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ABSTRACT Malware applications typically use a command and control (C&C) server to manage bots to
perform malicious activities. Domain Generation Algorithms (DGAs) are popular methods for generating
pseudo-random domain names that can be used to establish a communication between an infected bot and the
C&C server. In recent years, machine learning based systems have been widely used to detect DGAs. There
are several well known state-of-the-art classifiers in the literature that can detect DGA domain names in real-
time applications with high predictive performance. However, these DGA classifiers are highly vulnerable to
adversarial attacks in which adversaries purposely craft domain names to evade DGA detection classifiers.
In our work, we focus on hardening DGA classifiers against adversarial attacks. To this end, we train and
evaluate state-of-the-art deep learning and random forest (RF) classifiers for DGA detection using side
information that is harder for adversaries to manipulate than the domain name itself. Additionally, the side
information features are selected such that they are easily obtainable in practice to perform inline DGA
detection. The performance and robustness of these models is assessed by exposing them to one day of real-
traffic data as well as domains generated by adversarial attack algorithms. We found that the DGA classifiers
that rely on both the domain name and side information have high performance and are more robust against

adversaries.

INDEX TERMS Adversarial machine learning, DGA detection, side information.

I. INTRODUCTION

Domain Generation Algorithms (DGAs) are subroutines
that generate pseudo-random combinations of charac-
ters or words, and output domain name strings [1]. DGAs
often use a seed input such as a number, which is embedded
as part of the code, or a time-based element such as the
system date, time etc., or a combination of both, to generate
random strings. These strings are then concatenated with an
available top level domain (TLD) to form domain names.
The key idea behind DGAs is to generate the same set of
domain names when executed by two different machines,
such as by a botmaster and on an infected machine, at a given
time. The botmaster registers one of the generated domain
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names, while the infected machines systematically query the
domains from the generated list until one of them is resolved.
The domains from the list that have not been registered by the
botmaster will typically result in an NXDomain (non-existent
domain) response when queried, and can be discarded by the
infected machine. This technique is often used by a command
and control (C&C) center and an infected bot to establish
communication and perform malicious activities as instructed
by the C&C server.

Once communication between the infected machines and
the botmaster has been established, the C&C server can
issue commands to the bots to perform malicious activities
such as distributed denial of service (DDoS) attacks, spam-
ming, stealing sensitive information from the compromised
machines, etc. In the past, malware authors used a predefined
list of domain names, which was embedded in the malware,
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TABLE 1. Overview of existing work on DGA detection.

Input Retrospective Inline
. . 4], 5], [8], [15], [27]
Domain name strin 2], [26 [4], [9], [8], )
s Bk 61, [13], [14], (28], [20]
Side information features  [16], [30]-[33] our work
Domain name string + [3], [18], [34]-[36]
side information features  [10]-[12], [17] our work

to communicate with the bots. This technique made it easy
for the defenders to blacklist the malicious domain names
and block further communication, effectively rendering the
malware useless. To overcome this, modern C&Cs use DGAs
to randomly generate domain names that are registered on the
go, making them harder to detect. It is therefore important
to identify the domains generated by DGAs and block them
before they can be used to establish communication between
the bot and the C&C center. There are several machine
learning approaches proposed in the literature to address this
issue including [2]-[9] and other work that we cite later in
this paper. These well known state-of-the-art classifiers can
be deployed in real-world DNS applications to detect DGA
domain names and block them. While some work focuses
on detecting DGAs from NXDomains [4], our work aims to
detect DGAs from traffic to domains that have already been
resolved.

Commonly used approaches for DGA detection can be
categorized according to how fast they are able to flag mali-
cious activity in DNS traffic. As illustrated in Table 1, some
techniques work in a retrospective manner, in which past
DNS traffic, which is logged over a certain window, is ana-
lyzed in batches to detect anomalies. Other techniques work
inline, meaning that they can detect DGA domains as soon as
they are queried. There are two ways in which inline DGA
detection can happen:

o The domain first reaches the DGA classifier and if the
classifier flags the domain as benign, then the query
is passed to the DNS resolver to fetch the resolved IP
address of the domain. However, if the classifier flags the
domain as DGA, then the query will not be forwarded to
the DNS resolver and it simply blocks the communica-
tion with that domain.

o The domain first queries through the DNS resolver; the
DGA classifier uses the features learned from the DNS
response to decide on whether the domain is DGA or not.

Our work fits into the second category of inline detection,
where both the domain name and the side information fea-
tures learned from the DNS query/response are used by the
classifier for DGA detection. The side information features
are carefully selected to allow inline DGA detection in the
broader sense. In the strict sense, inline DGA detection
means that the information required to determine whether
a domain name is DGA or not is available from the DNS
query data alone. A DNS resolver can use the strictly inline
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DGA classifier’s decision to determine if it is safe or not
to resolve the query. A less conventional version of inline
detection, which we refer to as ‘“inline DGA detection in
the broader sense”, is one where data attributes from DNS
responses are required (in addition to DNS queries). This
means that the DNS resolver must resolve the query first,
feed the information obtained to the DGA classifier, and
then use the DGA classifier’s decision to determine if it is
safe to get the DNS response to the client or not. As we
observe in our experimental results, taking information from
DNS responses into account improves the ability of DGA
classifiers to correctly detect DGA domains among resolv-
able traffic. We note that any dependence on data requiring
queries to additional sources, such as the WHOIS database
(as used for instance in [10]-[12]), would disqualify the
approach from inline detection, even in the broader sense.
Machine learning based approaches to detect DGA domain
names in practice can also be categorized according to the
information they leverage. One way is to train classifiers
to detect DGA domain names using only the domain name
string itself, see e.g. [4]-[6], [8], [13]-[15]. The alternative is
to train the classifiers using context information such as the
IP address of the domain, its geographic location, attributes
from DNS response records etc. in addition to the domain
name [3], [10], [12], [16]-[18]. In our work, we combine
both approaches. The advantage of the former approach is
that it does not require gathering of additional information,
which may be expensive to collect in real time, and that it
allows the defenders to detect the DGA domain names and
block them even before they can be resolved. The advantage
of the latter approach is that side information is a lot harder for
the attacker to manipulate than the domain name string itself,
making machine learning models trained on side information
potentially more robust against adversarial attacks.
Adversarial machine learning is a research area focused
on problems introduced by the use of machine learning
techniques in adversarial environments in which an intelli-
gent adversary attempts to exploit the weaknesses in such
techniques [19]. The adversarial attacks of interest in this
paper are evasion attacks in which an adversary uses artifi-
cially crafted instances, called adversarial samples, that are
intentionally used to mislead a machine learning system and
produce erroneous results. The goal of evasion attacks in the
context of DGA detection is to generate domains that will be
labeled as benign by the DGA classifier. The vulnerability
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of a classifier against evasion attacks is measured in terms of
DGA detection rate, which is the proportion of the adversarial
samples predicted as malicious by the classifier. Lower DGA
detection rates indicate high vulnerability of the classifier to
the attack. There exists several evasion attacks against DGA
classifiers such as CharBot [20], DeepDGA [21], Decep-
tionDGA [22], MaskDGA [23] and the DGAs (HMM &
PCFG-based) proposed by [24]. CharBot and MaskDGA are
black-box targeted evasion attacks that do not require any
knowledge about the DGA classifier and are intended to
generate samples that can evade detection by any classifier.
On the other hand, DeceptionDGA is a white-box attack algo-
rithm that uses the knowledge of features used by the DGA
classifier to generate evading instances specific to a given
classifier. Both types of attacks are found to be extremely
powerful in generating domains that can evade detection by
the DGA classifiers with high probability.

The main contributions of our work are:

« A comprehensive survey of lexical and side information
features proposed in the literature on DGA detection.

« An experimental evaluation of the feasibility in collect-
ing the features and their effectiveness when deployed
for inline detection of DGAs in real streams of passive
DNS traffic, which leads to a shortlist of features that are
actually beneficial in practice.

o Experimental results that show how the side information
features can make DGA classifiers more robust against
adversarial attacks.

The paper is organized as follows. Section II gives an
overview of related work in the fields of adversarial machine
learning and DGA detection. Section III provides a detailed
overview of side information features that can be extracted
from DNS traffic to aid in the detection of DGA domains.
In section IV, we list the 26 human engineered lexical features
that are extracted manually from the domain name string in
order to train the RF classifier for DGA detection. section V
gives an overview of the different classifiers we will be
studying and attempting to harden against adversarial attacks.
Section VI describes the experimental setup and reports all
of our empirical results. Finally, section VII concludes the
work. All findings are based on the first author’s master’s
thesis, the full version of which is available at the University
of Washington [25].

Il. RELATED WORK

Given the importance of being able to detect and block DGA
domain related traffic, it comes as no surprise that the prob-
lem of automatic DGA detection has received a considerable
amount of attention over the last decade. There are various
ways in which existing DGA detection approaches differ
from each other. As illustrated in Table 1, DGA detection can
be categorized according to the kind of input that is required.
Some techniques require just the domain name string, while
other techniques require side information, or a combination
of both. Both kinds of input have their own advantages
and disadvantages. Methods that rely only on the domain
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name string are popular because side information is typically
harder to obtain. On the other hand, features extracted from
side information are harder to manipulate, making meth-
ods based on them more robust against adversarial attacks.
All the approaches presented in our paper perform inline
DGA detection using domain name only, side information
only and a combination of both domain name & side infor-
mation features.

Furthermore, the classifiers can be trained in two ways to
detect if a given domain name is generated by a DGA or not.
The first technique is the featureful approach, where the
classifier relies on human engineered features extracted from
the domain names. The second technique is the featureless
approach, where the classifier learns the features automati-
cally during the training process. Classifiers that are based
on deep learning architectures like Long Short-Term Memory
(LSTM) [5], [8] and Convolutional Neural Network (CNN)
models [6], [9] leverage the featureless approach, whereas
models such as random forests (RFs) adopt the featureful
approach. In our work, we will be using both featureful
and featureless approaches to train random forest and deep
learning classifiers for DGA detection.

We note that, as is clear from Table 1, side informa-
tion features have so far only been used in retrospective
approaches to DGA detection, while our focus is on inline
detection instead. Still the existing work is very relevant to
ours, as we can use many side information features that have
been previously proposed in a retrospective setting for inline
detection as well. A similar comment applies to techniques
for domain name string classification. In Table 2 and Table 4
we provide a detailed overview of features that have been
proposed, with references, and whether we retain them in our
classifiers or not. A more detailed explanation about these
features is provided in section III and section IV.

Ill. SIDE INFORMATION FEATURES

In this section we provide a detailed overview of side infor-
mation features that can be extracted from DNS traffic to
aid in the detection of DGA domains. An overview of all
features is presented in Table 2, accompanied by a list of
citations that illustrates the popularity of each kind of feature
in the literature. The order of the side information features
listed in Table 2 indicates the importance of those features
in DGA detection as ranked by the Random Forest model
(see section V). Not all features are equally easy to obtain
in practice, and their contribution to the predictive accuracy
of DGA classifiers varies. The last column of Table 2 indi-
cates whether we retained the feature in our DGA-classifiers.
Figure 1 shows a sample resource record from which the side
information features are extracted. In figure 1, the attribute
“name” represents the fully qualified domain name (FQDN),
“tt]” represents the time-to-live of the DNS query, “type”
represents the resource record type, ‘““class” represents the
class of resource record and ‘“‘data” represents the resolved
IP address. Below we give a more in-depth description of
each kind of feature, and its typical use in the the literature
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TABLE 2. Side information features.

Feature Description Reference Retained
rrlength Resource record length [32] v
country Country name that the domain maps to [11], [12], [18], [34] v
ttl Time-to-live of the DNS query [32], [34] v
n_ip Number of distinct IP addresses the domain maps to [11], [12], [17], [18] v
qtype Type of DNS packet requested [32] v
rtype Record type of the DNS response [32] v
n_asn Number of distinct ASNs the domain maps to [33] v
subnet Do all IPs belong to same subnet [11], [12] v
n_ countries Number of distinct countries the domain maps to [11], [12], [17], [18], [35] v
timestamp Features derived from timestamp of the DNS query [17], [18], [30] X
opcode Kind of DNS query [32] X
AA Authoritative answer [32] X
QDCOUNT Number of entries in question section [32] X
ANCOUNT Number of resource records in answer section [32] X
NSCOUNT Number of name servers in authoritative section (32] X
ARCOUNT Number of resource records in additional record section  [32] X
RCODE Response code (32] X
rDNS Reverse DNS query results [11], [12], [17] X
TTL statistics Mean, standard deviation etc. of time-to-live [11], [12], [17], [18] X
n_ domains Number of distinct domains associated with the IP [11], [12], [17], [18] X
n_ queries Number of queries for the domain and (domain, IP) pair [18§] X
WHOIS features Registrar, domain creation/expiration date etc. [10]-]12], [34] X

TABLE 3. TTL distribution (in seconds) for benign and DGA domains.

Type Mean TTL SD TTL  Median TTL

Benign 109,447 1,421,829 3,600
DCA 29,255 4,701,205 900

[{'name':'junebugweddings.com., "',

'ttl': 300,
'type': 1,
'class': 1,
'data': '104.27.191.148'},
{'name': 'junebugweddings.com.,',
'ttl': 300,
'type': 1,
'class': 1,
'data': '104.27.190.148'}]

FIGURE 1. An example DNS resource record.

on DGA detection. Figure 2 shows a comparison of density
plots for some of the side information features extracted from
benign and DGA domain names, illustrating their predictive
power. The different side information features are as follows:

« rrlength: This feature measures the length of the RData
field, which is extracted directly from the DNS response
resource record. The RData in a DNS response encom-
passes a list of resolved IP addresses, the time-to-live
value of the query and the type of resource record.
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« country: This feature refers to the geographic location

that the resolved IP address maps to. If the DNS resource
record contains multiple IP addresses, the country for
each of the IP addresses is first identified. If all of
the IP addresses belong to the same country, then this
feature takes up that name. On the other hand, if any of
the IP addresses map to a different location, then the
value of this feature would be “multi-valued”. Alter-
natively, if the location could not be identified, then
this feature takes the value “‘unknown”. This feature is
then converted to categorical values that range between
0 and 185, which means that the domains in our dataset
map to 184 different countries plus the values “multi-
valued” and “‘unknown”.

ttl: This feature represents the time-to-live value of
the DNS query, which is the time interval that the
resource record can be cached by the DNS resolver, and
is directly obtained from the DNS response resource
record. Table 3 compares the distribution of TTL values
(in seconds), in terms of mean, standard deviation and
median, for benign and DGA domains in our dataset
(see section VI-A). It can be seen that DGA domains
are in general far more short-lived than benign domains.
For better visibility in figure 2, the density plot for TTL
values are shown in hours instead of seconds.

n_ip: This feature indicates the number of distinct IP
addresses that are returned for the DNS domain lookup.
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TABLE 4. Lexical features used by B-RF.

Feature Description Reference Retained
domain__len Domain name length [4], [6], [11]-[14], [20], [27], [29] v
sld_len Second level domain length [13], [14], [20] v
tld_len Top level domain length [13], [14], [20] 4
uni_ domain Domain Unique Characters length [13], [14], [20] v
uni_sld SLD Unique Characters length [13], [14], [20] v
uni tld TLD Unique Characters length [13], [14], [20] v
flag dga Has malicious TLD [13], [14], [20], [27] 4
tld_ hash TLD Hash [6], [13], [14], [20] v
flag dig Starts with Digit [6], [13], [14], [20] 4
sym Symbol ratio 6], [13], [14], [20] v
hex Hex ratio [6], [13], [14], [20] v
dig Digit Ratio [4], [11]-[14], [17], [20], [29] v
vow Vowel Ratio [4], [6], [13], [14], [20], [29] v
con Consonant Ratio [13], [14], [20] v
rep_ char ratio Ratio of Repeated Characters [4], [14], [20] v
cons_con_ratio Ratio of Consecutive Consonants [4], [14], [20], [29] v
cons_dig_ratio Ratio of Consecutive Digits [4], [14], [20] v
tokens_ sld Number of tokens in SLD [13], [14], [20], [27] v
digits_ sld Number of digits in SLD [13], [14], [20], [27] 4
ent Entropy of characters in SLD [4], 6], [13], [14], [20], [29] v
gni Gini Index of characters in SLD [6], [13], [14], [20] v
cer Classification error of characters in SLD [6], [13], [14], [20] v
2gram__med 2-Gram Median of characters in SLD [6], [13], [14], [20] v
3gram_med 3-Gram Median of characters in SLD [6], [13], [14], [20] 4
2gram_ cmed 2-Gram Circle Median of characters in SLD  [13], [14], [20] 4
3gram_ cmed 3-Gram Circle Median of characters in SLD  [13], [14], [20] v

It is manipulated directly by accessing the list of IPs con-
tained in the RData field of the DNS response resource
record.

qtype: This feature represents the DNS query type that
can be extracted from the question section of the DNS
query. Figure 2 shows the different values for this fea-
tures in our dataset.

rtype: This feature represents the resource record type
that can be extracted directly from the RData field in
the DNS response resource record. Figure 2 shows the
different values for this features in our dataset.

n_asn: This feature indicates the number of distinct
autonomous system numbers that the IP addresses map
to. The ASN for a given IP address is obtained by using
Python Geolite2 Maxmind API.!

subnet: This feature is a boolean value that represents if
all the IP addresses belong to the same subnet. A value
of O indicates that one or more of the IP addresses,
returned in the DNS response, belong to a different
subnet and value of 1 indicates that all the IP addresses
map to the same subnet.

1 https://geoip2.readthedocs.io/en/latest/
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« n_countries: This feature represents the distinct number

of countries that the resolved IP addresses map to. This
feature has a very similar distribution when compared to
the “n_asn” feature, which can be observed in figure 2.
timestamp: The timestamp denotes the time at which
the DNS query was issued by a host. This feature in itself
may not be useful in detecting DGAs. Some of the past
studies record all of the timestamps at which a particular
domain name was queried and construct time-series data
to analyze the periodicity at which the benign and DGA
domains are queried [17], [30], whereas [18] computes
the lifespan of a domain by subtracting the first and last
seen timestamps of the domain name. Such approaches
require access to past DNS traffic and hence are regarded
as “‘retrospective”. Since we only focus on performing
inline DGA detection in our work, we do not use the
timestamp feature to perform DGA classification.

opcode: This feature represents the kind of query such
as standard query, inverse query, request for server status
etc. In our dataset, all the domains being queried belong
to standard query type and hence using this feature does
not contribute in the prediction of DGA domain names.
aa: This feature is a boolean flag which represents if the
responding name server is an authority for the domain
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FIGURE 2. Comparison of values for side information features extracted from benign and DGA domains.

name being queried. The AA flag for all DNS responses
in our dataset has the same value “True’ and hence we
do not leverage the AA flag information while training
our DGA classifiers.

gqdcount, ancount, nscount, arcount: At this time, our
DNS traffic collector do not capture this information &
hence we do not use these features to train our model.
However, it can be easily obtained from the DNS query
and resource records.
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« rcode: Since our dataset comprises of resolved domain

names only, the rcode remains “0” for all the samples
and hence we discard this information.

TTL statistics: This refers to a collection of features
such as standard deviation, mean, minimum, maximum
etc. of all time-to-live values extracted from the DNS
response. While these features are relevant in a retro-
spective approach that investigates a domain based on
all DNS resource records related to it say during the
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past 24 hours, it is not meaningful for fast inline DGA
detection. Indeed, since all of the TTL values in a single
response record have constant values, it would not add
value to include these statistics as features.
n_domains: This feature represents the number of dis-
tinct domain names that are mapped to a given IP
address. In order to use this feature, one needs to main-
tain a bipartite graph that depicts the mapping for each
(domain, IP) pair. Again, this method of performing
graph inference is computationally intensive and does
not contribute towards inline detection of DGA domains.
Therefore we refrain from using this side information
feature while training our DGA classifiers.

n_queries: Similar to “timestamp” and “‘n_domains”,
this feature also requires storing and fetching of informa-
tion from past DNS traffic and hence n_queries cannot
be used for inline detection of DGAs.

WHOIS features: Extracting WHOIS features such as
registrar, domain creation/expiration date etc. involves
very expensive WHOIS queries. This affects the capa-
bility of the classifier to perform inline DGA detection
on-the-go and hence we do not use any feature that
require WHOIS queries.

IV. LEXICAL FEATURES

In this section we list the 26 human engineered lexical fea-
tures that are extracted manually from the domain name
string in order to train the RF classifier for DGA detection.
Table 4 shows a list of the lexical features used in B-RF and
details on how the feature values are calculated are given
below:

domain_len: This feature represents the length of the
domain name, which is the number of characters in the
SLD.TLD pair. For example, we refer “google.com” as
the domain name, where “google” indicates the SLD
(second level domain) and ““com” indicates the TLD
(top level domain). The value of the feature domain_len
for the domain name “‘google.com” is 10.

sld_len: This feature represents the number of charac-
ters in the second level domain.

tld_len: This feature represents the number of characters
in the top level domain.

uni_domain: This feature represents the number of
unique characters in the domain name, after removing
special characters such as ‘’ & ‘-’ from the domain
name.

uni_sld: This feature represents the number of unique
characters in the second level domain, after removing
special characters such as ° & ‘-’ from the SLD.
uni_tld: This feature represents the number of unique
characters in the top level domain, after removing spe-
cial characters such as ‘. & -’ from the TLD.
flag_dga: This feature represents a boolean value
(0 or 1) that indicates if the domain name contains any of
the following TLDs, which are known to be frequently
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associated with malicious activities?: “study”, “party”’,
“Click”’ 4‘t0p’77 “gdn”7 ‘Kgq”’ 4‘asia?’, “Cricket”,
“biZ” ‘ch79

, .

« tld_hash: This feature represents the hash value of top

level domain.

o flag dig: This feature represents a boolean value

that indicates if the domain name starts with a
digit/number (0-9).

o sym: This feature represents the ratio of number of

special characters in the SLD to the total number of
characters in SLD (sld_len).

« hex: This feature represents the ratio of number of hex-

adecimal characters (0-9 & a-f) in the SLD to the total
number of characters in the SLD.

« dig: This feature represents the ratio of number of digits

(0-9) in the SLD to the total number of characters in the
SLD.

« vow: This feature represents the ratio of number of

vowels (‘a’, ‘e’, ‘i’, ‘0’, ‘u’) in the SLD to the total
number of characters in the SLD.

« con: This feature represents the ratio of number of con-

sonants in the SLD to the total number of characters in
the SLD.

o rep_char_ratio: This feature represents the ratio of

number of characters that occurs more than once in the
SLD to the total number of unique characters in the SLD.
cons_con_ratio: This feature represents the ratio of
consecutive consonants (such as “ct”, “fk”, “ns” etc.)
to the length of the domain (domain_len).
cons_dig_ratio: This feature represents the ratio of con-
secutive digits (such as “92”, “24”, ““75” etc.) to the
length of the domain (domain_len).

tokens_sld: This feature represents the number of
tokens in the SLD, where a token indicates sequence of
characters separated by *-’.

digits_sld: This feature represents the total number of
digits in the SLD.

ent: This feature represents the normalized entropy
value of the characters in SLD and is calculated using
the formula:

iz pi - logy(pi)
log,(sld_len)

ent =

where n represents the number of unique characters in
the SLD and p; represents the proportion between the
frequency of the unique character ¢; in the SLD to the
total number of unique characters in the SLD.

gni: This feature represents the Gini value of the char-
acters in SLD and is calculated using the formula:

n
gni=1-— Zp?
i=1

where n represents the number of unique characters in
the SLD and p; represents the proportion between the

2https ://www.spamhaus.org/statistics/tlds/
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Lexical features (26)
DNS features (9)

Confidence score / |

Domain name

LSTM.MI

FIGURE 3. DGA detection using LSTM.MI + RF model.

probability of the ¥
domain to be DGA

. Benign (0) /

: BERE DGA (1)

TABLE 5. Performance evaluation of DGA classifiers using 5-fold cross-validation.

Performance metrics

Model Features AUC@ TPRQ
0.1%FPR 0.1%FPR
DNS 53.23% 16.21%
B-RF Lexical 89.78% 97.44%
DNS + Lexical 98.19% 99.42%
LSTM.MI Domain name string 94.47% 98.80%
Domain name string + DNS 96.51% 99.89%
LSTM.MI + B-RF 1y in name string + DNS + Lexical  99.17% 99.91%

frequency of the unique character c; in the SLD to the
total number of unique characters in the SLD.

« cer: This feature represents the classification of error of
characters in SLD, which is computed using the formula:

cer=1— max p;

i=1,...,n
where p; represents the proportion between the fre-
quency of the unique character ¢; in the SLD to the total
number of unique characters in the SLD.

o 2gram_med: This feature represents the median of
2-gram frequencies in SLD.

o 3gram_med: This feature represents the median of
3-gram frequencies in SLD.

o 2gram_cmed: In order to compute this feature, the SLD
of the domain is concatenated again with the SLD.
(i.e) For example, if “google” is the SLD, a string such
as ‘““googlegoogle” is formed. The 2gram_med is then
calculated on this newly formed string “googlegoogle”
to obtain the value of this feature.

o 3gram_cmed: In order to compute this feature, the SLD
of the domain is concatenated again with the SLD.
(i.e) For example, if “yahoo™ is the SLD, a string such
as ‘“‘yahooyahoo” is formed. The 3gram_med is then
calculated on this newly formed string ‘“yahooyahoo”
to obtain the value of this feature.

V. DGA CLASSIFIERS

We consider three different DGA classifiers in this work,
which we detail below. We chose one model representative
of the featureful approach (B-RF), one deep learning model
which represents the featureless approach (LSTM.MI) and
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finally a hybrid model which combines both approaches
(LSTM.MIH-B-RF).

A. B-RF

B-RF is a DGA classifier based on random forests. It consists
of 100 trees and each tree is trained using a subset of the
feature space to avoid overfitting. Entropy is used as the
criterion to decide the split attribute while growing the trees
in the random forest. There are 3 variants of B-RF classifier,
each trained either on lexical features (as the RF classifier
in [14]) or DNS features, or a combination of both lexical
and DNS features. The performance of these variants of the
B-REF classifier is listed in the first 3 rows of Table 5.

B. LSTM.MI

Woodbridge et al. [5] were the first to propose deep learning
for DGA domain name detection. Their DGA classifier is a
neural network consisting of an embedding layer, an LSTM
layer, and a single node output layer with sigmoid activa-
tion. In this paper, we use the LSTM.MI model that was
proposed recently by Tran et al. [8]. Its architecture is very
similar to that of Woodbridge et al. [5]; the main distinction
is that the LSTM.MI model is trained with a cost-sensitive
learning algorithm that takes class imbalances into account.
This allows the LSTM.MI approach to achieve slightly better
results than the original LSTM approach (see [8], [14]). The
4th row in Table 5 shows the performance of the LSTM.MI
classifier. It operates directly on the domain name string,
instead of on lexical features extracted from it. Characters in
the domain name are converted to lower case and are encoded
with categorical values, ranging from 1 to 38, to represent *-’,
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TABLE 6. Some examples of benign vs DGA domain names.

Benign domains (labeled 0)

DGA domains (labeled 1)

7ftd.com

sgtobel.ch
intimvoronezh.net
essc-tabriz.com
konsaltbezopasnost.ru

vocom.eu
leadhelp.net

1b6a95e6b5d4.com
korpncyeajsgeatkopogs.info
kndydusmrlrofrcmfuayfmswrkytl.biz

3

—’, digits from 0 to 9 & characters from ‘a’ to ‘z’. All the
domains in our data are fixed to a length of 77 characters,
which is the length of the longest domain name in our dataset.
Domains that are shorter than 77 characters are padded with
zeroes in the left.

C. LSTM.MI+B-RF

The hybrid LSTM.MI4B-RF classifier combines both
LSTM.MI and B-RF architectures by training a B-RF clas-
sifier with features listed in tables 2 and 4, in addition to
the confidence score obtained from the LSTM.MI model
for that domain name. The confidence score ranges between
0 and 1, signifying the probability of the domain being a
DGA as predicted by the LSTM.MI classifier. The above
workflow of DGA detection using LSTM.MI+B-RF setup is
depicted in figure 3. The last two rows in Table 5 represent
the performance of this DGA classifier.

VI. EXPERIMENTAL RESULTS

We trained the B-RF classifiers in sklearn [37], using the
default settings for all hyperparameters not specified other-
wise in section V-A. For the LSTM.MI classifier, we used
the Keras [38] code® made available by Tran ez al. [8] with-
out alteration. This code was written specifically for DGA
detection, and we found that it worked well on our dataset,
without the need to change the hyperparameter values. The
experiments were conducted on a workstation with a GeForce
GTX Titan Xp, 3840 cores, and 12GB RAM.

A. DATASET

In the first experiment, we train and evaluate the DGA
classifiers from section V on a dataset with 600,000 DGAs
(positive) and 600,000 benign (negative) samples.

Table 6 shows some examples of DGA & benign domains.
The training data points originate from a real-time stream
of passive DNS data, consisting of roughly 10-12 billion
DNS queries per day collected from subscribers including
ISPs (Internet Service Providers), schools, and businesses.
From this traffic, the positive samples are collected by retain-
ing resolved domain names that are listed in DGArchive,*
a blacklist containing known DGA domains [1]. Dictionary
DGAs, which are human-readable DGA domains belonging
to malware families such as suppobox, gozi, matsnu and
nymaim?2 are discarded from the training set. This is because

3 https://github.com/bkcs-hust/Istm-mi
4https://dgarchive.caad.ﬂ(ie.fraunhofer.de/
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these DGAs look more like benign domains and confuse the
DGA classifiers [26]. Since this work is primarily aimed
at measuring the impact of adversarial instances such as
CharBot, we exclude samples from Dictionary DGAs.

The benign samples are collected based on a predefined set
of heuristics as listed below:

o Domain name should have valid DNS characters only
(digits, letters, dot and hyphen)
« Domain has to be resolved at least once for every day
between June 01, 2019 and July 31, 2019.
« Domain name should have a valid public suffix
o Characters in the domain name are not all digits (after
removing ‘.’ and ‘-*)
o« Domain should have at most four labels (Labels are
sequence of characters separated by a dot)
o Length of the domain name is at most 255 characters
« Longest label is between 7 and 64 characters
« Longest label is more than twice the length of the TLD
o Longest label is more than 70% of the combined length
of all labels
o Excludes IDN (International Distribution Network)
domains (such as domains starting with xn—-)
o Domain must not exist in DGArchive
We note that it is common in earlier research on DGA clas-
sification to construct a training dataset with negative exam-
ples from whitelists such as Alexa [5], [8], [39]. Alexa’ ranks
websites based on their popularity in terms of number of page
views and number of unique visitors. For example, according
to Alexa, the three highest ranked domain names in terms of
popularity on 2020-07-08 are google.com, youtube.com, and
tmall.com. In our previous research we observed that DGA
classifiers trained on a dataset with domains pulled from
whitelists and blacklists tend to do well when evaluated on
a similar test dataset, but don’t fare well at all when deployed
on real traffic [14]. We found that a whitelist such as Alexa,
which consists of domains that are collected at the browser
level, is not sufficiently representative of all non-malicious
domain names that appear in real traffic, causing DGA clas-
sifiers trained on Alexa to yield many false positives. This is
the main reason why in the current study we opt to use benign
samples collected from real traffic with a predefined set of
heuristics instead.
Both the DGA and benign domains in the dataset are col-
lected from real-time passive DNS traffic that was observed

5 https://www.alexa.com/topsites/category/Computers/Internet/
Domain_Names
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TABLE 7. Real traffic analysis of DGA classifiers on 66,440,662 (~66M) domains.

Model

LSTM.MI

B-RF LSTM.MI+B-RF

Features

Domain name

Domain name +

DNS + Lexical DNS + Lexical

Out of the ~66M domains in real-traffic,
number of domains flagged as DGA
by the classifier

3,400,017

1,877,784 2,170,056

Out of the domains flagged as DGA
by the classifier,
number of domains found in DGArchive

1,151,750

1,149,689 1,150,116

Out of the domains flagged as DGA
by the classifier,
number of domains found in Alexa

1,626,232

1,717,638 1,420,319

in February 2019. The domains in the dataset are then prepro-
cessed by following the two steps mentioned below:

« Retain only the SLD & TLD of the domain name
and discard any 3LD (third level domain) or any other
label if present. For example, for the domain name
“www.google.com”, the 3LD which is “www” is
removed and the SLD.TLD which “google.com” is
retained.

o All the alphabetical characters in the domain name are
converted to its corresponding lower case characters.

B. PERFORMANCE EVALUATION OF DGA CLASSIFIERS
The true positive rate (TPR) and false positive rate (FPR) for
the DGA classifiers are calculated as follows:

TP FP
=—— FPR=—
TP + FN FP + TN

where TP, TN, FP & FN represent the number of true
positives, true negatives, false positives and false negatives
respectively. The predictive performance of the classifiers is
evaluated using 5-fold cross-validation for metrics such as
TPR and Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC) as tabulated in Table 5. In cybersecurity
applications, it is important to achieve high TPR for a very
low FPR. This is because it is undesirable to block a large
number of benign domains in real-world traffic as this inter-
feres with users’ legitimate business. Hence all the reported
metrics are thresholded at a very low FPR of 0.1%. We also
obtain the ROC curve by plotting the TPR against the FPR
of the classifiers and the AUC is subsequently obtained by
taking the integral of the ROC curve. The AUC is a measure
of how well the trained classifier can distinguish between the
classes. Specifically, it can be interpreted as the probability
that the classifier will output a higher score for a randomly
chosen DGA domain than it would for a randomly chosen
benign domain. An ideal classifier has an AUC score of 1,
indicating it will always rank DGA domains higher than
benign domains. This makes it possible to use the classifier to
perfectly separate the classes via an appropriate threshold on
its output scores. A classifier that just randomly guesses the
outcome achieves an AUC of 0.5 and a classifier with AUC

TPR
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0 has basically inverted all predictions, i.e. samples labeled as
0 are predicted as 1 by the classifier and vice versa. In addition
to the AUC score, the AUC at a fixed FPR of 0.1% is also
reported. This thresholded AUC represents the integral of the
ROC curve for a FPR of 0 to 0.001.

There are several interesting observations to be made based
on Table 5. First, looking at the AUC@1%FPR column,
one can see that the predictive performance for inline DGA
detection based on DNS features alone does not perform
well: the B-RF/DNS based model achieves an AUC@ 1%FPR
of only 53.23%. Second, when it comes to DGA detec-
tion based on the domain string alone, the deep learning
approach (LSTM.MI) clearly outperforms the random for-
est approach (B-RF/Lexical) at 94.47% vs. 89.78%. This is
fully in line with previous findings [8], [28]. Third, the most
interesting and novel result from Table 5 is that the DGA
classifiers, when trained with both lexical and side informa-
tion features, have the best overall performance in terms of
AUC score and TPR, namely 99.17% for the architecture
from figure 3.

C. REAL TRAFFIC ANALYSIS
Next, we apply the best performing classifiers in Table 5 on
one day of real traffic DNS traffic to evaluate their predictive
performance in real-time. We collected a set of resolved
domains that were observed on March 26, 2019 to perform
this analysis. As part of pre-processing, the fully qualified
domain names are validated against the heuristics mentioned
in section VI-A, in order to maintain consistency with the
training dataset. The domains that satisfy the heuristics are
then retained in this experiment after discarding the third level
domain (3LD/subdomain) from the domain name, if present.
This resulted in a set consisting of 66,440,681 domains
(contains duplicate domains with SLD.TLD pairs), out of
which 1,159,662 domains were found in DGArchive and
14,653,217 domains were found in Alexa. There is also an
overlap of 1,124,467 domains between the Alexa whitelist
and DGArchive blacklist.

Table 7 shows a comparison of the number of domains
that were flagged as DGA by the LSTM.MI, B-RF and
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TABLE 8. Detection rate of CharBot domains as DGA.

Classifier Features DGA (CharBot) detection rate
DNS 1.70% + 0.24%
B-RF Lexical 3.80% + 0.0%
Lexical + DNS 20.06 % + 0.56 %
LSTM.MI Domain name string 8.00% + 0.0%

LSTM.MI+4B-RF

Domain name string + DNS
Domain name string 4+ Lexical + DNS

14.98% + 0.63%
15.76 % + 0.53%

LSTM.MI+B-RF classifier. The B-RF model (in Table 7)
has the highest true positive rate among the 3 models being
compared. Out of the 1.87M domains flagged as DGA by
the classifier, approximately 61% were found in DGArchive.
Although the LSTM.MI classifier catches the highest number
of DGAs in real-traffic, the true positive rate is 34% which is
27% lower than the B-RF classifier. However, as seen in the
last row of Table 7, the B-RF also has the highest number
of false positives. This could be due to the fact that there
is a large number of overlapping domains between Alexa
and DGArchive as mentioned earlier in this section. A good
workaround to reduce the number of false positives during
the deployment is to check the flagged domains against Alexa
before making the final decision.

D. DEFENSE AGAINST ADVERSARIAL ML

The use of side information is important in the context of
adversarial ML because side information is a lot harder
to manipulate than the domain name string itself [10].
In order to test this, we generated 1,000 DGA domains with
CharBot [20], a simple DGA algorithm that was written
specifically to evade existing DGA classifiers.

CharBot is a character-based DGA (hence the name) that
generates domain names by randomly modifying two char-
acters in well known benign domains from the Alexa top
domain names. Like dictionary DGAs, the CharBot DGA has
alist of strings embedded as part of the DGA code. In the case
of dictionary DGAs this list is a dictionary of words that are
combined in various ways to generate a domain name, while
in the case of CharBot the list contains benign domain names
that are perturbed slightly to generate a new domain name
for malicious purposes. In both cases, the generated domain
names exhibit properties that are very close to natural lan-
guage, which makes them extremely difficult to distinguish
from benign domain names.

Since, to the best of our knowledge, CharBot has not been
deployed yet in the wild, we cannot collect side informa-
tion for CharBot domains from real traffic. Instead, we pair
up the CharBot domains with the DNS features obtained
from 1,000 randomly sampled DGA domains in real traffic.
To avoid any bias in the selection of DNS features for Char-
Bot domains, we perform the random sampling for 5 trials and
create 5 sets of CharBot DNS features. The lexical features
extracted for CharBot are appended with the DNS features,
which can then be exposed to DGA classifiers for detection
of malicious domains. The idea here is to test if the DGA
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classifiers trained on side information features are successful
in detecting CharBot domains.

Table 8 shows the CharBot detection rate, which is the
average proportion of CharBot domains that were flagged as
DGA by the classifiers over the 5 randomized trials. Higher
values of CharBot detection rate indicate that the classifier
is more robust against new DGAs or adversarial attacks.
As expected, the B-RF model trained on both lexical and
side information features detects 20% of CharBot domains
as DGA/malicious, which is 12% more than the LSTM.MI
model. This clearly indicates that the use of side information
features to train the DGA classifier makes it more robust
against adversarial samples like CharBot domains, when
compared to classifiers that rely only on the domain name
for DGA detection.

While the inclusion of side information features is clearly
beneficial, still ~ 80% of CharBot domains remain unde-
tected. This means that effective inline detection of CharBot
domains remains a largely unsolved problem for which exist-
ing techniques from the literature are not sufficient.

VIi. CONCLUSION

In this paper, we evaluated state-of-the-art classifiers for
inline DGA detection using side information features that
are easily obtained from DNS query and response. Results
from tables 5 and 8 show that using side information in
addition to the domain name to train classifiers not only
improves the predictive performance, but also makes it more
robust against adversaries like CharBot, when compared to
the classifiers that use just the domain name to detect DGAs.
Additionally, the side information features in our approach
are carefully chosen to perform lightweight inline detection
of DGA domains, and do not rely on external sources such as
WHOIS for feature extraction.
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