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ABSTRACT Nowadays, we are surrounded by devices collecting and transmitting private information.
Currently, the two main mathematical problems that guarantee security on the Internet are the Integer
Factorization Problem and the Discrete Logarithm Problem. However, Shor’s quantum algorithm can easily
solve both problems. Therefore, research into cryptographic algorithms that run in classical computers and
are resistant to quantum computers is extremely necessary. This area is known as post-quantum cryptography
and usually studies asymmetric cryptography. By means of asymptotic analysis, the purpose of this
paper is to provide an evaluation of security and its performance for the types of cryptographic systems
considered safe against quantum attacks in the second-round NIST Post-Quantum Standardization Process,
namely isogeny cryptosystems based on supersingular elliptic curves, error correction code-based encryption
system, and lattice-based ring learning with errors. We performed a security comparison of Key Agreements
protocols based on these three post-quantum cryptographic primitives and compared them with Discrete
Logarithm Problem and Integer Factorization Problem. The comparison of security and its performance is
presented by security level, the former by complexity analyses to achieve theoretical minimum key sizes,
and the latter by simulation to assess a practical performance comparison. In the complexity analysis, as we
increase the security level and then the size of the cryptographic keys increases, techniques based on isogeny
outperform all other post-quantum algorithms in relation to key sizes at practical security level. In the
performance comparison, the results show that the code-based protocol presents the best results among the
others.

INDEX TERMS Post-quantum cryptography, asymmetric cryptography, key agreement, complexity,
algorithms, asymptotic analysis.

I. INTRODUCTION
Recently, Google claimed having achieved Quantum
Supremacy [1], using a processor with programmable super-
conducting qubits to create quantum states on 53 qubits. This
raises an important concern in cryptography: are we safe in
face of what a Quantum Computer might do? Two algorithms
for quantum computers from the decade of 1990 have made
cryptologists rethink what kind of mathematical problems
could protect our communications. The Shor’s algorithm [2]
is capable of solving the Integer Factorization Problem (IFP)
and the Discrete Logarithm Problem (DLP) in polynomial
time, while the algorithm proposed byGrover [3] can increase

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

the speed in the search for cryptographic keys to the order of
√
n, where n is the dimension of the basis.
To mitigate this problem, over the years there have been

developed a series of new algorithms that claims to be resis-
tant against attacks done with quantum computers. Even
though such algorithms are designed to resist quantum com-
puters, they are running on classical computers. Modern
communications rely mostly on classical algorithms, which
tells us that it is needed to research for safer alternatives in
this emerging quantum-era. For these reasons, cryptographic
algorithms that run in a classical computer and resist quantum
attack are known as post-quantum cryptography, for more
information see [4].

In this paper, we use computational complexity and
performance measurements to analyze three post-quantum
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key agreements cryptosystems that appear as promising can-
didates to cope with information security challenges in the
near future: isogeny based on supersingular elliptic curves,
coding theory, and lattice-based ring learning with errors key
agreements protocol. From this analysis, we show security
levels based on the key used. In short, each cryptographic
algorithm is based on a hard mathematical problem know as
cryptographic primitives and each problem might be solved
by an algorithm with a certain complexity. Considering the
best-known algorithm to solve problems of primitives used in
post-quantum cryptography, we compute the key-length with
the same level of security used for the classical cryptographic
algorithms.

Suppose two devices need to agree on a secret
cryptographic keywithout letting a potential attacker discover
it. One way to do this is to previously set a key to use
and secretly store it. In a scenario with few communicators,
it might not seem a bad idea, but for a scenario like the whole
internet, it is no longer possible to store a secret key for
every pair of communicators. This is where key agreement
protocols have their utility. There is no need to store secret
keys, instead one can have a public key that can, together
with a specific algorithm agree at a secret key in real time,
without alerting the attacker.

We provide an analysis of security and its performance
for the cryptographic systems that are candidates in the
Post-Quantum Standardization Process held by National
Institute for Standards and Technology (NIST). The com-
puted key lengths are compared with NIST’s recommenda-
tion of key sizes for the given security level.We also provide a
performance analysis for the referred cryptographic systems.

In the next section, we present a brief overview of the
non-quantum-resistant cryptographic primitives used in key
agreement protocols and present algorithm complexity for
the best-known attacks. The third section of the paper is
dedicated to a discussion of quantum-resistant primitives,
presenting an overview of the protocols, their security and
the complexity for the best know attacks to such mathemat-
ical problems. In the fourth section, it is traced a compar-
ison between all primitives shown before, where we focus
on the evaluation of the key-length generated for each of
the practical security levels recommended by the NIST and
the performance of the referred algorithms. The concluding
section presents our conclusions and some directions for
further research.

II. NON-QUANTUM-RESISTANT CRYPTOGRAPHIC
PRIMITIVES
To base our comparisons, we first present complexity
analyses for the most used classical algorithms, which
use primitives developed for classical computers,
i.e., non-quantum-resistant primitives. The complexity
analysis for non-quantum-resistant primitives were presented
previously in [5].

In particular, we have two primitives being widely used
in classical-world algorithms. The first is the Discrete

FIGURE 1. Picture illustrating the DH.

Logarithm Problem (DLP) introduced in the key-agreement
protocol known as Diffie-Hellman (DH) [6]. The second
is the Integer Factorization Problem (IFP) that introduced
the algorithm known as RSA to create digital signatures
[7]. Several other cryptographic algorithms use these
primitives [8].

1) FOUNDATIONS
For two devices A and B agree on a secret key using the
Diffie-Hellman protocol, they need to choose a large prime
number p and a number g, such that 1 < g < p and g has a
large order. These are parameters and are public. Now, device
A chooses a secret integer r , computes vA = gr mod p,
and sends vA to device B, which simultaneously does and
analogous process, choosing a secret integer s, computing
vB = gs mod p and sending vB to device A. Hence, device
A can use its secret and vB to compute Sk ≡ (gs)r ≡ gsr

mod p, and device B, using its secret and vA, computes
Sk ≡ (gr )s ≡ gsr mod p. Therefore, both have a secret
key Sk that can be used to secure their communication.
Figure 1 describeDHwhere the variables in green are param-
eters, in blue are public, and in red are private. Note that these
key agreements consider an attack model whose attacker is
passive.

One variety of DH is the Elliptic Curve based
Diffie–Hellman (ECDH), that instead of using a multiplica-
tive group of integers modulo a prime p, uses an additive
group of points in an elliptic curve E defined over a general
Galois field F whose characteristic is a prime power instead
of only a prime. In this scenario, devices A and B agree
publicly on E and on a base point P ∈ E/F. Devices A and B
generate random secret numbers r, s ∈ {1, . . . , n − 1},
respectively, where n is the order of the subgroup generated
by P. Afterwards, device A computes QA = rP and sends
it to device B, that at the same time sends to device A the
result of QB = sP. Both are now able to compute the secret
key QAB = (r + s)P = (s + r)P and use it as their security
parameter. Figure 2 describes the ECDH. The variables in
green are parameters, in blue are public, and in red are private.

These protocols are used in most of the communication
systems. The RSA is still widely used in the internet, for
instance, we can find the RSA in 99.7% of the digital cer-
tificates for Hypertext Transfer Protocol Secure (HTTPS) in
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FIGURE 2. Picture illustrating the ECDH.

the Mediterranean [9]. The other 0.3% use a DLP based on
elliptic curve cryptography, which was introduced simultane-
ously by Miller [10] and Koblitz [11]. This data confirms our
dependency onto those classical primitives to safeguard our
communication systems. In the following section, we analyze
the complexity of attacking algorithms to those primitives in
both classical and quantum computers.

2) COMPLEXITY
To solve the IFP in a classical computer, the best-known
algorithm is the General Number Field Sieve (GNFS), which
has a sub-exponential complexity, given by

exp

(((
64
9

)1/3

+ O(1)

)
(ln n)1/3(ln ln n)2/3

)
, (1)

where n is the integer number being factored into primes.
In quantum computers, the Shor’s algorithm can

compute [12] in
(log n)2+e, (2)

where e is the exponent of RSA. We can also use the GNFS
to compute the factorization of p − 1, which can be used to
solve the DLP. In this case, e is the prime of the DH. However,
Pollard’s Rho algorithm for logarithms is the best-known
algorithm that can be used to solve the DLP and Elliptic
Curve DLP (ECDLP) in a classical computer. Its complexity
is exponential and given by√

πo
2
, (3)

where o is the order of the group.
Proos and Zalk proposed a quantum algorithm [13] that can

solve the ECDLP in

n3, (4)

where n is the input length in bits.

III. QUANTUM-RESISTANT CRYPTOGRAPHIC PRIMITIVES
This section presents the post-quantum algorithms for
key agreement currently in the NIST Post-Quantum
Standardization Process.

A. SUPERSINGULAR ISOGENY
The first proposal of using the search for isogenies between
ordinary elliptic curves as a primitive was held by Rostovtsev

and Stolbunov in 2006 [14]. They proposed a method of
public-key construction. In 2011, Jao and Feo proposed a
Diffie-Hellman protocol based on isogenies between super-
singular elliptic curves (SIDH) [15]. Téllez and Borges [16]
trace a security and performance comparison for this kind of
cryptosystems.

The security of SIDH is based on the problem of
finding isogenies between supersingular elliptic curves (SSI).
Galbraith and Stolbunov [17] show that this problem is said
to be hard and requires exponential time to be solved.

1) FOUNDATIONS
Let E(F) be an elliptic curve in the Weirstraßform

E(F) : y2 + a1xy+ a3y = x3 + a2x2 + a4x + a6, (5)

with all coefficients being elements of F. If

b2 = a21 + 4a2
b4 = 2a4 + a1a3
b6 = a23 + 4a6
b8 = a21a6 + 4a2a6 − a1a3a4 + a2a23 − a

2
4

c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6,

then the discriminant of E(F) is defined by 1 = −b22b8 −
8b34 − 27b26 + 9b2b4b6 and the j-invariant of E(F) as

j(E) = c34/1. (6)

For fields with characteristic bigger than 3,

j(E) = 1728
c34

c34 − c
2
6

.

An isogeny is a rational map φ : EA→ EB between elliptic
curves such that φ(OEA ) = OEB , where OEA and OEB are
points at infinity, and φ is not trivial, i.e., there exists P ∈ EA
such that φ(P) 6= OEB .

The Supersingular Isogeny Problem consists of given a
finite field F and two supersingular elliptic curves EA and
EB defined over F such that |EA| = |EB|, compute an
isogeny φ : EA→ EB.
To devices A and B agree on a secret cryptographic key,

both start with a public supersingular elliptic curve and after
walking distinct paths onto the isogeny graph, end up at the
same isogenous curve.

Small distinct primes lA and lB are fixed together with
integers eA and eB, such that we can choose a number f that
satisfies p = leAA l

eB
B f ± 1 is a prime. Fixing a supersingular

curve E over F, devices A and B are now able to proceed.
First, devices A and B pick bases {PA,QA} of E[l

eA
A ] and

{PB,QB} of E[l
eB
B ]. Hence, device A picks random inte-

gers mA, nA ∈ Z/leAA Z, not both divisible by lA, and uses
φA : E → EA, where EA = E0/ 〈mAPA + nAQA〉, calculating
(PA,QA) = (φA(PB), φA(QB)). Device A then sendsPA,QA
and EA to device B.
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FIGURE 3. Picture illustrating the SIDH.

The other device acts analogously picking random integers
mB, nB ∈ Z/leBB Z, not both divisible by lB, and uses
φB : E → EB, where EB = E0/ 〈mBPB + nBQB〉, calculating
(PB,QB) = (φB(PA), φB(QA)). Device B then sendsPB,QB
and EB to device A.
Now device A computes

EAB = EB/ 〈mAφB(PA)+ nAφB(QA)〉

and k = j(EAB); while device B computes

EBA = EA/ 〈mBφA(PB)+ nBφA(QB)〉

and k = j(EBA). This process leads to

ker φAB = 〈mAPA + nAQA,mBPB + nBQB〉 = ker φBA,

and EAB ' EBA. This way they find the shared secret key
j(EAB) = j(EBA) computing the same j-invariant.
Figure 3 depicts the SIDH. The variables in green are

parameters, in blue are public, and in red are private.

2) COMPLEXITY
Isogeny for regular curves can be computed in feasible time.
The problem is to compute isogeny for supersingular elliptic
curves.

Galbraith and Stolbunov [17] presented the best-known
algorithm for classical computers to solve the isogeny prob-
lem [18]. Its classical-world supersingular isogeny (C-SSI)
has complexity given by

p1/4, (7)

where p is the characteristic of the field.
Similarly, Tani’s algorithm [19] is the best-known

quantum algorithm to solve the isogeny problem [20].
Its quantum-world supersingular isogeny (Q-SSI) has
complexity given by

p1/6. (8)

B. CODING
The first code-based cryptosystem scheme was the McEliece
cryptosystem (MEC) [21], which is based on the NP-hard
problem of decoding a general linear code, in fact, the general

decoding problem for linear codes as well as the general prob-
lem of finding weights of a linear code are both NP-complete,
as shown by Berlekamp et al. [22]). However, the MEC suf-
fers from some disadvantages such as data expansion and size
of the key. To circumvent the disadvantages of MEC, Mis-
oczki et al. [23] proposed in 2013 a variation of MEC called
MDPC-McEliece, based on Moderate Density Parity-Check
codes. Also in 2013, Gaborit et al. [24] proposed a variation
of MEC based on Low Rank Parity-Check codes.

The previous two schemes share the same security
weakness, i.e., their security does not reduce to a well-known
problem but to a specific problem. Thus, in this work, we will
follow the approach proposed in [25], which benefits the
interesting features of previous schemes and have a security
reduction to decoding random quasi-cyclic code.

In short, the security of the scheme proposed by
Deneuville et al. [25] comes from the Syndrome Decod-
ing Problem (SDP), proven NP-hard [22]. However,
the authors use quasi-cyclic codes, and the complexity of the
Quasi-Cyclic Syndrome Decoding (QCSD) Problem is still
unknown, although believed by the academic community to
be also NP-hard.

1) FOUNDATIONS
Let Fq be a finite field, with q = 2, and let ω(·) denote the
Hamming weight of the vector, i.e., the number of non-zero
coordinates of a vector. We define the set

Snw(F2) = {x ∈ Fn2 | ω(x) = w}

as set of words x ∈ Fn2 of weight w. Let V a n-dimensional
vector space over F2, for a positive integer n. The elements
of V can be regarded as row vectors of polynomials in the
ringR = F2[X ]/(Xn − 1). Given two vectors x, y ∈ V , their
product is defined as xy = c ∈ V with

ck =
∑

i+j≡k mod n

xiyj,

for k ∈ {0, 1, . . . , n − 1}. The scheme [25] uses cyclic
(circulant) matrices as in [26] and, given h ∈ V , rot(h)
corresponds to the circulant matrix with hX i mod Xn − 1
as its i-th column.
Given positive integers s, n, k , and a linear code C with

[sn, k], if for every c = (c1, . . . , cs) ∈ C, (c1X , . . . , csX ) ∈ C,
then C is said to be Quasi-Cyclic (QC) of order s. In addition,
if a QC code [sn, n] of order s admits a parity-check matrix
of the form

H =


In 0 · · · 0 A1
0 In A2

. . .
...

0 0 . . . In As−1

 ,
the QC code [sn, n] is said a systematic QC code.
Now, let n, k , w, and s ∈ N∗. The s-QCSD distribution

samples H
$
← F(sn−k)×sn

2 , the parity-check matrix of a QC

code of order s and x = (x1, . . . , xs)
$
← Fsn2 such that

ω(xi) = w, and produces (H ,HxT ) as output.
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FIGURE 4. Picture illustrating the CODH.

The (search) s-QCSD problem corresponds to find
x = (x1, . . . , xs) ∈ Fsn2 such that ω(xi) = w, for all i = 1 . . . s
and y = xHT .
The Cyclic Error Decoding (CED) problem corresponds

to an instance of the SDP on H = (rot(x)T , rot(yT )) and
is define as follows. Let x, y, r1, and r2 be random vec-
tors of length n and weight w = O(

√
n). Let e be a

random error vector of weight we = cw (where c is a
non-negative constant). Given (x, y) ∈ Snw(F2)× Snw(F2) and
ec ← x · r2 − y · r1 + e such that ω(r1) = ω(r2) = w,
the problem asks to recover (r1, r2).
Suppose devices A and B want to exchange a secret

for an insecure channel using the protocol proposed by
Deneuville et al. [25]. First, the protocol which uses a hash
function fw : {0, 1}∗→ Snw(F2).
Given a random vector h ∈ Fn2, device A constructs a

random syndrome s from its secret (x, y) ∈ Snw(F2)× Snw(F2)
by calculating.

s = x + h · y

and send s and h to device B, that constructs its own random
syndrome

sr = r1 + h · r2

from random (r1, r2) ∈ Snw(F2)×Snw(F2). It also constructs a
syndrome

sε = s · r2 + er + ε,

associated to r2, ε ∈ Snwε (F2) (shared secret) and er (obtained
from the secret r1, r2). Device B then, sends sr and sε to
device A, which receives sr and sε , and computes

ec = sε − y · sr = x · r2 − y · r1 + er + ε,

which is the CED problemwith e = er+ε. Device A resolves
the CED problem to recover (r1, r2) and the shared secret ε
removing er from ec.
Figure 4 describes the Code-Based Diffie–Hellman

(CODH). The variables in blue are public, and in red are
private.

2) COMPLEXITY
In the protocol described in Section III-B1, where w � n,
thus, all known attacks [25] reduce the complexity of the

classical Information Set Decoding (ISD) [27]. For the
quantum-world, it is enough to take the square root
of complexity for the classical case, corresponding to a
straightforward application of the Grover algorithm [3].
According to Téllez et al. [28], the best approach to the

ISD is a variation of the Stern’s algorithm developed by
Bernstein et al. [29]. Thus, according to previous researches
[30] the complexity of the classical-world complexity to solve
ISD (C-CODE) for a code of length n and w = O(

√
n)

corresponds to

20.05564n, (9)

where n corresponds to the code length. Therefore,
applying the Grover algorithm on classical-world complex-
ity, we obtain the quantum-world complexity to solve ISD
(Q-CODE), which is given by

20.02782n. (10)

C. RING LEARNING WITH ERRORS
Given a lattice L and its basis, the Shortest Vector Problem
(SVP) consists of finding the shortest non-zero vector in the
lattice. For many cryptographic applications, it is enough to
find a reasonably short vector. This can be achieved using an
approximation factor γ > 1. Now, the approximate SVPγ
consists of finding a non-zero vector v ∈ L with length at
most γ ·λ(L), where the length of the shortest non-zero vector
in L is λ(L) = minv∈L\{0} ||v||.
The Ring Learning with Errors (RLWE) problem is a

ring-version from the standard Learning with Errors (LWE)
problem defined by Regev [31]. The RLWE problem as well
as the LWE problem has become of great interest to cryp-
tography because of its worst-case to average-case reduction,
i.e., the RLWE problem that is an average-case problem
reduces to a worst-case approximate SVP.

1) FOUNDATIONS
The RLWE is defined over a ring R = Zq[x]/8(x) of
polynomials modulo a cyclotomic polynomial 8(x) with
coefficients in the field Zq of integers mod q where q is a
prime. The RLWE distribution As,χ over R× R is defined as

(a, b = s · a+ e mod q),

where s ∈ R, a ∈ R is sampled uniformly at random, e is
sampled fromχ , forχ being an error distribution overR.With
the RLWE distribution, we define two RLWE problems.

1) The Search-RLWE problem is defined by: for m
samples distributed according to As,χ . Recover the
secret s. s is called the secret.

2) The Decision-RLWE problem is defined by: given m
independent samples (ai, bi) ∈ R × R, where each
samples is distributed according to As,χ . Distinguish
between (ai, bi)← As,χ pairs and (ai, bi) pairs sampled
uniformly at random.

Lyubashevsky et al. [32] prove that the Decision-RLWE
problem is at least as hard as the search version. Contrarily,
Search-RLWE problem is at least as hard as SVPγ .
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The first Diffie-Hellman key exchange protocol based on
RLWE was proposed by Peikert [33]. However, in this work,
we will use a protocol similar to the protocol presented by
Singh and Chopra [34]. The protocol will be described below.

Suppose devices A and B want to exchange a secret
for an insecure channel using the protocol proposed by
Singh and Chopra [34]. Given the system’s public param-
eters q, n, and a(x). Device A generates at random, two
polynomials sA and eA with ‘‘small’’ coefficients sampled
from χ . It calculates

pA = sA · a+ eA

and sends pA to device B, while device B generates at
random, two other polynomials sB and eB with ‘‘small’’
coefficients sampled from χ, and computes

pB = sB · a+ eB.

It also generates a small e′B from the distribution χ and
computes

kB = sB · pA + e′B = sA · sB · a+ sB · eA + e′B.

Device B uses the RandomizedRound function on each
coefficient of kB and finds k̄B = RandomizedRound(kB).
The RandomizedRound(v) is defined for two separate

cases:
• q ≡ 1 mod 4. If v = 0, we draw a random bit and
depending on the bit, we map 0 to either itself or q− 1.
If v = (q− 1)/4, depending on the random bit, we map
(q− 1)/4 to either itself or (q+ 3)/4.

• q ≡ 3 mod 4. If v = 0, we draw a random bit and
depending on the bit, we map 0 to either itself or q− 1.
If v = (3q−1)/4, depending on the random bit, we map
(3q− 1)/4 to either itself or (3q+ 3)/4.

Then, device B calculates his key stream

skB = bk̄Be2,

where

bve2 =
⌊
2
q
· v
⌉

mod 2,

and a mask of k̄B
k ′B = 〈k̄B〉2,

where

〈v〉2 =
⌊
4
q
· v
⌋

mod 2.

Device B then sends pB and k ′B to device A. Finally, device
A computes

kA = pB · sA.

Thus, device A’s key stream is

skA = Rec(kA, k ′B).

The Rec function is defined by

Rec(w, b) =

{
0 if w ∈ Ib + E mod q
1 otherwise,

FIGURE 5. Picture illustrating the RLWEDH.

where E := [−q/8, q/8) ∩ Z, I0 := Zq ∩ [0, q/4) and
I1 := Zq ∩ [3q/4, q).
Note that kA ≈ kB and the Rec function is a reconciliation

function that is used to obtain a shared key from these values.
Figure 5 depicts the RLWE-Based Diffie–Hellman

(RLWEDH). The variables in green are parameters, in blue
are public, and in red are private.

2) COMPLEXITY
As we discussed earlier in this article, the RLWE problem
is reduced to lattice SVPγ . Thus, all attacks in SVPγ are
based on lattice basis reduction. Lattice basis reduction is
the name given to the technique that uses lattice basis and
reduces its vectors to sufficiently small vectors. Obviously,
lattice basis reduction is hard on lattices whereas the SVPγ
is hard too. For a large γ = 2�(n), where n is the lattice
dimension, the Lenstra-Lenstra-Lovász (LLL) algorithm [35]
can find a solution in polynomial time n. Until now, the Block
Korkine-Zolotarev (BKZ) algorithm is the best approach to
lattice reduction for small values of γ .
Since the best attacks on RLWE do not benefit from the

ring structure, in this work, we consider the RLWE as a
standard LWE problem. As argued in [36], we can discard
the attacks like BKW, because, the RLWE-based protocol
described in this work use a limited number of LWE samples
(m ≈ n). Because of the limited number of LWE samples,
we consider only two BKZ-based attacks. These two attacks
are called primal and dual attacks, see [36] for a description
of these attacks.

The BKZ requires an algorithm that solves de SVP in
smaller dimensions b < n, where n is the lattice dimension.
This algorithm is called ‘‘SVP Oracle’’. Until now, the best
SVP Oracle is a lattice sieve. Therefore, as in [36], we
consider BKZ with lattice sieve algorithms as SVP Oracle.

According to previous researches [37], [38], the
classical-world complexity (C-RLWE) is given by

8d · 20.292b+16.4, (11)

where d = m + n + 1 is the lattice dimension, b is the
block size used in BKZ and m, n are the parameters of the
RLWE-based protocol.
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TABLE 1. Comparison between the algorithms.

FIGURE 6. Comparison between brute force and minimum key length.

Similarly, previous researches [38], [39] show that the
best-known algorithm to solve RLWE in the quantum-world
(Q-RLWE) has complexity given by

8d · 20.265b+16.4. (12)

Observe, the classical and the quantum complexity
depends on the lattice dimension d and the size of block b
used in BKZ. The value of b is chosen to optimize the attack.
We refer to [36] and [38] for a better understanding of how
the choice of b value is made.

IV. COMPARISON BETWEEN PRIMITIVES
Table 1 shows a summary of the main points in the
key-agreement algorithms presented above for classical
and post-quantum cryptography in the NIST Post-Quantum
Standardization Process.

A. SECURITY COMPARISON
To compare the key length for the algorithms mentioned
above, we are matching the complexity of every algorithm
with the complexity for a brute force attack in a key of x bits.
Since we know parameters for brute force, we can find the
key length. This kind of comparison is inspired by [40] and
[41], which are, to the best of our knowledge, the firsts to do
this kind of analysis.

Table 2 contains the values found with the complexity
equations. The curves in Table 3 were interpolated from the

TABLE 2. Comparison between brute force and minimum key length.

TABLE 3. Adjusted curves from the data in Table 2.

data in Table 2. We use Sage’s find_fit1 function in the
Numerical Optimization module to find the curves that fit the
values in Table 2. With the values in Table 2 and the curves
in Table 3, we generate Figure 6, which describes a trade-off
between security and key length in bits.

1https://www.sagemath.org
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FIGURE 7. Performance Comparison.

In Figure 6, we see that DLP outperforms all other
algorithms in terms of key size. However, DLP is easily
solved by a quantum computer. The second best overall and
the best post-quantum algorithm is the SIDH, followed by
the RLWEDH. We can also see that while CODH is worse
than IFP at initial security levels, however, at the slightly
over 120-bit security level, classical CODH becomes better
than IFP and at the nearly 196-bit security level, quantum
CODH becomes better than IFP. This is because the key-size
growth for IFP grows exponentially with the security level,
while the CODH grows linearly. Also, another point in favor
of CODHwhen compared to IFP is that the former is resistant
to quantum computers while the latter is not. Unfortunately,
it was not possible to plot the curves for quantum attacks
on IFP and DLP because of the large key size required to
ensure security levels. In fact, consider the complexity for
the quantum DLP attack given by the equation, for the lowest
security level (80-bit), we would need a key of more than a
hundred million bits.

B. PERFORMANCE COMPARISON
In this section, we compare the performance of the
protocols described in this work. For that, all protocols
were implemented in SAGE language [42] for a 2.50GHz
Intel i7 − 6500U quad-core, 16GB RAM and Ubuntu
20.04 64-bit operating system. Since the command
EllipticCurveIsogeny is not efficient, we used the
code from Feo.2

2https://github.com/defeo/ss-isogeny-software

TABLE 4. Performance of key agreement protocols in milliseconds for
each level of security.

TABLE 5. Adjusted curves from the data in Table 4.

Using the parameter sizes found in Table 2, we ran a total
of 1 000 simulations for each protocol and each security level.
It is worth noting that, for ECDH, we use curves considered
safe presented in [43]. As in [43] there is no curve for the
80-bit security level, in this work, we use the Curve P-192
recommended by NIST for the 80-bit security level. In our
simulations, we do not consider the generation time of the
protocol parameters. For the time counting, we only con-
sider the calculations of the partial keys and the secret key.
While the ECDH uses only values from the DLP, the classic
Diffie-Hellman protocol uses values from both, IFP and DLP.
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Specifically, for the size of the prime p, we consider the
values found using IFP; but for the secret integers r and s,
we consider the values found using DLP. This setting is the
same used in the HTTPS and results high performance for
low security levels with rapid loss of performance when the
security level increases.

Note that Table 2 provides more than parameters for
performance comparison in terms of processing time. Table 2
and Figure 6 provide a comparison of data size for trans-
ferring in a network, storing in long-term memory, and
allocating in short-term memory.

Table 4 shows the computation times for each of
the protocols and security levels. Again, we use Sage’s
find_fit function to find the curves that fit the values
in Table 4. Table 5 shows the curves found.

Figure 7 presents the growth of the computational cost of
the protocols for each security level. Its horizontal axis is
given in bits, while its vertical axis is given in logarithmic
scale of milliseconds.

In Figure 7, we see that RLWE outperforms other
post-quantum protocols. Only for the first security levels,
the DH is faster than RLWE due to the DLP and IFP. In fact,
the protocol based on RLWE outperforms even the classical
protocol based on elliptic curves. Although ECDH uses small
keys due to DLP, the point operations require several compu-
tations [10], [11], thus, ECDH performance is better than DH
only for the last level of security. The protocol based on codes
is the one that presents the worst performance. Although the
CODH works in binary fields, the algorithm to solve the
CED problem requires a considerable amount of time, thus
making the protocol present the worst performance. However,
we believe that the implementation of both protocols based on
isogeny and code could be more optimized.

V. CONCLUSION
In this paper, we have shown a security comparison for the
most promising key agreement protocols in the post-quantum
era of cryptography. To do this analysis, we have compared
this post-quantum algorithms with the present day most
used classical algorithms. The complexity for each of the
best-known attacks, in a classical and quantum way, to IFP,
DLP, SSI, ISD and RLWE, was evaluated and matched to the
complexity of a brute force attack. We were able to get the
minimum key-length to achieve the practical security levels
proposed by NIST.

The analysis performed in this work allowed us to compare
the algorithms completely. The results show that SSI uses
small key sizes when compared to other post-quantum algo-
rithms. In sequence, we have the RLWE and lastly code-based
algorithm. The results also show that when compared to
IFP, the code-based algorithm shows worse results for initial
security levels but becomes better than IFP from a certain
level of security. Considering the performance of the pro-
tocol, the RLWE based presents the best result among the
post-quantum algorithms followed by SSI and code-based
algorithm.

SSI-based algorithm currently outperforms both RLWE
and code-based algorithm in terms of key size, while RLWE
protocol outperforms both SSI-based and code-based on per-
formance. Further research is needed to be held to compare
other classes of post-quantum algorithms, such as digital
signature schemes. Comparing specific post-quantum algo-
rithms, such as those competing at NIST Post-Quantum
Standardization Process is also a future research direction.
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