The list is fed into the incremental feature selection method,
incorporating K-means, to extract essential GO terms and KEGG pathways.

FIGURE 2. IFS curve with K-means on different number of features.

established with information on human genes and corre-
sponding disorders, e.g., OMIM database. Gene–disease
annotations greatly contribute to the understanding of dis-
ease etiology and the appropriate treatment design for rare
clinical symptoms. In addition to revealing the molecular

essence of disease, the relationships between genes and phe-
notypes can also aid in evaluating disease similarity on
the basis of shared pathogenic genes. A disease correlation
network that measures disease similarity extends the knowl-
edge of disease mechanism, suggesting that diagnostic or
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FIGURE 3. Brief example of functional relationship among diseases in Cluster-1. By clustering analysis, diabetes mellitus,
kidney diseases, retinal diseases and their hypernyms were assigned into cluster-1. The confirmed pathological
associations between these diseases support the reasonability.

therapeutic approaches that can be appropriated from one
disease to other similar types. In this study, a disease clus-
tering analysis was performed based on the separation score
between two diseases, and the 299 diseases were divided
into 15 relatively separated clusters. This result suggests the
potential relationship among the diseases in the same cluster
and reveals the functional diversity among different disease
clusters.

B. FUNCTIONAL RELATIONSHIP AMONG DISEASES
SHARED IN A SAME CLUSTER
According to the results, disease clustering is reasonable.
Diseases with similar text description exhibited close distance
and mostly gathered in the same cluster in our analysis. For
example, diabetes mellitus types 1 and 2 are naturally classi-
fied into the same cluster (cluster-1) because they are caused
by the defects in insulin secretion, insulin action, or both [31].
Meanwhile, glucose metabolism disorders, which represents
a class of diseases involved in the abnormal chemical reac-
tions of glucose, were also assigned to cluster-1. Glucose
metabolism is viewed as the hypernym of diabetes, and this
finding is consistent with the classification into one disease
cluster. In addition to the aggregation, an intrinsic connection
was found among different types of diseases in the same
cluster. Several autoimmune diseases, including rheuma-
toid arthritis, demyelinating autoimmune diseases, systemic
lupus erythematosus, and their superior disease classes, were
assigned to the cluster of diabetes. Insulin-dependent diabetes
is also an autoimmune disorders that increasing inflammatory
cells can be seen in the islets of Langerhans, and beta cell
lesion is induced by the antibodies reaction and the following
complement-dependent cytotoxicity [32], [33]. In clinical
practice, systemic lupus erythematosus often coexist with
diabetes, implying their potential relationship [34]. These
findings supported the relevance of classification for the
pathogenesis of aforementioned diseases and confirmed their
assignment into one category (Figure 3).

Cluster-2 consisting of 18 different diseases also showed
a degree of aggregation. In this disease cluster, 7 diseases
clearly belong to the infection-related diseases including

bacterial infections, mycoses and virus diseases. Strikingly,
we noticed that the bile duct tract diseases and liver diseases
were also assigned to this cluster. Liver and gallbladder dis-
orders are closely associated that obstructed bile flows from
liver into gallbladder will cause inflammation within liver
[35]. Acute hepatitis or cirrhosis due to virus infection can
result to cholestasis [36]. Thus, certain potential linkages
among infection, inflammation, liver and gallbladder diseases
was built, reflecting a specific pathological characteristic in
cluster-2.

Cluster-3 is the largest disease cluster consisting
of 169 various diseases. The relatively chaotic phenomenon
in cluster-3 may be due to the limited maximum number of
groups. Diseases with no association with other 14 clusters
would be all assigned to this cluster. Although this big cluster
cannot be briefly summarized, some interesting aggregations
that many cancer-related diseases such as breast neoplasms,
renal carcinoma and leukemia have gathered. This finding
may imply the complex mechanism of cancer development,
involvement of numerous biological processes, and potential
association with various disorders.

Disorders of sex development and urogenital abnormalities
were assigned to cluster-4, and both diseases showed asso-
ciation with the deletions of regions on 10q26, indicating
their genetic relationship [37]. Cluster-5 showed a close asso-
ciation between amino acid metabolism and pigmentation
disorders. L-tyrosine serves as the starting precursor in the
synthesis of melanin, and the increased melanin level is
the direct cause of hyperpigmentation [38]. The deficiency
of sulfur amino acid also play roles in retinal pigmentary
degeneration according to clinical studies [38]. These find-
ings elucidate the pathological relationship of the two disease
classes and confirm the reliability of our clustering results.
Anemia, blood coagulation disorders, and blood platelet dis-
orders were assigned to cluster-6 and belonged to hemato-
logic disease class, reflecting an efficient clustering outcome.
Another efficient clustering was found in cluster-9 consisting
of seven diseases such as obesity, overweight, and overnu-
trition, all of which are related to nutrition disorders. In
addition, brain disease and lipid metabolism disorders were
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assigned to the same cluster-10. Tissues in central nervous
system have a high lipid concentration and deregulated lipid
metabolism, which play a crucial role in brain injuries and
disorders [39]. Lipid defect is relevant in Alzheimer dis-
ease, and membrane phospholipid degradation is a main
pathogenmechanism ofAlzheimer disease [40], [41]. Finally,
in cluster-11, cardiomyopathy-related diseases and muscular
disorders gathered in this same cluster. Given that cardiomy-
opathy is caused by the dysfunction of heart muscle, their
close relationship is reasonable.

Overall, diseases in the same cluster showed some degree
of relevance either directly or indirectly. This result val-
idated the reliability of our clustering and confirmed the
hypothesis that disease is the external representation of dys-
functional genes. In addition, this clustering analysis also
indicated several potential correlations in diseases that have
not been previously discovered. For example, a rare inherited
disorder called lysosomal storage diseases was assigned to
cluster-10 that contains brain diseases and lipid metabolism
disorders. This finding suggested lysosomal function might
participate in multiple processes of brain injuries. Our clus-
tering analysis can help contribute to further understanding
about the genetic essence of diseases and reveal the potential
association among different types of diseases.

C. KEY FUNCTIONS ASSOCIATED WITH DISCRIMINATION
OF DISEASE CLUSTERS
Considering that genes are the representors of biological
functions, the functional essence of diseases was also
explored. Each disease-associated gene was characterized by
its enrichment values of GO terms and KEGG pathways
to capture some concrete descriptions of functions corre-
sponding to particular diseases. Protein encoded by each
disease-associated gene was mapped into the protein–protein
interaction network retrieved from STRING, thus provid-
ing a supplemental feature for the characterization of a
given gene. According to such functional features from
GO annotations and KEGG pathways, an optimal cluster-
ing scheme was built to assign any given disease into cor-
responding disease-cluster. This step provided an effective
and novel approach to predict the characteristic of unknown
diseases and aid in diagnosis and treatment. The most
weighted features indicated the key functions in specific
disease cluster / type and represented the functional essence
of disorders. Existing evidence was evaluated to find the
relevance between the disease-cluster and its related GO
terms or KEGG pathways and validate the performance of
the prediction model. The top-ranked features were selected
as examples to extend the discussion because of their best
ability for the discrimination of disease-clusters and close
association with diseases.

The most discriminative feature by our computation is
GO:0071976, which refers to the biological process of
cell gliding. This GO term was substantially enriched in the
disease cluster-2 and cluster-11. Diseases in cluster-2 are
related to microbial infection, especially bacterial infection.

Gliding is one of common motility types in prokaryotic cells
and plays a role in adhesion and migration [42] and there-
fore may affect the contact between bacteria and host cell.
GO:0071976 also influences the movement of host cells and
often co-occurs with the biological process of T cell mean-
dering migration and phagocytosis, resulting in the alteration
of host immunity and consequent bacterial infection. An
early study reported that Listeria-infected cells promote the
formation of actin filaments, which may be important for
the intracellular movement of Listeria bacteria [43]. Gene
MYO1G, one of representative genes involved in cell glid-
ing, encodes a plasma membrane-associated myosin and acts
as a regulator of T-cell migration by generating membrane
tension and enhancing pathogen detection and eradication
[44]. These findings suggest that GO:0071976 plays crucial
role in the motility of microbes and host cells and there-
fore has a close association with infection-related diseases.
In addition, myosin is linked to hypertrophic cardiomy-
opathy and dilated cardiomyopathy by genotype-phenotype
correlation study [45]. Elevated expression of Myo1g was
detected in mouse phenotype of muscle atrophy, indicating
the potential role of MYO1G in muscular disorders [46].
These findings built a close linkage between aberrance of
myosin and cardiomyopathy-related diseases and confirmed
that GO:0071976 is enriched in the disease cluster-11 related
to cardiomyopathies and muscular disorders (Figure 4).

GO:0060709 showed an enrichment tendency in cluster-4
and cluster-13, indicating that the related functions may play
crucial role in these two types of diseases. GO:0060709 refers
to the biological process of glycogen cell differentiation
involved in embryonic placenta development. Given that
this biological process is important in embryonic devel-
opment, impaired function in GO:0060709 may result in
development disorders, such as illnesses related to sex devel-
opment and urogenital abnormalities observed in cluster-4.
As a representative gene of GO:060709, gene AKT1 dis-
plays strong relevance to various development impairments
such as delayed bone development and severe growth defi-
ciency [47], [48]. AKT1 is also a critical mediator of growth
factor-induced neuronal survival in the developing nervous
system [49]. The only member in cluster-14 is epilepsy,
a central nervous system disorder in which brain activity
becomes abnormal. Enhanced phosphorylation of neuronal
AKT1 was observed in epilepsy, indicating that AKT1 may
be implicated in epilepsy pathogenesis [50]. Epilepsy or sim-
ilar nervous-related diseases can be identified based on the
enrichment of GO:060709.

A relatively high enrichment score of GO:0035722 was
found in the disease cluster-9, suggesting the potential role of
GO:0035722 in obesity-related diseases. GO:0035722 refers
to the biological process of interleukin-12-mediated signal-
ing pathway. A correlation was found between IL-12 and
obesity. Serum IL-12 was remarkably higher in overweight
and obese individuals than in normal weight controls as indi-
cated by a clinical study [51]. Pro-inflammatory cytokines
such as IL-12 may play role in mediating insulin response,
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FIGURE 4. GO:0071976 is the key discriminative feature for classifying Cluster-2 and Cluster-11. The
biological process of cell gliding is closely associated with processes of immune activation and cell
motility, which are much crucial in infection diseases (Cluster-2) and muscular disorders (Cluster-11).

and elevated IL-12 is involved in the development of
obesity-induced insulin resistance [52]. GO:0052331, which
represents the biological process of hemolysis in other organ-
ism involved in symbiotic interaction, was highly enriched
in cluster-6. Diseases in cluster-6 such as hemolytic ane-
mia and blood coagulation disorders are closely related
to the dysfunction of hemolysis [53]. Another gene ontol-
ogy term GO:1990831 was found significantly enriched
in cluster-14, which consists of neoplasms and sarcoma.
GO:1990831 refers to the biological process of cellu-
lar response to carcinoembryonic antigen (CEA). CEA
is a protein normally found in low levels in the blood,
and its increased level are detected in cancer [54]. Thus,
an activated response to CEA indicates tumorigenesis, thus
confirming our prediction that the high enrichment of
GO:1990831 serves as the indicator to sarcoma or neoplasms.

IV. CONCLUSION
An optimal clustering scheme was constructed based on the
networks and functions of disease-related genes, which can
provide a function classification for each disease, thus deep-
ening our understanding on disease pathogenesis. The most
relevant GO terms or KEGG pathways were identified and
confirmed to play crucial roles in corresponding disease-
cluster on the basis of wide literature review. These biologi-
cal functions may partially represent the functional essence
of diseases and contribute to further research on disease
mechanism.
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