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ABSTRACT Urban expansion is often studied in large cities such as Beijing, Shanghai, and Guangzhou,
while scant attention is paid to smaller cities such asXining. However, Xining is the largest city on the Tibetan
Plateau, and an important city in China’s ‘‘Belt and Road Initiative’’. As its economy and society develops,
Xining will play an increasingly important role in connecting the central and western regions. In order to
quantify the impacts of rapid urbanization, it is extremely important to collect data on the time and space
variations of impervious surfaces. As such, we collected Landsat long-term sequence data about Xining
City from 1987-2019 using the random forest method, and then optimized the feature parameters to obtain
the dataset. Our results demonstrated that the overall accuracy of land use classification in Xining city is
83.4% and that the urban impervious surface accuracy is 89.5%. Additionally, the overall accuracy improved
by 2.4% after optimizing the characteristic parameters, while the urban impervious surface accuracy is
92.8%. In 27 of the 33 years we studied, the classification accuracy of impervious surfaces exceeded 90%.
After correcting for the temporal consistency check, the accuracy of impervious surfaces improved by 2%
compared to the original sequence. We analyzed the change of impervious surfaces in Xining based on the
results of the final dataset and found that the impervious surface area of Xining increased from 55 km2 in
1987 to 334 km2 in 2019. Xining is a typical semi-open river valley city which shares spatial and temporal
characteristics with other urban centers. The spatial and temporal characteristics of the expansion of urban
spaces in the main urban area of Xining are obvious and are primarily spread around the central area toward
tree branch shaped road, which help other cities located in river valleys better understand how urbanization
progresses.

INDEX TERMS Google earth engine, landsat, random forest, characteristic parameters, temporal consis-
tency check, urban expansion.

I. INTRODUCTION
Cities are home to most humans and economic activity,
making them the focus of much academic research [1].
Urbanization involves changes in population, the economy,
and land use [2]. According to a UN report, China and India
will be the main sources of urban population growth in the
next 30 years [3]. China’s urbanization has been accelerat-
ing since the beginning of 1980s, with a large number of
people relocating from rural areas to urban areas [4]–[8].

The associate editor coordinating the review of this manuscript and
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Rapid economic growth and the gradual transformation of
agricultural lands to urban cities has rapidly increased the
population of China’s cities [9]. This pace of urbanization
greatly impacts the environment and climate on different
scales: the urban heat island effect makes Xining significantly
warmer than surrounding rural areas [10], [11], local and
regional precipitation levels change, water quality deteri-
orates [12]–[14], increases in urban impervious surfaces
induce water runoff, and the loss of agricultural land nega-
tively impacts food production [15]–[17]. In order to quantify
the impact of rapid urbanization, detailed information on
the temporal and spatial changes of impervious surfaces is
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important, making it necessary to study the expansion of
urban impervious surfaces [18].

In the past few decades, remote sensing has been proven
to be a reliable and effective method of monitoring changes
to impervious surfaces [19]. Remote sensing data frommulti-
scale platforms provides different angles for the monitoring
of impervious surfaces [20]. Open access to remote sens-
ing data provides new opportunities for collaboration [21].
Landsat Thematic Mapper / Enhanced Thematic Mapper /
Operational Land Imager data (Landsat TM/ETM+/OLI )
in multispectral remote sensing images has been free since
2008. It is considered promising data for building a time-
space model of impervious surfaces, due to its superior spa-
tial resolution and spectral coverage and dataset stretching
back to 1982 [22]–[24]. As the availability of high spatial
resolution satellite images has increased, products providing
a spatial resolution of 30m of several global and regional
land cover products can be used directly [25]–[28]. However,
none of them update frequently enough to monitor long-term
changes in land cover. Additionally, there have previously
been no quick and effective mapping technologies and tools,
but in recent years, high-performance computing and more
efficient methods of analysis have been integrated with pow-
erful cloud computing resources [27], [29]. The emergence of
these powerful cloud computing resources, such as Amazon
Web Services, NASA Earth Exchange, Microsoft Azure, and
Google Cloud, has conferred benefits on large caches of geo-
graphical data [30]. For example, Google Earth Engine (GEE)
is an access-based cloud platform, which has a large number
of satellite images and geospatial data sets, facilitating the
development of algorithms and visualizations with reason-
able processing times [31]–[33]. In addition to computing
and storage capabilities, many well-known machine learning
algorithms have also made significant advances [34].

Previous methods of analysis such as the decision tree
model [35], [36], regressionmodeling [37], [38], andmachine
learning methods have been developed from single-phase
Landsat satellite data to analyze maps of urban land cover
and monitor associated changes [39], [40]. However, most of
these studies only use Landsat data from limited periods [22],
[41]–[46], which makes it difficult to analyze urban expan-
sion dynamics in short periods of time. Many researchers
currently use multi-temporal remote sensing images to ana-
lyze the spatial and temporal patterns of urban expansion.
Change detection technology has also been applied to these
multi-temporal images. For example, Li et al. used Landsat
time-series data to map the average annual frequency of
impervious surfaces in Beijing from 1984 to 2013 [1]. These
researchers proposed a time consistency check algorithm,
which included time filtering and logical reasoning, and sub-
sequently resulted in a more accurate classification of imper-
vious surfaces. Chai et al. proposed a new method to analyze
urban land expansion, using Tianjin from 1990-2014 to ana-
lyze the spatio-temporal dynamics of urban expansion [18].
Shi et al. proposed an uncertainty-based spatial- temporal
consistency (USTC) model to improve the accuracy of the

classification of impervious surfaces across a long period
of time, applying this model to Landsat images from 1987-
2016 to obtain a map of the annual impervious surfaces
of the city of Wuhan [24]. Song et al. used the estimated
annual impervious surface coverage in Landsat time series
data to obtain the scale of urban expansion in the Washing-
ton D.C.- Baltimore metropolitan area [47]. Time smooth-
ing technology was used to remove noise in the time-series
of urban land coverage. Fu et al. used Landsat time series
images and an optimized Crulist tree model to analyze the
ISP sequence [48]. They monitored and analyzed the changes
of urban expansion and deurbanization in Guangzhou from
2000 to 2010 and determined trends of annual and long-term
urban growth. Using long-term continuous annual average
frequency captures more detailed information about rapid
urbanization than using a single year or multiple time node
images [49]. The existing TC or USTC algorithm addresses
the spatial and temporal irrationality of impervious surface
spots, however, this kind of algorithm is only used to modify
and optimize the original results to obtain satisfactory results.
Better results will be obtained if the classification accuracy
improves in the early stages of classification and space-time
optimization processing.

In this study, we performed research on urban expansion
using the open cloud platform to obtain data and tools in
Xining, a high altitude city with complex terrain. Specifically,
we focused on the following three tasks: (1) Using Google
Earth Engine to obtain high-quality images of long time
series, method of sample data sets, and the choice of clas-
sifier; (2) Adding spectral information, texture, terrain, and
climatic factors to the classification process. Using feature
parameter optimization steps to establish feature optimization
and time consistency algorithms to more accurately classify
data and obtain a long-term sequence of high-quality surface
data fromXining; (3) Analyze the development of impervious
surfaces in Xining from 1987 to 2019.

II. MATERIALS AND METHOD
A. STUDY AREA
Xining is the capital of Qinghai Province and is
located between 36◦12′ 27′′∼37◦30′ 09′′ N and 100◦47′

56′′∼101◦56′ 49′′ E in the Huangshui valley of the
Tibetan Plateau. The Huangshui Valley runs east to west
through the city, while the Beichuan River flows into the
valley from the north, and the Nanchuan River flows into the
valley from the south. It is a narrow city running east to west
and is situated in a valley city [50], [51]. The highest and
lowest altitudes are 4849m and 2102m, respectively, while the
urban area has an average altitude of 2295m [52]. Xining’s
primary industries are agriculture and animal husbandry,
and its culture is a fusion of Chinese culture and Tibetan
culture. It is the gateway to the Tibetan Plateau, and is the
political, economic, cultural, scientific, technological, trans-
portation, and medical center of Qinghai Province. As shown
in Figure 1, the scope of this study includes not only Xining
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FIGURE 1. Location of the study area. (path/row:132/035).

FIGURE 2. Temporal distribution of Landsat images used in this study.

Municipal District, but also its surrounding parts. The Land-
sat uses a global reference system whose two-dimensional
coordinates are identified by path and row. The study area
boundary is located within one scene (path/row:132/035).

B. DATASETS
1) LANDSAT DATA
The data in this study comes from Landsat 5 TM, Land L and
sat 7 ETM+, and Landsat 8 OLI images, all of which were
obtained from the GEE platform. The data was processed
into L1T products, which, after geometric and atmospheric
corrections, are surface reflectance products. Figure 2 shows
377 scenes of Landsat images, whose cloud coverage is less

than 10%. Two periods were considered in the imaging selec-
tion: the lush period of plant growth (June to October) and the
withering period of plant growth (November to March of the
following year). The withering period was used to calculate
the Normalized Difference Vegetation Index (NDVI) of the
area in this period and can be used as one a future character-
istic parameter during classification.

C. METHODS
1) TECHNICAL PROCESS
This study analyzes the annual changes in urban land usage
over a long period of time using the gee platform. It is
divided into three stages: the first stage uses Google Earth
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FIGURE 3. Workflow for mapping the impervious surface change using Landsat time-series data.

to collect samples of different years and select appropriate
images; the second stage selects spectrum, texture, terrain,
and climate features to identify their construction, and use
the random forest method to classify Landsat data by year;
the third stage performs post-classification processing and
confirms the time consistency of 33 years of urban land series
data, filters out noise caused by classification errors, obtains
data related to annual land use and land cover, confirms the
accuracy of our results, and performs space-time analysis on
the dataset of annual impervious surfaces.

2) OTHER AUXILIARY DATA
a: SAMPLE COLLECTION
The quality of samples directly determines the quality of
the classification results, making it very important to collect
high-quality and relatively stable samples. This study is a
high-resolution study of long-term sequences, meaning the
strategy for obtaining samples varied from year to year. From
1987-2000, the samples were selected from Landsat images
by visual interpretation since there was no high-resolution
image. Samples from 2001-2019 were selected from Google
Earth Pro by manual visual interpretation. Based on the
2016 image, the two blue sample are type of urban. By 2015,
the urban plot on the left becomes cropland, then delete the
original urban plots and add cropland plots; in 2014, the urban
plot on the right also becomes cropland, delete the original
urban samples and add cultivated land samples. By analogy,
according to the actual changes of the ground features, point
by point comparison and year by year modifi-cation, so as to
complete the establishment of all types of sample libraries in
each year. This method ensured the stability and continuity
of samples across the 33-year time period (Figure 4). Finally,
80% of the samples were used as training samples and 20%
were used as test samples [55]. The classification system of
the study area was divided into 6 categories, based on the

National Remote Sensing Monitoring Land Use/land cover
classification system: city, cropland, grassland, forest, water
body, and bare land. The collected training sample informa-
tion is shown in Table 1.

b: METHOD OF FEATURE OPTIMIZATION
The selection of feature variables is an important step in
remote sensing classification and can be improved by using a
variety of feature variables and their combinations. Too many
feature vectors in the model will also cause data redundancy,
and not all features vectors all play a positive role in improv-
ing accuracy, so we must optimize the selection of feature
vectors [56]–[59]. We optimized the steps used in this study
according to the following:

Step 1: The random function is used to perform 10 dif-
ferent spatial distributions on the training samples, and then
the accuracy of the classification results of these 10 times
is compared, and the spatial distribution with the highest
accuracy is selected as the final sample point.

Step 2: Selection of texture features and optimal window:
obtain texture features from GEE by GLCM (Gley-Level
Co-ourrence Matrix) calculations, set texture feature window
from 1-10 and conduct 10 experiments to find the best texture
feature and the optimal window size;

Step 3: Climate factor selection: analyze all climatic fac-
tors and select the one with the highest classification accuracy
for subsequent classification;

Step 4: Sorting selection: classification engineering
demonstrated that the order of characteristic parameters
impacted classification results. Considering the calculation
resources and time cost, only the latest five characteris-
tics were permutated, resulting in 120 different combina-
tions. Finally, the combination with the highest classification
accuracy was selected for the final classification parameters
(Table 2).
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FIGURE 4. The 33-year dynamic change of land use types corresponding to the sample points. For each panel, the intersection
of the two black lines is the spatial position of the sample point (36◦25′ 34′′N, 101◦44′ 46′′E). (The image is composed of
standard false colors: Landsat TM/ETM+ image is composed of 4, 3, and 2 bands, and OLI image is composed of 5, 4, and
3 bands).

3) POST-CLASSIFICATION PROCESSING AND TEMPORAL
CONSISTENCY CHECK
Using RF to classify remote sensing images from year to year,
we identified fragments and ‘‘pepper-salt phenomena’’ in the
results. Mode filtering in the ArcGIS software was used to
perform fragmented speckle removal and post-classification
merged clustering. We also obtained a long-time (33 years)
series map of urban land classification. However, there could
be classification errors in these results for the following rea-
sons: there were low-quality Landsat images in earlier years,
some inappropriate samples could have been selected in ear-
lier years, and uncertainty during the classification process,
such as ‘‘same object with different spectrums’’ and ‘‘differ-
ent objects have the same spectrum’’. As such, we prepro-
cessed the classification results. To test whether the obtained
results conformed to the objective laws of urban develop-
ment, we had to distinguish occurrences of change from clas-
sification errors across the long-term dataset. We obtained
a more reliable time-series result by using the temporal
consistency check method proposed by Dr. Li Xuecao and
modifying it locally in order to improve the initial urban land
classification results.

The process consists of two steps: temporal filtering and
logical reasoning. The temporal filtering formula is shown
in Figure 1-1, which references the work of Li et al.
(2015) [1]. Temporal filtering filters out noise caused by a
single-year classification error. The isolated urban or non-
urban error is judged by time probability. A higher value of

Pr obi =
6
j=i+Tw
j=i−Tw

con(Lj=Li)
1+2×(Tw)

indicates a more confident label Li
in the temporal sequence, whereas a lower value may reflect
an erroneously classified pixel in that year. We set a threshold
value of 0.5 to distinguish whether the current category needs
to be converted. If it exceeds 0.5, the current category label
belongs to the dominant category in the time domain, with the
unchanged category; if it is less than 0.5, it will convert the
current category label to the opposite. Through this process,
individual errors can be corrected. The output of the model is
a series of continuous cities (1) and non-cities (0).

Pr obi =
6
j=i+Tw
j=i−Tw con(Lj = Li)

1+ 2× (Tw)
(1)

In this formula, Li is the label of the target year and Lj is
its temporal neighborhood. Besides, Con() is an identifying
function returning 1 when Lj = Li, otherwise 0.

Its main purpose to remove the isolated urban patches
in the time dimension. For example, 1 is a city and 0 is
a non-city. When [0 1 0] appears, the unreasonable situ-
ation of this isolated year is modified to[0 0 0], and it
will also be modified to [1 1 1] for [1 0 1]. The purpose
of this step is only for isolated urban patches. The fol-
lowing will be performed on a long term sequence logical
judgment.

The logical judgment mainly includes a presupposition,
that is, under normal circumstances, the development of cities
is irreversible. Then the urban area in 2019 is the largest,
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TABLE 1. Number of samples for each class from 1987 to 2019.

FIGURE 5. Schematic diagram of logical filtering based on city sequence.

and there should be no urban distribution beyond 2019 in
previous years. After that, there will be two cases. For a pixel
time series, if 1987 is a city, and 2019 is also a city, then the
entire time series from 1987 to 2019 will be modified to be
as city. This situation is rare, the main corresponding actual
situation is in the old part of the city, urban architecture has

been in existence from 1987 to 2019. The second case, for
a pixel time series, 1987 is not a city, but it is a city from
a certain year (Xyear), then it is a city from Xyear→2019,
and Xyear is a sudden change from non-city to city. This
year accounted for most of the year, that is new urban
construction.
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TABLE 2. Original feature parameters and optimization.

III. RESULTS AND DISCUSSION
A. ANALYSIS OF CLASSIFICATION RESULTS
1) ANALYSIS OF 33-YEARS PRELIMINARY CLASSIFICATION
RESULTS
The overall classification accuracy in the article is obtained
by calculating the confusion matrix from the verification
sample. Many studies have demonstrated that adding tex-
ture features can improve classification accuracy [60], [61].
The green line refers to classification accuracy with addi-
tional parameters such as Normalized DifferenceWater Index
(NDWI), Radio Vegetation Index (RVI), NDVI, Enhanced
Vegetation Index (EVI), and Normalized Difference Building
Index (NDBI), the red line refers to classification accuracy
after selection using texture features, optimal windows, cli-
matic factors, and feature parameters (Figure 6). The red line
is typically higher than the green line, meaning the accu-
racy of classification results following feature optimization is
higher (by 2.4% higher on average) than that of classification
results without optimization. The one exception is in 1991,
when the accuracy of the latter was slightly higher than that
of the former by 0.44%. In 2011, the difference between them
was largest, reaching 8.98%. While determining the final
feature elements in this article (see 2.3.2.2 for the process),
there were cases when the overall classification accuracy

of these schemes was almost the same. When this situation
occurred, we gave priority to the classification accuracy of the
single category of impervious surfaces in order to select the
final feature parameter optimization scheme. The blue line
in Figure 6 displays the overall accuracy of the city. The accu-
racy of other years exceeds 87%, except for 1989 and 1993,
where the respective classification accuracy of impervious
surfaces was 82.35% and 83.33% The accuracy of 27 years
exceeded 90%. This provides a solid basis for subsequent
processing and analysis..

2) ANALYSIS OF 33-YEARS PRELIMINARY
CLASSIFICATION RESULTS
The accuracy of the modified classification results must be
confirmed to test the effects of the temporal consistency algo-
rithm. Figure 7 shows the overall accuracy and impervious
surface accuracy results from 1987-2019, both before and
after the time consistency treatment. Compared to the origi-
nal classification results, applying time consistency slightly
improved the overall accuracy. In Figure 7, the detection
range of impervious surfaces following time consistency pro-
cessing is 84%-96%, which is about 2% higher than the
initial sequence. Therefore, the time consistency algorithm
helps solve inconsistent long-term sequence classifications.
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FIGURE 6. 33-year accuracy assessment.

FIGURE 7. Evaluation of change detection accuracy.

For example, during the initial classification of impervious
water surfaces, some overestimates or underestimates will be
corrected after applying the time consistency algorithm. The
accuracy report has improved the accuracy of the classifica-
tion of impervious surfaces.

B. DISPLAY OF CLASSIFICATION RESULTS
Comparing the results of classification with and without
feature optimization (Figure 8), column A is the summer
image synthesized by standard false color, column B is the

preliminary classification result, and column C is the clas-
sification result after feature optimization. To compared the
first row, the image of feature optimization show that the
water area is increased and the spatial connectivity is better;
the second row, the optimized results reduce the expansion
of the urban area; the third row, misclassification of forest
features have been supplemented.

Additional analysis of classification results following the
temporal consistency check (Figure 9) demonstrated that
deficiencies (such as data loss or image quality) in the
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FIGURE 8. Different strategies for image classification performance. A. OLI summer images; B. Classification
results without feature optimization; C. Feature optimization and space-time consistency processing results.
(Landsat 8 OLI image acquired at 10th, Aug, 2017. The Landsat 8 OLI images are displayed at the composition of
bands 5, 4 and 3.)

FIGURE 9. Classification results improved by temporal consistency check.
(A) TM image (May 22,1988) and (B) TM images (May 23, 2000)

initial classification can be mostly corrected. For exam-
ple, the overestimation of urban land use caused by the
confusion of bare land in the initial image can be cor-
rected (Figure 9A), while underestimation, missing, or

misclassification of land use caused by poor image qual-
ity can also be corrected (Figure 9B). As such, time-series
analysis can improve long-term serial urban remote sensing
classification.
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FIGURE 10. Annual impervious surface maps from 1987 to 2019 in Xining.

C. SPATIAL AND TEMPORAL DISTRIBUTION OF URBAN
IMPERVIOUS SURFACE
Figure 10 displays the impervious surface map of the study
area from 1987 to 2019. Terrain determines the spatial pattern
and direction of urban expansion [62]. The most fundamen-
tal difference between river valley cities and typical cities
is the river valley’s restrictions on urban expansion [63].
Cheng et al. (2003) have researched the expansion of moun-
tainous urban spaces, and found that rivers and mountains
prevent cities from growing on a large scale [64]. Typically,
their structural forms are star-shaped, fan-shaped, or irreg-
ularly clustered, while most other cities form a radial ring.
Therefore, the direction, pattern, and land structure of urban
expansion in river valleys are restricted by geographical geo-
morphology. The urban expansion model of Xining reflects
a branch shaped spatial structure. The geographical location
of Xining has significantly influenced the urban expansion of
Xining along the river valley from 1987 to 2019.

Figure 11 shows the land use conversion map, the annual
impervious area change histogram, and the six types of land
use change percentage pie charts for the study area from
1987 to 2019. The impermeable area of the study area kept
increasing throughout the period. The land-use conversion
map of the study area demonstrates that cropland is the
primary source of land converted to urban areas, followed
by grassland. Among them, the impermeable area of the
study area has maintained growth throughout the period. The
impervious surface area increased from 54.67km2 in 1987 to
334.44km2 in 2019, with average annual growth of 8.5km2.

Statistics from the increase of the area in the next two
years showed that impervious surfaces increased significantly
in 1993, 2003, and 2013 (Figure 11). We analyzed four
periods to better understand the annual growth rate of Xining:
1987 to 1992, 1993 to 2002, 2003 to 2012, and 2013 to 2019.
• From 1987 to 1993, the area of impervious surfaces was

54.67km2, accounting for 3.3% of the total area. The cropland
and grassland respectively accounted for 42% and 44.7% of
the total area. By 1993, the impervious area was 70.09km2,
with an average annual growth rate of 4.23%. At this stage,
the growth of urban areas was slow, and impervious surfaces
in rural areas were scattered with no significant changes.
• From 1994 to 2003, Xining experienced slow urban

growth, with an average annual growth rate of 5.34%. Com-
pared with the first period (1987-1993), the annual growth
rate was slightly higher, while the growth rate of impervious
surfaces remained relatively stable. The area of impervious
surfaces increased from 71.48km2 in 1994 to 114.22km2

in 2003. Due to the acceleration of industrialization and
urbanization, Xining experienced a period of slow urban
growth.
• From 2004 to 2013, the annual growth rate was much

higher than in the previous two periods. Xining experienced a
period of rapid urban expansion, increasing from 117.68 km2

in 2004 to 228.48 km2 in 2013, for an average annual growth
rate of 7.65%. The large increase was related to the govern-
ment’s 2006 decision to accelerate the development of the
Haihu New District and the Nanchuan Industrial Park in the
northwest [63].

147106 VOLUME 8, 2020



X. Cao et al.: Expansion of Urban Impervious Surfaces in Xining City

FIGURE 11. Map of land-use conversion in the study area from 1987 to 2019.The histogram is a graph of annual impervious
surface areas, and the pie chart is the percentage of land use change in six categories.

• From 2014 to 2019, the annual average growth rate
was 6.28%, making for slower and more stable urban
development. The urban area increased from 246.66km2

in 2014 to 334.44km2 in 2019 and is currently 20.4%.
In 2013, as the industrial structurewas adjusted and upgraded,
Xining entered a stage of stable urbanization where the urban
fringe was the primary area for urban expansion.

D. EXPANSION OF IMPERVIOUS SURFACE IN DIFFERENT
DIRECTIONS
Figure 12 displays the expansion of impervious surfaces
in eight directions during the four stages (1987-1993,
1993-2003, 2003-2013, and 2013-2019). The expanded area
of impervious surfaces is calculated by subtracting the start
time from the end time of each period.

From 1987 to 1993, the fastest-growing direction of imper-
vious surfaces was the seventh direction (45◦ Northwest),
followed by the third direction (45◦ Southeast). These two
directions form the fastest-growing directions, accounting
for 55.33% of the total impervious surface area. Since its
implementation in 1983, the Xining City Master Plan (1981-
2000 version) has played an important role in guiding urban
development and construction. Public service facilities and
infrastructure have been established to adapt to Xining’s eco-
nomic structure under China’sWestern Development strategy
and accommodate future social and economic development
and construction. From 1993 to 2003, the two fastest-growing
directions were still the seventh direction (45◦ Northwest),
accounting for 25.92% of the total growth of imperme-
able surfaces and the third direction (45◦ Southeast), how-
ever, the growth rate of these two directions was slightly
lower than in the previous period. Direction five direction
(45◦ Southwest) expanded faster than the previous period,

increasing from 8.89% to 17.51%. Compared with the first
stage, the impervious surface expansion across the eight
directions fluctuated. For example, the proportion of direction
three decreased by 7.36%between the first period and the sec-
ond period, but the proportion of direction five increased by
8.62% between the first period and the second period. Since
1999, the most significant impact on land coverage in Xining
was a policy of returning cropland to forests and grasslands
and barren mountain greening projects. The former converted
cropland to green land, and the latter increased the vegetation
coverage of Xining. The social economy primarily focused on
the old city reconstruction plan, meaning Xining City devel-
oped from the city center outward to surrounding areas. The
primary locations of urban expansion changed considerably
from 2003 to 2013. The fastest growth was still observed in
the seventh direction (45◦ northwest), which accounted for
29.8% of the growth area. The sixth direction (45◦ south-
southwest) was the fastest growing direction during this
period, accounting for 26.58% of the growth area of the entire
impervious surface (an increase of 15.11% over the second
stage). Northwest expansion is mainly related to greenway
construction and development of the Haihu New Area, which
accelerated high-end construction in the service industry.
Southwest expansion is mainly due to the expansion of the
Chengnan New Town. During 2013-2019, the seventh direc-
tion was once again the site of the fastest growth. It is domi-
nated by the Haihu New District, a center for entertainment,
culture, education, and sports. In the fourth period, imper-
vious surfaces grew evenly in all eight directions compared
to the three periods. The expansion of the eighth direction
increased compared with the previous three periods, mainly
due to the expansion of North District’s high-tech industrial
park, the construction of a logistics park, the transformation
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FIGURE 12. Spatial Orientation of the Expansion of Impervious Surfaces in the Study Area.

of the old city, and the construction of a university town,
greatly stimulating the expansion of impervious surfaces.
In recent years, the construction of the Chengnan New Town
and the Haihu New Area had the greatest impact on the
Xining’s expansion. The development of these two areas will
result in multiple centers of commerce in the future.

We then analyzed the direction of expansion of impervious
surfaces. The formation and evolution of Xining’s landforms
trends NW-NWW, which is typical of a branched semi-open
city in a valley [25]. The river flows fromwest to east through
the urban area of Xining. The elevation is generally high in
the west and low in the east, high in the north and south,
low in the middle, and restricted by mountains in the north
and south. Urban expansion is limited by the direction and
topography of the river valley. A flat river valley lies east-
west, making it suitable for urban construction. Xining’s
urban space is organized for ‘‘internal life and external pro-
duction’’, meaning that the construction of Xining’s living
and services are centered around four branch shaped road
intersections, which are the most important centers of public
service and living in Xining. The expansion of these controls
mainly revolves around the central area and spreads to the
four directions. At the same time, various industrial facilities
were constructed around the urban area, far from the living
spaces [65]. From 2001 to 2020, the Xining city master
plan was to develop eastward and southward in the near-
and medium-term, and to develop westward and northward
in the long-term. The East is the most densely populated
area in Qinghai Province and the primary route to Lanzhou.
Situated to the west of Xining is the Qinghai Tibet railway,
which leads to Tibet [66]. From 1987 to 2016, urban expan-
sion trended southeast and northwest, with uneven expan-
sion of impervious surfaces. Additionally, urbanization is

accelerating as both the economy and population increase.
The Haihu NewArea (a center of entertainment, culture, edu-
cation, and sports) and the southern part of the city (a center of
tourism, refined resource processing, ecological agricultural
parks, and high-quality residential communities) were rapidly
connected and share a contiguous border. Xichuan New City
(a center of finance, business, and creative research and
development) was rapidly built. The Xining Economic and
Technological Development Zone, the Dongchuan Industrial
Park and Beichuan Biological Park, which are mainly based
on high-tech industries and trade and logistics, have been
connected to the central urban area. This model of urban
expansion reflects Xining’s unique spatial structure, while the
government’s administrative policy is reflected in the scale
of urban expansion. As such, Xining’s natural geographical
location and administrative orientation have influenced the
urban expansion of Xining [65].

E. OVERALL DEVELOPMENT TREND
We produced a map visualizing the distribution of Xining’s
urban expansion from 1987 to 2019 (Figure 13). The gradient
from red to blue displays the annual changes of impervious
surfaces. Red areas are urban lands that developed early,
while blue areas are newly developed urban land. The trends
of Xining’s expansion over the past 33 years can be sum-
marized as follows: (1) Urban development along land that
is already developed, (2) Urban development around branch
shaped road, (3) Spatial expansion of Xining’s central urban
area is affected by the terrain. The basic trend is expansion
from the center to the northwest, southwest, and southeast.
Northeast development was slow. The areas B, C, and D,
shown in Figure 13, are schematic diagrams of zoning, which
indicate the dynamic expansion of the city in detail. A large
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FIGURE 13. Expansion time density of Xining (1987-2019). A is the distribution of the overall urban expansion trend in the
33-year study area. B, C, and D are method views of typical areas. The images were obtained on October 3, 1987 (TM image
consists of 5, 4, 3 bands) and August 10, 2017 (OLI image consists of 6, 5, 4 bands).

amount of land that was cropland in 1987 was urbanized
by 2019. Impervious surfaces have expanded from the city
center to the suburbs, which is consistent with the spatial
and temporal changes of urban expansion obtained from the
mapping.

Datasets of annual impervious surfaces over the course
of 33 years provide an opportunity to better understand the
spatial and temporal patterns of Xining’s expansion. High-
resolution products provide detailed information on land
cover changes in developing regions where urbanization
rapidly occurs (1-2 years), compared to products monitoring
urbanization across longer time intervals (5-6 years). Rapid
urbanization has made it necessary to map impervious sur-
faces and their progression in order to monitor the expansion
of the city.

IV. CONCLUSION
This study is based on Landsat long-term sequence data
from 1987-2019 and used random forest machine learning
on the GEE platform to identify impervious surfaces in the
city of Xining. We used feature optimization to improve
classification accuracy, improving the overall accuracy of the
area by 2.4%, The overall accuracy was 85.81%. We then
used the space-time optimization algorithm to filter errors
from the results, improving the accuracy. The final accuracy
of impervious surfaces in most years exceeded 90%. Our
results determined that the impervious surface area of Xining
increased from 55km2 in 1987 to 334km2 in 2019. Xining is
a typical semi-open city located in a valley, with spatial and

temporal features characteristic of urban spaces, primarily
developed from the central area to branch shaped road. These
results provide effective information for the modeling and
future planning of Xining’s urban growth. It is recommended
to apply feature optimization and time consistency algorithms
when drawing impervious surfaces repeatedly.
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