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ABSTRACT Harris hawks optimization (HHO) is a new swarm intelligence optimization technique. Because
of its simple structure and easy to implement, HHO has attracted research interest from scholars in different
fields. However, the low population diversity and the single searchmethod in the exploration phase weakened
the global search capability of the HHO algorithm. In response to these defects, this paper proposes an
improved HHO algorithm based on adaptive cooperative foraging and dispersed foraging strategies. First,
the adaptive cooperative foraging strategy uses three random individuals to guide the position update,
which achieves cooperation between individuals. Then the cooperation behavior is embedded in the one-
dimensional update operation framework, and the one-dimensional or total-dimensional update operation
is adaptively selected. This way allows the algorithm to perform position update operations for a specific
dimension of individual vectors with a certain probability, which improves the population diversity. Second,
the dispersed foraging strategy is introduced into the HHO, forcing a part of Harris hawks to leave their
current position to find more prey to obtain a better candidate solution. This way effectively avoids the
algorithm falling into local optimum. Finally, a randomly shrinking exponential function is used to simulate
the energy change of the prey, so that the algorithm maintains the exploration ability in the later exploitation
process, effectively balancing the exploration and exploitation ability of the algorithm. The performance
of the proposed ADHHO algorithm is evaluated using Wilcoxon’s test on unimodal, multimodal and CEC
2014 benchmark functions. Numerical results and statistical experiments show that ADHHO provides better
solution quality, convergence accuracy and stability compared with other state-of-the-art algorithms.

INDEX TERMS Harris hawks optimization, adaptive cooperative foraging, dispersed foraging, Wilcoxon’s
test, CEC 2014 benchmark functions.

I. INTRODUCTION
Optimization is the process of finding the best solution for
all feasible solutions to a particular problem. The purpose
of optimization is to consume the least cost and use limited
resources to maximize profits, efficiency and performance.
In recent years, as the optimization problems presented in
different fields become more and more complex, the method
of finding the optimal solution based on gradient information
is challenging to adapt to the complex challenges of large-
scale, multi-constraint, multi-modal, high-dimensional and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yilun Shang .

other characteristics [1]–[4]. As a result, the demand for more
efficient algorithms is increasing. In the past few decades,
swarm intelligence (SI) has shown high efficient and robust
performance in solving modern nonlinear numerical global
optimization problems [5], [6].

SI algorithm is a typical nature-inspired optimization algo-
rithm, which simulates the social behavior of groups of ani-
mals [6]. Because of its simplicity, flexibility, no gradient
information, and the ability to bypass local optimum, SI has
been widely used in different disciplines and engineering
fields [7]–[10]. In the past two decades, a large num-
ber of SI algorithms have been proposed. Particle Swarm
Optimization (PSO) [11] algorithm simulates the social
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behavior bird or fish swarm. It has the advantages of simple
structure and few parameter settings. However, the PSO algo-
rithm is easy to fall into local optimum [12]. Artificial Bee
Colony algorithm (ABC) [13] is a simulation of a particular
behavior of honeybees known as foraging behavior. The Ant
Colony Optimization (ACO) algorithm is inspired by the
behavior of finding the optimal path in the ant colony foraging
process [14]. The pheromonematrix of the ant colony evolves
continuously during the iteration of the candidate solution
and eventually obtains the optimal solution. It is very effec-
tive in solving path planning problems [15]. Cuckoo Search
algorithm (CS) [16] is another swarm intelligence algorithm,
which is based on the obligate brood parasitic behavior of
certain cuckoo species [17]. However, such algorithms are
not very popular due to their high time complexity. Fruit fly
optimization algorithm (FOA) [18] was proposed in 2011,
inspired by the cooperative foraging behavior of fruit flies.
Besides, many new SI algorithms appear every year, such
as grey wolf optimization algorithm (GWO) [19], firefly
algorithm (FF) [20], dragonfly algorithm (DA) [21], squirrel
search algorithm (SSA) [22], [23]. It is worth mentioning
that some recently proposed meta-heuristic algorithms, such
as Henry gas solubility (HGS) [24], slime mould algorithm
(SMA) [25], equilibrium optimizer (EO) [26] and quasi-
affine transformation evolutionary (QUATRE) [27] show
excellent performance in solving optimization problems. The
HGS algorithm simulates Henry’s law behavior and was
recently developed by Hashim et al. In HGS, population
agents were divided into clusters with the same number of
gas types. The gas equilibrium state was updated by updating
each cluster of gases’ solubility at different temperatures and
pressures. The resulting gas in the highest equilibrium state
is the optimal solution. The advantage of HGS is that it
has the search mechanism of the worst gas neighborhood,
thereby improving the global search capability. SMA mainly
simulates the behavior and morphological changes of slime
mould during foraging. When the food source’s quality is
different, the slime mould can establish a moving route in
the direction of a higher concentration, thereby ensuring the
maximum concentration of nutritional requirements. SMA
has an excellent balance between exploration and exploita-
tion, so it could effectively avoid local optimization. The
inspiration of the EO algorithm comes from the dynamic
mass balance on the control volume. In EO, the mass balance
equation is used to measure the number of mass items gen-
erated in the volume over time and seek to find the state that
achieves the equilibrium of the system. EO is easy to imple-
ment and has a high population diversity. Therefore, it has
been applied to many real-world optimization problems such
as multi-thresholding image segmentation problems [28],
optimal structural design problems [29]. The QUATRE
is a co-evolution framework based on quasi-affine trans-
formation. It has been proved that excellent optimization
performance could be obtained on large-scale optimiza-
tion problems [27], [30], [31]. Due to its simple struc-
ture and high flexibility, the QUATRE algorithm has been

successfully applied to text feature extraction and has
achieved good results [32].

As a new bionic optimization algorithm, the swarm intelli-
gence algorithm has developed rapidly in recent years. How-
ever, according to the no free lunch (NFL) theorem, one
algorithm cannot be regarded as a general optimizer to solve
all optimization problems [33]. NFL Theorem encourages
scholars to propose new optimization algorithms or improve
classical optimization algorithms to achieve better optimiza-
tion performance. Therefore, Heidari et al. proposed a new
swarm intelligence algorithm in 2019, Harris hawks Opti-
mization (HHO) algorithm [34], by simulating the cooper-
ative behavior of Harris hawks in the process of hunting
prey. The simulation experiments of 29 benchmark func-
tions and several engineering optimization problems proved
the effectiveness of HHO in optimization problems. At the
same time, the HHO algorithm has the advantages of simple
operation, few adjustment parameters and easy to implement,
so it has been applied to solve actual optimization problems
in many disciplines. For example, image segmentation [35],
structure optimization [36], image denoising [37], parameter
identification [38], layout optimization [39], and power load
distribution [40].

Although HHO has been successfully applied to various
practical optimization problems, the algorithm itself still
has some shortcomings. Since the HHO algorithm intro-
duced four different attack strategies, it has a significant
advantage in exploitation capability. However, the choice
of these four attack strategies is based on random parame-
ters, resulting in an imbalance between the exploration and
exploitation capabilities of the algorithm. When dealing with
multimodal or modern highly complex optimization tasks,
the convergence accuracy is low, and it is easy to fall into
local optimization. Besides, the HHO algorithm ignored the
later global search capabilities. More specifically, the escape
energy E in the later stage of the iteration is always less
than 1, and the hawks are always in the stage of attacking
prey. In this way, there is no guarantee that the population has
gathered around the optimum at the end of the exploration
phase, resulting in premature convergence. In response to
these problems, some scholars have proposed improvement
strategies from different perspectives. For example, litera-
ture [41] introduced long-term memory to the HHO algo-
rithm, allowing individuals to exercise based on experience,
increasing the population’s diversity. However, it ignored
the running time of the algorithm and was less effective in
high-dimensional problems. Reference [35] used dynamic
control parameters to reduce the probability of the HHO
algorithm falling into a local optimum and used mutation
operators to improve the global search capability further.
Literature [42] added interference terms to the escape energy
to control the location of the disturbance peaks, which
increased the global search capability in the later stage.
Besides, some scholars combined with the exploration abil-
ity of other algorithms to improve HHO, such as com-
bining sine and cosine algorithm [43], simulated annealing
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TABLE 1. Recent techniques to improve the SSA.

algorithm [44] and dragonfly algorithm [45]. However,
the above improvements are generally aimed at improving
exploration capabilities, and the lack of a balanced method
between search capabilities makes the robustness and search
results under multimodal or modern highly complex opti-
mization tasks generally weak. In addition to the above
improvement measures, TABLE 1 summarizes the advan-
tages, disadvantages and applications of other HHO variants.

Given the above discussion, this paper proposes a Harris
hawks optimization algorithm based on adaptive cooperative
foraging and dispersed foraging strategies, and proposes three
improvements to the above deficiencies. The main contribu-
tions of this article are summarized as follows:

1) Introduced an adaptive cooperative foraging strategy
that randomly selected some Harris hawk individuals to for-
age cooperatively. Then this foraging strategy was embed-
ded in the one-dimensional position update framework, and
the one-dimensional update operation and the traditional
total-dimensional update operation were adaptively selected
according to the conversion factor. This strategy effectively
improved the population diversity of the HHO algorithm.

2) Proposed a dispersed foraging strategy that randomly
distributed some Harris hawk individuals to other areas
for foraging, to avoid the algorithm falling into local
optimum.

3) The randomly shrinking exponential function was used
to simulate the energy consumption process of the prey, and
effectively solved the problem of imbalance between explo-
ration and exploitation in the later stage of the algorithm.

4) The proposed algorithm was compared with other
famous metaheuristic algorithms based on the convergence
curves and statistical measures (e.g., mean, best, worst, stan-
dard deviation).

The rest of the paper is organized as follows. Section II
briefly introduced theHHOalgorithm. Section III detailed the
proposed ADHHO algorithm based on adaptive foraging and
dispersed foraging strategies. Section IV gave the experimen-
tal results and analysis. The proposed method was applied to
a practical problem in Section V. Finally, Section VI gave a
conclusion.

II. AN OVERVIEW OF HARRIS HAWKS OPTIMIZATION
The HHO algorithm was inspired by Harris hawk’s foraging
behavior and attack strategy. The search process consists
of three parts: the exploration phase, the transformation of
exploration and exploitation, and the exploitation phase. The
first stage involves waiting, finding and discovering prey. The
Xprey is regarded as the prey position, and then, the hawk’s
position is defined as follows:

X t+1i =

{
X trand − r1

∣∣X trand − 2r2X ti
∣∣ q ≥ 0.5

X tprey − X
t
m − r3 (lb+ r4 (ub− lb)) q < 0.5

(1)

where X trand represents a random hawk in the current itera-
tion. q is a random value in the range [0, 1]. r1, r2, r3 and r4 are
random numbers in between [0, 1]. X tm denotes the average
position of all hawks and can be calculated as follows.

X tm =
1
N

∑N

i=1
X ti (2)

where X ti is the position of the ith Harris hawk in iteration t
and N represents the size of population.

At the second stage, the transition from exploration and
exploitation depends on the escape energy E of prey. The
mathematical model based on prey escape energy behavior
is as follows:

E = 2E0 × (1−
t
T
) (3)
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where E0 represents the initial energy of the prey, which is
a random value in the range [−1, 1]. T is the maximum
iteration. During the iteration, If |E| ≥ 1, the algorithm is in
the exploration phase; otherwise, the exploitation phase gets
started.

In this last phase, Harris hawks suddenly attack their prey,
which is the exploitation phase of the algorithm. There are
four attack strategies available. Here, r is regarded as the
chance of the target’s escaping probability.

When E ≥ 0.5 and r ≥ 0.5, Harris hawks use soft besiege
strategy to surround prey slowly. The mathematical model is
as follows:

X t+1i = 1X ti − E
∣∣JXprey − X ti ∣∣ , 1X ti = Xprey − X ti (4)

where 1X ti represents the difference between the position
vector of the prey and the current individual, J represents the
jumping intensity of the prey during the escape, and it is a
random value between [0, 2].

When E < 0.5, r ≥ 0.5, the prey cannot escape due to
insufficient escape energy, in this case, the position of the
Harris hawks can be updated as follows:

X t+1i = Xprey − E
∣∣1X ti ∣∣ (5)

When E ≥ 0.5, r < 0.5, the prey has enough energy
to escape successfully so that the Harris hawks perform soft
besiege with progressive rapid dive strategy to confuse prey.
It can be mathematically modelled as:

X t+1i =

{
Y = Xprey−E|JXprey−X ti | if f (Y ) < f (X ti )
Z = Y + S × Lévy(d) if f (Z ) < f (X ti )

(6)

where d represents the dimension of the problem and
S denotes a random vector of size 1×d . The Lévy is the Levy
Flight function [34].

When E < 0.5, r < 0.5, the prey does not have enough
energy to escape. Harris hawks use the following methods to
attack prey:

X t+1i =

{
Xprey − E

∣∣JXprey − X tm∣∣ if f (Y ) < f (X ti )
Z = Y + S × Lévy (d) if f (Z ) < f (X ti )

(7)

FIGURE 1 shows the predation process of Harris hawks.
And the flow chart of original HHO has been shown in
FIGURE 2.

III. THE PROPOSED ADHHO ALGORITHM
In this section, a new ADHHO algorithm was proposed to
improve the performance of the original HHO algorithm.
There are three main innovations. First, an adaptive coopera-
tive foraging strategy was introduced into the original HHO
algorithm and used the average distance of some randomly
selected individuals to guide the search agent to update their
position to realize the cooperative mechanism. Then, accord-
ing to the conversion factor CF, one-dimensional and total-
dimensional update operations were adaptively selected to
improve the population diversity. Second, proposed a dis-
persed foraging strategy, distributing some Harris hawk indi-
viduals to other regions to realize the exploration of search

FIGURE 1. The predation process of Harris hawks.

FIGURE 2. The flow chart of original HHO.

space and avoid the algorithm falling into local optimum.
The third is to introduce a randomly shrinking exponential
function to simulate the escape energy of the prey. And part
of the exploration capability is retained in the exploitation
stage of the late search, thereby achieving a balance between
exploration and exploitation.

A. ADAPTIVE COOPERATIVE FORAGING STRATEGY
In the original HHO, a single global optimal position
(Xprey) was used to guide the hawk’s swarm to update the
position. However, it ignores that there may be an optimal
solution in the vicinity of individuals with poor fitness, lead-
ing to premature convergence of the algorithm [47], [49].
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Algorithm 1 One-Dimensional Update Operation
Input: Randomly select one dimensional: jrand ∈

{1, 2, . . . ,D}
Output: Updated search agents population X t+1

1: for j = 1 to D do
2: if rand ≤ CF || j = jrand then
3: X t+1i,d = X ti,j %Update the position of individual by

Eq. (8)
4: else
5: X t+1i,d = X ti,d
6: end for

Also, similar to many other meta-heuristic algorithms,
HHO still uses a total-dimensional update operation to update
all dimensions of individual vectors. This method is not easy
to obtain high-quality solutions for multimodal and insepara-
ble functions [50], [51]. In response to these shortcomings,
this study introduced an adaptive cooperative foraging strat-
egy in the exploration phase.

First, in the exploration stage, three Harris hawk individ-
uals were randomly selected as the guiding particles in the
search space, and the average distance between the search
agent and guiding particles was used as the search step size
to guide the search process jointly. This search process is
considered to be the cooperative foraging process of the
population. The new location update formula is as follows:

Xt+1
i =


X trand − r1

∣∣X trand − 2r2X ti
∣∣ q ≥ 0.5

r3
((X trand1−X

t
i )+(X

t
rand2
−X ti )+(X

t
rand3
−X ti ))

3
+X ti

q < 0.5
(8)

where rand1, rand2, rand3 are random integers in
{1, 2, 3, . . . ,N }. q is a random value in the range [0, 1].
r1, r2, r3 are random numbers between [0, 1]. The second
line in the formula (8) is the proposed new search equation.
Different from the single optimal position guidance of the
original algorithm, the guiding particles of the new search
equation are based on the random vector (X trand1 , X

t
rand2

,
X trand3 ). In this way, the quality of the guiding particles may
be good or bad, and this randomness improves the limitation
that the original HHO ignores the optimal solution near the
individual with poor fitness. At the same time, it avoids the
premature convergence caused by a single global optimal
position guidance, which helps the algorithm to explore
further.

Then, the cooperative foraging process of the population
was embedded in the one-dimensional update operation. It is
different from the traditional total-dimensional update opera-
tion to update all dimensions of the individual, and in the one-
dimensional update operation, each iteration only updated a
certain dimension value of theHarris hawk individuals vector.
FIGURE 3 shows the population diversity curve of one-
dimensional update operation and total-dimensional update

Algorithm 2 Adaptable Cooperative Foraging Strategy
Input: The search agent population X t , parameter CF
Output: Updated search agents population X t+1

1: for i = 1 to N do
2: if rand ≤ CF then
3: Generate a rand integer jrand (jrand ∈ {1, 2, . . . ,D})
4: j = jrand
5: else
6: j = 1 to D
7: end if
8: for d = j do
9: Update the position of search agent X t+1i,d by Eq. (8)

10: end for
11: end for

FIGURE 3. Comparison of one and total dimensional update operations
on diversity variation.

operation on the Sphere function. It can be seen from the fig-
ure that the population diversity of one-dimensional renewal
operation is higher than that of full-dimensional renewal
operation, but the convergence speed is relatively slow.
Algorithm 1 shows the one-dimensional update operation
framework. When it is in the stage of the one-dimensional
update operation, a dimension of the individual to be updated
is randomly selected for the location update operation.

Finally, the adaptive conversion from one-dimensional
update to traditional total-dimensional update was realized.
At this stage, define the conversion factor (CF). CF is a
logical value, and its initial value is 0, which represents a one-
dimensional update operation. When CF is 1, it corresponds
to a total-dimensional update operation. The conditions for
triggering the change of the CF are: the population diversity
is less than the predetermined value, and there is no change
during five consecutive iterations. Algorithm 2 describes the
framework of the proposed adaptive foraging strategy.

FIGURE 4 shows the population diversity curve with and
without the proposed adaptive foraging strategy. The dot-
ted line indicates that only the traditional total-dimensional
update operation is used. The solid line indicates the one-
dimensional and total-dimensional update operations using
the adaptive cooperative foraging strategy. It can be seen from
the figure that the total-dimensional update operation only
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FIGURE 4. Diversity variation with or without the proposed adaptive
cooperative foraging strategy.

focuses on the convergence of the algorithm and ignores the
diversity of the population, thus causing premature conver-
gence. At the beginning of the iteration, the proposed strategy
maintains a high population diversity and maintains a high
convergence rate in the later stage of the search. Besides,
the phenomenon of turbulence appeared in the diversity in the
later period, which enhanced the precision search capability.

B. DISPERSED FORAGING STRATEGY
The scarcity of food may force some Harris hawks to leave
their current location, thereby effectively exploring more
promising areas [52]. Based on this behavior, the dispersed
foraging strategy was proposed. The process of dispersed
foraging was determined by the dispersed factor ε. Only
individuals who meet the dispersed conditions can perform
position update operations. The position update equation dur-
ing the dispersed foraging process is as follows:

X t+1i = X ti + µ ∗ ∇
t
i ∗ P

t
i (9)

∇
t
i = (X tr1 − X

t
r2 ) (10)

where µ is the migration coefficient of the Harris hawks,
µ ∼ N (0.5, 0.12), and the parameter setting ofµ is consistent
with that in literature [34].∇ ti represents the distance between
any two search agents. n1, n2 represent random integers in
{1, 2, . . . ,N }, n1 6= n2 6= i. Pti is a logical value which is
used to determine whether the Harris hawks implements the
dispersed foraging strategy and be formulated as follows:

Pti =

{
1, r5 > ε

0, r5 ≤ ε
(11)

where the dispersed factor ε is a parameter that decreases
nonlinearly with iteration, and it is defined as follow.

ε = ε0e−
t
T (12)

where ε0 is constant 0.4, in formula (12), ε is a parameter
that changes adaptively with the iteration. It selects some
individuals to perform dispersed operations, while rest indi-
viduals remain in the original position. The advantage is
that it is unnecessary for all individuals to explore unknown

Algorithm 3 Dispersed Foraging Strategy
Input: The search agent population X t , parameter ε
Output: Updated search agents population X t+1

1: Generate a logic matrix Pti by Eq. (11)
2: Generate the dispersed distance matrix ∇ ti by Eq. (10)
3: Update the position of search agent X t+1 by Eq. (9)

areas, thus increasing the diversity of the population while
retaining the exploitation of some areas. Therefore, the value
of ε in the early stage is relatively large, and only a small
part of the individuals perform the scattered foraging stage.
These individuals help to improve the rate of convergence
in the early stage. As the value of ε decreases, almost all
individuals perform dispersed foraging, which is necessary
to avoid local optimal. Algorithm 3 is the pseudo-code of
dispersed foraging of ADHHO.

C. MODIFIED ESCAPE ENERGY
The escape energy E in HHO determines the transforma-
tion between exploration and exploitation [34]. If |E| < 1,
the algorithm is in an exploitation stage. In formula (3),
the parameter E decreases linearly from 2 to 0, which makes
the value of |E| completely less than 1 at the end of the
iteration. In other words, the original HHO algorithm only
performed local exploitation in the later stage, while com-
pletely ignored the global exploration.

In addition, prey takes action to avoid pursuit, which may
increase its short-term survival probability. Some scholars
have modelled the pursuit and escape behavior between
predators and prey. According to the existing mathematical
models, it can be concluded that the randomly shrinking
exponential function is more suitable to simulate the energy
changes of prey [53], [54].

Based on the above analysis, a new escape energy equation
is proposed in this study, which is expressed as follows:

E = 2E0 × (2×rand × e−(δ×
t
T )) (13)

where E represents the escape energy of the prey; E0 repre-
sents the initial energy of the prey, and it is a random value
between [−1, 1]; t and T are the current iteration number and
the maximum iteration; δ is the attenuation factor.

In the formula (13), the attenuation factor δ represents the
attenuation intensity of prey energy. The larger the δ value,
the faster the escape energy E attenuates. The best δ value is
obtained by rigorous experimental testing of the benchmark
function. TABLE 2 shows some of the experimental results.
It can be observed from TABLE 2 that the value of the
attenuation factor δ changes from 1 to 2, and satisfactory
performance is achieved for most benchmark functions when
δ = 1.5. It can also be observed from FIGURE 5 that when
δ = 1.5, the escape energy E can provide sufficient distur-
bance after 250 generations, which can be greater than 1 in
some cases. This also shows that under a certain probability,
the algorithm can maintain part of the exploration ability in
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TABLE 2. The effect of attenuation factor (δ) on the performance of ADHHO algorithm on four benchmark functions.

FIGURE 5. Comparison between original HHO and proposed ADHHO on escape energy, (a) The original escape energy at HHO, (b) The
randomly shrinking exponential escape energy at ADHHO (δ = 1.5).

the exploitation stage. Therefore, δ could help the algorithm
to achieve a balance between exploration and exploitation and
avoid falling into local optima.

D. ALGORITHM FLOW
The primary process of the ADHHO algorithm is shown in
FIGURE 6. First, the exploration and exploitation phases
were selected according to the escape energy of the prey
in each iteration. The adaptive cooperation strategy was
introduced into the exploration process, and the solution
search equation is the modified location update equation
(formula (8)). Then, one-dimensional or all-dimensional
update operations were performed according to the conver-
sion factorCF, which improved the diversity of Harris hawks’
population and helps to find a better solution. Then, the fit-
ness of the population were evaluated, and better individuals
were selected to enter the dispersed foraging stage. The dis-
persed foraging strategy forces some individuals to leave the
current optimal position to explore the target space further.
This method prevented the algorithm from falling into local
optima. In addition, as an auxiliary method, randomly shrink-
ing exponential escape energy can not only ensure that the
algorithm has strong exploration ability in the early iteration,
but also retain the exploration capability in the later exploita-
tion stage, which effectively balanced the exploration and
exploitation of the algorithm. The pseudo-code of ADHHO
algorithm is shown in Algorithm 4.

E. COMPUTATIONAL COMPLEXITY
To analyze the computational complexity of the proposed
ADHHOalgorithm and the original HHO algorithm,we grad-
ually calculated the complexity of the two algorithms accord-
ing to the worst-case complexity. In the initialization stage,
after initializing the positions of N individuals, ADHHO
and HHO had the same computational complexity O (N ).
Then for the main loop of the HHO algorithm, the fitness of
each search agent was first evaluated, so the computational
complexity in this stage is O (T · N ). Then in the population
update stage, the position vector of each search agent was
updated, so the computational complexity in this stage is O
(T ·N ·D). After comprehensive analysis, the computational
complexity of HHO is calculated as follows:

O(HHO)=O(N )+ O(T · N )+ O(T · N · D) = O(T · N · D)

(14)

In the main loop process of ADHHO, the pro-
posed adaptive cooperative foraging strategy adaptively
changed the one-dimensional update operation and the
total-dimensional update operation according to the CF.
In the one-dimensional update operation, only one dimen-
sion of the solution vector was changed. Therefore, the
computational complexity is O (T · N ). In the total-
dimensional update operation, all dimensions of the solu-
tion vector were updated, so the computational complexity
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FIGURE 6. ADHHO algorithm flow chart.

is O (T ·N ·D). According to the worst-case complexity rule,
the computational complexity at this stage is O (T · N · D).
In the dispersed foraging strategy, theHarris hawk individuals
that meet the decentralized conditions were allocated to other
areas in the search space. The total number of individuals
with position update does not change. Therefore, the compu-
tational complexity is O (T ·N ·D). Comprehensive analysis,
the computational complexity of ADHHO is calculated as
follows:

O(HHO)=O(N )+O(T ·N ·D)+O(T · N · D)=O(T · N · D)

(15)

According to the above analysis, the ADHHO and HHO
algorithms have the same computational complexity.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. BENCHMARK FUNCTION
In this study, 20 benchmark functions, including
unimodal [55], multimodal [56] and CEC 2014 benchmark
functions [57] were selected to evaluate the performance
of ADHHO algorithm, and three experiments were carried
out respectively. The expressions, dimensions, search ranges,
and theoretical optimum of the benchmark functions are
shown in TABLE 3. Among them, the unimodal benchmark
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Algorithm 4 Pseudo-Code of ADHHO Algorithm
01: Initialize the number of iterations T , the number of hawks N , the effect of attenuation factor δ, the random jump strength J,
conversion factor CF and the position of the hawks Xi (i = 1, 2, . . . ,N )
02: Evaluate the fitness of each hawk then determine the locations of prey (best solution): Xprey.
03: while Iter < T do
04: Check the boundary and calculate the fitness of each hawks Xi

E = 2E0 × (2×rand × e−(δ×
t
T )) %update the E using randomly shrinking exponential escape energy (Eq. (13))

05: for i = 1 to N do
06: if |E| ≥ 1 then % exploration stage
07: if rand ≤ CF then % adaptable cooperative foraging strategy
08: Generate a rand integer jrand (jrand ∈ {1, 2, . . . ,D})
09: j = jrand % one-dimensional position update operation
10: else if
11: j = 1 to D % total-dimensional position update operation
12: end if
13: for d = j do

Xt+1
i =


Levy (D)

(
X tprey − X

t
i

)
+ X tm q ≥ 0.5

r1
((X trand1 − X

t
i )+ (X trand2 − X

t
i )+ (X trand3 − X

t
i ))

3
q < 0.5

−r2
∣∣∣X trand4 − X ti ∣∣∣

% update X t+1i using Eq. (8)

14: end for
15: else if (|E| < 1) % exploitation stage
16: if r ≥ 0.5 and |E| ≥ 0.5 then % soft besiege
17:

X t+1i = 1X ti − E
∣∣JXprey − X ti ∣∣ %update the position of Harris hawks using Eq. (4)

18: else if (r ≥ 0.5 and |E| < 0.5) then % hard besiege
19:

X t+1i = Xprey − E
∣∣1X ti ∣∣ %update the position of Harris hawks using Eq. (5)

20: else if (r < 0.5 and |E| ≥ 0.5) then % soft besiege with progressive rapid dives
21:

X t+1i =

{
Y = Xprey − E

∣∣JXprey − X ti ∣∣ if f (Y ) < f (X ti )
Z = Y + S × Lévy (d) if f (Z ) < f (X ti )

% update X t+1i using Eq. (6)

22: else if (r < 0.5 and |E| < 0.5) then % hard besiege with progressive rapid dives

X t+1i =

{
Xprey − E

∣∣JXprey − X tm∣∣ if f (Y ) < f (X ti )
Z = Y + S × Lévy (d) if f (Z ) < f (X ti )

% update X t+1i using Eq. (7)

23: end if
24: end if
25: Generate a logic matrix Pti by Eq. (11) and the dispersed distance matrix ∇ ti by Eq. (10)

X t+1i = X ti + µ×∇
t
i × P

t
i % update X t+1i using dispersed foraging strategy(Eq. (9))

26: Sort fitness and then update the locations of prey: Xprey
27: The location of prey Xprey is the final optimal solution
28: Iter = Iter + 1
29: end for
30: End

functions (F1-F6) were selected to test the convergence rate
and local exploitation ability of the algorithm. F7-F12 are
multimodal benchmark functions and they contain multiple
locally optimal solutions, and the number increases expo-
nentially with the increase of dimension. Therefore, they
were used to evaluate the exploration ability and global

optimization ability of the algorithm. F13-F20 are modern
numerical optimization problems proposed in IEEE CEC
2014 special session and competition on single-objective
real parameter numerical optimization [57]. These bench-
mark functions have shifted, rotated, expanded and combined
the most complicated mathematical optimization problems
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TABLE 3. Description of the unimodal, multimodal and CEC 2014 benchmark functions.

TABLE 4. Parameter setting of algorithms.

presented in the literature. Therefore, they are usually used to
evaluate the comprehensive abilities of an algorithm.

B. PARAMETER SETTING
In each experimental test, the performance of the improved
ADHHO algorithmwas compared with classical SI algorithm
and other improved versions of HHO, including the original
HHO [34], PSO [11], FF [20], Long-term memory Harris
hawks optimization (LMHHO) [41] and Dynamic Harris

hawks optimization with mutation mechanism (DHHO/M)
[35]. TABLE 4 lists the parameter settings of all algorithms.
For the fairness of the experiment, the maximum iterations
(T ) and population size (N ) were set to 1000 and 50, respec-
tively, in the first two experiments (benchmark problems).
In the third experiment (CEC 2014 problems), the maximum
iterations (T ) was set to 6000 to obtain 300000 number of
functional evaluations (NFEs). For each benchmark function,
all algorithms were run 30 times independently. In addition,

160306 VOLUME 8, 2020



X. Zhang et al.: Improved HHO Based on Adaptive Cooperative Foraging and Dispersed Foraging Strategies

TABLE 5. Statistical results obtained by PSO, FF, HHO, DHHO/M, LMHHO and ADHHO through 30 independent runs on functions F1- F6 with unimodal
benchmark functions.

FIGURE 7. Comparison of the convergence curves of ADHHO and the other algorithms on functions F1-F6.

all the algorithms were implemented in MATLAB 2014a.
All computations were run on a CPU: Intel Core i5-4200 M,
2.5GHz, 8GRAM, andWindows 7 (64-bit) operating system.

C. EXPERIMENTAL RESULTS
1) EXPERIMENTAL TEST 1: UNIMODAL BENCHMARK
FUNCTIONS
Unimodal functions have only one global optimum, and they
are often used to evaluate the convergence rate and exploita-
tion ability of algorithms. It can be seen from the TABLE 5
that the proposed ADHHO algorithm can achieve better
results than other algorithms onmost unimodal functions. For
example, on F1, F2, F3, F4 and F6, the average and standard
deviation of ADHHO are better than LMHHO, DHHO/M,
PSO and FF. For F5, the performance of ADHHO algorithm

is the same as that of LMHHO and HHO, but much better
than other algorithms. FIGURE 7 shows the comparison of
the convergence rates of the six algorithms. From FIGURE 7,
the ADHHO algorithm has a faster convergence rate than
other algorithms for most unimodal functions. Although the
search steps of LMHHO and DHHO/M have been improved
compared with HHO, they still can not exceed the proposed
ADHHO. According to the characteristics of unimodal func-
tion, it can be proved that ADHHO has good exploitation
ability.

2) EXPERIMENTAL TEST 2: MULTIMODAL BENCHMARK
FUNCTIONS
The multimodal benchmark function contains multiple local
minimum points and is often used to evaluate the exploratory
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TABLE 6. Statistical results obtained by PSO, FF, HHO, DHHO/M, LMHHO and ADHHO through 30 independent runs on functions F7- F12 with multimodal
benchmark functions.

FIGURE 8. Comparison of the convergence curves of ADHHO and the other algorithms on functions F7-F12.

ability of the algorithm. It can be observed fromTABLE6 that
the mean and standard deviation of ADHHO on F7, F8,
F10, and F12 are obviously better than other algorithms. It is
worth noting that theADHHOalgorithm can obtain the global
optimum on F7 and F8, while other algorithms cannot get
the global optimum. On F11, the ADHHO algorithm ranks
second among all algorithms. FIGURE 8 shows the conver-
gence curves of all algorithms for solving high-dimensional
multimodal functions. From this figure, compared with the
other six algorithms, ADHHO has better convergence rate
and sufficient accuracy. The LMHHO algorithm only defeats
ADHHO on F9. The experiment shows that the ADHHO
algorithm still has an excellent performance in exploration
ability, which is attributed to the high population diversity

provided by the cooperative relationship of Harris hawks and
dispersed foraging behavior.

3) EXPERIMENTAL TEST 3: CEC 2014 BENCHMARK
FUNCTIONS
In this experiment, the CEC 2014 benchmark functions
are selected to evaluate the comprehensive performance
of ADHHO. From TABLE 7, it can be seen that among all
the 8 CEC 2014 test functions, the performance of ADHHO
on seven functions is better than that of other algorithms.
The average value of ADHHO is second only to LMHHO
algorithm on F14. Also, as can be seen from FIGURE 9,
ADHHO has the best convergence performance among all
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FIGURE 9. Comparison of the convergence curves of ADHHO and the other algorithms on functions F13-F20.

algorithms. Through these comparisons, it is proved that
ADHHO algorithm is still the best algorithm to solve these
complex optimization problems. The modified escape energy
equation effectively balances the global search and local
search of the ADHHO algorithm. Therefore, ADHHO shows
stability and effectiveness in such a complex benchmark
function.

4) STATISTICAL ANALYSIS
In this section, Wilcoxon’s rank-sum test [58], a popular non-
parametric statistical test method was applied to the statistics
of the experimental results to prove the significance perfor-
mance of ADHHO. The P obtained by the Wilcoxon’s rank-
sum test are recorded in TABLE 8. In this table, the ‘+’
sign indicates that the reference algorithm has a better perfor-
mance than the compared one, and ‘−’ signs indicate that the
reference algorithm is worse than the compared algorithm.
The value on the last line indicates the number of ‘+’ and
‘−’ symbols. It corresponds to the number of P under a 95%
confidence interval (α = 0.05). As can be seen from the
table, ADHHO has more ‘+’ signs than the other algorithms,
which proves that ADHHO has a significant difference from
the other five algorithms. As a result, the ADHHOhas a better
performance than the other algorithms.

Finally, the mean absolute error (MAE) of various algo-
rithms are calculated and sorted to analyze the performance
of all algorithm. MAE is an effective statistical method
to show the gap between the result and the actual value.
The MAE formula is expressed as follows:

MAE =

∑N
i=1 |oi − mi|

N
(16)

FIGURE 10. Comparison of the algorithms to obtain the number of global
optimal solutions in 600 runs.

where oi represents the actual result of an algorithm,mi is the
theoretical optimum of a benchmark function, and N is the
number of samples.

TABLE 9 lists the MAE and ranking of all algorithms.
From this table, ADHHO provides the best performance
compared to the other five algorithms. Besides, FIGURE 10
shows the comparison results of 600 runs of each algorithm
(30 runs for each benchmark function), and the number of
times that ADHHO reaches the optimal solution is 437.
This once again proves the excellent performance of
ADHHO algorithm.

5) PERFORMANCE ANALYSIS OF IMPROVED STRATEGIES
This paper proposes three strategies to improve the HHO
algorithm. They are adaptive cooperative foraging strategy,
dispersed foraging strategy, and randomly shrinking expo-
nential escape energy strategy. This section mainly discusses

VOLUME 8, 2020 160309



X. Zhang et al.: Improved HHO Based on Adaptive Cooperative Foraging and Dispersed Foraging Strategies

TABLE 7. Statistical results obtained by PSO, FF, HHO, DHHO/M, LMHHO and ADHHO through 30 independent runs on functions F13- F20 with the CEC
2014 benchmark functions.

TABLE 8. Results of Wilcoxon’s test for ADHHO against the other five algorithms for 20 benchmark functions.

the impact of three strategies on algorithm performance.
Since the third strategy is the auxiliary strategy of the first two
strategies, in short, the third strategy is a part of the first two

strategies. Therefore, we no longer compare the third strategy
separately. Based on this, the improved algorithm (ADHHO),
the HHO that only introduces adaptive cooperative foraging
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TABLE 9. Average ranking of the six algorithms using MAE for 24
benchmark functions.

strategy (AHHO), the HHO that only introduces dispersed
foraging strategy (DHHO), and the original HHO algorithm
were selected for comparison experiments. The parameter
settings of each algorithm are shown in TABLE 4. Selected
functionsF1-F12 from TABLE 3 for experimental simulation.
Each algorithm runs independently 30 times on each function.
The experimental results are shown in TABLE 10, and the
results with the best performance are shown in bold. From this
table, the performance of ADHHO algorithm on functionsF1,
F2, F3, F4, F7, and F9 is significantly better than the other
three algorithms. For F8, ADHHO and AHHO obtained the
same performance. For F5, F6, and F11, ADHHO performs
worse than AHHO but ranks second among all algorithms.
It can also be seen from the convergence curves of the partial
functions shown in FIGURE 11 that ADHHO is worse than
AHHO only on F6. For F8, there is no apparent difference
between ADHHO and AHHO in optimization accuracy. For
F10, the convergence rate of ADHHO is inferior to HHO.
For other functions, ADHHO has the best performance. Com-
bined with average accuracy and stability performance, it can
be seen that ADHHO has better global convergence ability
and robust performance than AHHO, DHHO, and HHO. The
experimental results show that adaptive cooperative foraging
strategy and dispersed foraging strategy have a synergistic
effect in improving the performance of HHO, and verify
the effectiveness of the multi-strategy integration algorithm
proposed in this paper.

V. ADHHO FOR PRESSURE VESSEL DESIGN PROBLEM
In recent years, stochastic optimization techniques to solve
structural design problems have become a research hotspot
in structural design [59], [60]. To further verify the effective-
ness of ADHHO in structural design problems, this section
optimizes pressure vessels’ parameters. The pressure vessel
design problem’s goal is to minimize the total cost of materi-
als, forming, and welding of cylindrical vessels. The pressure
vessel and parameters of this study are shown in FIGURE 12.
In this figure, Th represents the head’s thickness, Ts represents
the thickness of the housing, and L represents the length of
the cylindrical cross-section without considering the head.
R represents the inner diameter. The pressure vessel design
problem is constrained by the above four parameters, and its
mathematical model is as follows:

Consider Ex = [x1 x2 x3 x4] = [Ts Th R L],

Minimize f (Ex) = 0.6224 x1x3x4 + 1.7781 x2x23

TABLE 10. Simulation comparison of improved strategies.

+ 3.1661x21x4 + 19.84x21x3
Subject to g1(Ex) = −x1 + 0.0193x3 ≤ 0,

g2(Ex) = −x2 + 0.00954 x3 ≤ 0,
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FIGURE 11. Comparison of the convergence curves of improved strategies on some benchmark functions.

FIGURE 12. Pressure vessels and parameters.

TABLE 11. Parameters comparison results of pressure vessel design
problems.

g3(Ex) = −πx23x4 − 4/3πx33 + 1296000 ≤ 0,

g4(Ex) = x4 − 240 ≤ 0,

Variable range: 0 ≤ x1 ≤ 99; 0 ≤ x2 ≤ 99;

10 ≤ x3 ≤ 200; 10 ≤ x4 ≤ 200.

The algorithms used to test this type of problem are the
same as the algorithms in Section IV. The parameter set-
tings of the algorithms are shown in TABLE 4. The opti-
mal solutions and corresponding variable results are shown
in TABLE 11. From this table, the optimization result of
ADHHO is the best among all algorithms. Besides, to test
the stability of the algorithm, the experimental results of

TABLE 12. Performance comparison results of pressure vessel design
problems.

each algorithm running independently 30 times are shown
in TABLE 12. It can be seen from the table that ADHHO
obtains better mean and variance than other algorithms, and
the robustness of this algorithm is superior to other algo-
rithms. Since this structural design problem’s search space
is unknown, these results provide strong evidence for the
adaptability of ADHHO in solving real-world problems.

VI. CONCLUSION
This paper proposed three strategies to improve the global
search performance of the HHO algorithm. First, an adaptive
cooperative foraging strategy was introduced, and some Har-
ris hawk individuals were randomly selected for cooperative
foraging. Simultaneously, the method was embedded in the
one-dimensional update operation, and the one-dimensional
cooperative foraging and traditional total-dimensional coop-
erative foraging was adaptively selected. Second, a dispersed
foraging strategy was introduced, forcing some Harris hawks
to scatter into different search spaces to find potential prey.
Finally, a randomly shrinking exponential function was used
to simulate the energy decay process of the prey. Twenty
benchmark functions, including unimodal, multimodal, and
CEC 2014 benchmark functions, were used to test the
proposed ADHHO algorithm’s robustness. The algorithm’s
performance was compared with other advanced swarm
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intelligence algorithms and other improved variants of the
HHO algorithm. Wilcoxon’s rank-sum test and MAE were
used to analyze the experimental results. Statistical results
show that ADHHO outperforms HHO and other advanced
algorithms in solution quality, stability, and local optimum
avoidance. Besides, this paper also applied the ADHHO algo-
rithm to the design of pressure vessels. Experimental results
have shown that ADHHO has a good performance in solving
real-world optimization problems of unknown search spaces.

However, on some convergence curves, it can be seen
that the convergence speed of ADHHO is slow. There-
fore, in future research, it is necessary to study the con-
vergence rate of the algorithm further. Also, this work only
provides the basic framework of ADHHO for low dimen-
sion optimization problems, and the performance in high-
dimensional optimization problems is not yet clear. It can be
further extended to high-dimensional optimization problems
in future research. Besides, we also intend to use the ADHHO
algorithm to solve multi-objective optimization, constrained
optimization, and NP-hard problems in future work.
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