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ABSTRACT At present, many enterprises provide users with better services by collecting their sensitive
information. However, these enterprises will inevitably cause the leakage of users’ information, thereby
infringing on users’ privacy. Local differential privacy resolves this problem by only aggregating randomized
values from each user, providing plausible deniability. However, different users might have diverse privacy
requirements for different attributes. Moreover, the dimensions of these attributes may be unbalanced. Tradi-
tional local differential privacy algorithms usually assign the same privacy budget to all attributes, resulting
in undesired frequency estimation. To obtain highly accurate of the results while satisfying local differential
privacy, the aggregator needs to implement a reasonable privacy budget allocation scheme.Motivated by this,
this paper proposed a novel local differential privacy scheme. The proposedmethod combines the advantages
of BRR and MRR to address the problem of high and low privacy requirements. It employs the Lagrange
multiplier algorithm to transform the privacy budget allocation problem between unbalanced attributes into
a problem of calculating minima from unconditionally constrained convex functions. The solution to the
resulting nonlinear equation is used as the final privacy budget allocation scheme. Simulation experiments
show that the novel local differential privacy scheme proposed by this paper can significantly reduce the
estimation error under the premise of satisfying the local differential privacy.

INDEX TERMS Data privacy, estimation error, nonlinear equations, optimization, probability.

I. INTRODUCTION
With the rapid development of artificial intelligence technol-
ogy, information from crowd-sourcing system has brought
great convenience to people’s production and life. Mobile
payments, map navigation, hospital consultation and other
convenient services all come from the analysis of people’s
data. Particularly, with high-dimensional heterogeneous data
(data with unbalanced multivariate nominal attributes), there
are many hidden rules and much hidden information behind
the data that can be mined to provide better services for
individuals or groups. While ensuring the rapid development
of information technology, the protection of the privacy of
personal data has become a top priority for governments and
enterprises. In April 2016, the EU passed the General Data
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Protection Regulation, GDPR [1], which stipulates that the
protection of personal data crosses national boundaries, and
at the same time clarifies the right of users to knowwhat
personal information is being collected and to be forgotten.

The emphasis on privacy issues has promoted research
on privacy protection technologies, for which the degree
of privacy protection and the utility of data are the most
important metrics. In line with this developmental trend,
differential privacy technology [2], [3] has been proposed.
As a privacy protection model, it strictly defines the strength
of privacy protection, that is, the addition or deletion of any
record will not affect the final query result. Compared with
k-anonymity [4], l-diversity [5], t-compactness [6] and other
methods that require special attack assumptions and back-
ground knowledge, differential privacy has become a research
hot spot in the current academic community due to its unique
advantages. However, there are still two major challenges
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in the application of differential privacy to high-dimensional
unbalanced multivariate nominal attribute data.

(1) Nonlocal privacy protection. Differential privacy [7],
as one of the currently effective privacy protection mecha-
nisms, randomizes query output by adding noise to sensitive
data to achieve privacy protection. Traditional differential
privacy technologies [8]–[10] aggregate raw data into a data
centre, and then release relevant statistical information that
meets the requirements of differential privacy. We call such
methods centralized differential privacy technology. The pro-
tection of sensitive information by centralized differential
privacy is based on the idea of trusted third-party data col-
lectors. However, even if third-party data collectors claim
that they will not steal and disclose confidential user infor-
mation, privacy is still not guaranteed. In practise, it is
difficult to find a truly reliable third-party data collection
platform, which greatly limits the use of centralized dif-
ferential privacy technology. Users prefer that data secu-
rity is ensured on their side, enabling them to process and
protect their own confidential information separately (i.e.,
local differential privacy [11]–[14]). (2) High-dimensional
disaster. In crowd-sourced systems, high-dimensional het-
erogeneous data are ubiquitous. With the increases in data
dimensionality and the dimensional differences between dif-
ferent attributes, many existing local differential privacy
mechanisms such as RAPPOR [15] and [16], [17], if straight-
forwardly applied to multiple attributes with unbalanced
dimensions, will become extremely unavailable. Their fatal
drawbacks are the use of non-optimized privacy budget allo-
cation schemes and their high computational complexi-
ties, which lead to great data utility loss and high latency.
Attributes with different dimensions require the allocation
of different privacy budgets. Determining the best allocation
scheme is the key to improving data utility. Furthermore,
considering that the level of privacy concern required by users
for different data is inconsistent, it is also important to find
the optimal privacy mechanism under high and low privacy
regimes.

In response to the above challenges, many existing meth-
ods have proven their effectiveness from different perspec-
tives. One group of methods ensures that users’ privacy is
not leaked by providing users with a local privacy guaran-
tee. As a result, local differential privacy [11]–[14] tech-
nologies have emerged as effective methods based on the
inheritance of centralized differential privacy technology to
quantify the definition of privacy attacks. It delegates the right
to randomize data to the users. Currently, local differential
technologies are used by many companies to provide users
withmore convenient and high-quality services. For example,
Apple has applied the technology to their iOS 10 operating
system to protect users’ device data, and the US Census
Bureau uses differential privacy for demographics [18] data.
However these methods are extremely complicated in terms
of communication, and data availability can drop sharply
when processing high-dimensional unbalanced multivariate
nominal attribute data. Another group of methods privately

release high-dimensional data [19]–[21]. These methods
mainly use specific algorithm to reduce the dimensionality
of the data and then release it privately. These methods not
only have high computational complexity but also have low
data utility due to unreasonable privacy budget allocation
schemes.

In addressing the above issues, this paper proposes a
novel local differential privacy scheme: combinational ran-
domized response, or CRR. CRR combines the advantages
of BRR [12], [15] and MRR [22], [23] in different pri-
vacy regimes and dimensions. We first divide the data into
two parts according to the size of the dimensions. Then,
we apply BRR to the part of the data with higher dimen-
sions. Similarly, MRR is applied to the part of the data with
lower dimensions. The reasons are detailed at the end of
Section III. To determine whether the attributes use BRR or
MRR, we design an h-index method to divide the attributes.
When using BRR and MRR to perturb the data, we adopt the
optimal privacy budget allocation scheme proposed in this
paper to find the final allocation scheme. In calculating the
optimal privacy budget allocation scheme, we use the square
error (SE) as the metric to evaluate the estimation, which
refers to the difference between the unbiased estimation and
the real histogram. The optimal privacy budget allocation
scheme is as follows. First, we use the Lagrange multiplier
(LM) algorithm to transform the privacy budget allocation
problem into the problem of calculating minima from uncon-
ditionally constrained convex functions. Next, we use the first
derivative to transform the minimum value problem into the
problem of finding the roots of the univariate cubic equa-
tion. Then, we employ the Cardano Formula (CF) method to
derive the roots of the univariate cubic equation. The result-
ing roots comprise the privacy budget allocation scheme.
In the end, we apply the optimal privacy budget allocation
scheme to the CRR to perturb the data. CRR is very flexi-
ble; it can be adjusted to the corresponding Optimal Binary
Randomized Response (OBRR) and Optimal Multivariate
Randomized Response (OMRR) according to the different
requirements of the privacy levels of the data, which will
be introduced in detail later. To verify the effectiveness of
our method, we compare CRR with BRR [12], [15], OBRR,
MRR [22], [23], and OMRR. The results show that our
method greatly improves the utility of the data while ensuring
local differential privacy.

II. RELATED WORK
Multivariate frequency statistics can be applied when each
user sends multiple variable values. After the user sends
the data to the data collector, the data collector obtains the
candidate value list according to the statistics. They count the
frequency of each candidate value and publish it. Different
from the single-valued frequency statistics problem, the mul-
tivariate situation needs to consider the division of privacy
budget. An unreasonable privacy budget allocation scheme
can lead to a significant reduction in the utility of the sanitized
data.
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A. LOCAL PRIVACY GUARANTEE
To address the shortcomings of differential privacy which
cannot guarantee users’ local privacy, the concept of local
differential privacy was proposed to provide users with local
privacy guarantees in a crowd-sourcing system [24]. In simple
terms, single-valued frequency statistics can be reused for
each variable in a multivariate situation, but this will bring
new problems. Without loss of generality, we assume that
the dataset A = {a1, a2, · · · , al}, and each attribute ai has a
specific number of candidate values ai = {ai1, ai2, · · · , aiki},
where ki is the number of candidate values for the i-th
attribute, that is, |ai| = ki, i = 1, 2, · · · , l, where |ai|
refers to the dimension level for i-th attribute. d = k1 +
· · · + kl denotes the total number of candidate values. Each
user uiu possesses a fixed l number of variables uiu =
{viu1, viu2, · · · , viul}, iu = 1, · · · , n, where n is the number of
users. In this situation, the privacy budget needs to be divided
into l parts. When the number of variables l is large, the data
utility decreases dramatically. For example, if we employ
the S-Hist [25] algorithm to do the same for each variable,
after splitting the privacy budget, each variable is assigned a
privacy budget of εl , which will directly lead to asymptotic
error boundaries, and the results of the variance will increase
l-times. Our method comprehensively considers the size of
the dimensions and allocates a reasonable privacy budget
for the attributes of different dimensions to minimize the
asymptotic error. For the RAPPOR [15] method, the asymp-
totic error boundary increases from O( k

ε
√
n ) to O(

lk
ε
√
n ). The

communication cost will be asymptotic to
∏l

i=1 ki, which
requires exponential storage space in terms of d . How-
ever, our method only needs d =

∑l
i=1 ki. Additionally,

different differential privacy mechanisms are suitable for dif-
ferent dimension attributes. The BRR is suitable for high-
dimensional attributes with a low budget, and the MRR is
suitable for low-dimensional attributes with a high budget.
If a univariate local differential privacy is used repeatedly,
it cannot take advantages of its strengths with regard to
dimensions for which it is not suitable. Therefore, directly
repeating the single-valued frequency publishing method l
times as the frequency publishing method in the multivariate
case is not feasible in terms of data availability and transmis-
sion cost. In addition, there are many improved local differ-
ential privacy algorithms suitable for single-valued frequency
statistics, such as O-RAPPOR [26], PCE [27], k-RR [28] and
k-Subset [29]. All multivariate frequency statistics have a
sharp drop in data utility due to the splitting of the privacy
budget.

B. HIGH DIMENSION
For the high-dimensional case, an effective way to solve the
problem of multivariate nominal attributes is to group related
records into clusters and then allocate the privacy budget
for each low-dimensional cluster. PriView [30] constructs kp
marginal distributions of low-dimensional attribute sets and
then estimates the joint distribution of the high-dimensional

sets. However, this method only works based on the assump-
tion that all attributes are independent of each other and
that attribute pairs are processed equally. Actually, this
assumption is not in line with the fact that the attributes
in crowd-sourcing systems are associated with each other.
PDP-PCAO [31] improves the principal component analy-
sis (PCA) algorithm by employing attribute importance and
reduces the dimensionality of the data with the improved
PCA, reducing time and space costs. This method considers
the existence of multi-sensitive attributes in high-dimensional
data, while the traditional methods of allocating privacy
budgets cannot satisfy the requirements of local privacy
protection. PPDP-PCAO introduces a sensitivity preference,
combines with the optimal matching theory, and designs
a sensitive attribute hierarchical protection strategy. There
are also some other dimension-reducing differential privacy
mechanisms [19], [32]–[34]. However, to determine the asso-
ciation between attributes and achieve cluster distribution,
these methods need to access the original dataset twice. The
two visits are calculated independently, which can lead to a
consistent privacy guarantee. The privacy budgets allocated
by these methods are completely unrelated. These meth-
ods do not specify how to allocate privacy budgets reason-
ably to achieve adequate privacy guarantees and maximize
utility, however. Moreover, although unbalanced data with
multivariate nominal attributes can be reduced into several
low-dimensional clusters, the sparsity caused by combina-
tions in each cluster will persist and may result in lower
utility. Rather than the absolutely centralized settings, Su et
al. [35] proposed a distributed multiparty setting to publish a
new dataset from multiple data curators. However, their mul-
tiparty computing does not guarantee local personal privacy
within the data server. Instead, they can only protect privacy
between data servers.

To solve the problem of privacy leakage caused by cen-
tralized differential privacy, the RAPPOR-unknown [36]
employs an expectation maximization (EM) method to esti-
mate the joint probability distribution of multiple variables.
Its purpose is to perform queries on contingency tables.
RAPPOR-unknown is an improvement of the orginal RAP-
POR method. Its asymptotic error boundary is O( d

ε
√
n ), but

its communication cost is higher, O(d) + O(r), where ε
refers to the privacy budget, n is the number of users, d
denotes the total number of candidate values and r is the
number of the substring. Obviously, RAPPOR-unknown is
not suitable for situations with many substrings. Otherwise,
not only is the communication cost high but also the data
utility is reduced. Li et al. [37] proposed a dichotomy of
the privacy budget by publishing differential privacy his-
tograms in groups, which obviously cannot maximize statis-
tical accuracy. Wang et al. [38] added additional processing
to the output to improve the accuracy of the published data.
The purpose of this additional processing is to restore the
consistency of the count specified in the structure. How-
ever, this method cannot solve the inherent error caused
by high dimensionality. There are also some methods, such
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as [39]–[41], which release a database through amatrixmech-
anism to minimize query noise. However, the optimization
costs of those methods are very high, and the assumption that
the query distribution is known in advance is not reasonable.

To solve the shortcomings of the above methods,
which cannot meet pricacy locality requirements or handle
high-dimensional data, some effective methods have been
proposed. Ren et al. [20], [21] introduced a multivalued fre-
quency statistics method that combines the RAPPORmethod
and the probability map model. They first transform each
attribute value into a random bit string using a Bloom fil-
ter [42] and then send it to the cen- tral server. Subsequently,
similar to the high-dimensional data publishingmethod based
on centralized differential privacy in [19], the data collector
performs frequency statistics on the collected data to con-
struct a Markov network and uses the correlation between
attributes to obtain the maximal clique. Next, the joint proba-
bility distribution of the attributes is expressed in the form of a
maximal cluster to achieve data dimension reduction. Finally,
the data set that is resynthesized through the joint probability
distribution is released. Analogously, Ju et al. [43] proposed
employing a Bayesian network to recognize the dimensional
correlation of high-dimensional data. Then, they divided the
high-dimensional data attribute set into multiple relatively
independent low-dimensional attribute sets and sequentially
synthesized the new dataset. However, the disadvantages of
these methods are a high computational delay and an unrea-
sonable privacy budget allocation. A comparison of several
existing multivalued frequency statistics methods under local
differential privacy is shown in Table 1, where r is the number
of the substring in RAPPOR-unknown, s is the encoding
length of string in S-Hist, d , l, n, ε is defined as previously.
To overcome the problems between those schemes, we pro-

pose a novel privacy budget allocation scheme to publish
unbalanced multivariate nominal attribute data while guar-
anteeing local privacy. As far as we know, no literature has
been published on this issue. In this paper, we combine the
advantages of BRR and MRR in different privacy regimes.
Then, we turn the privacy budget allocation problem into one
that involves solving the univariate cubic equation. The exper-
imental results show that our method can greatly improve
the low query accuracy caused by the defects in privacy
budget allocation.

III. PRELIMINARIES
A. LOCAL DIFFERENTIAL PRIVACY
Local differential privacy [8] is a rigorous privacy notion in
the local setting, which provides a stronger privacy guarantee
than centralized differential privacy. The formal definition of
local differential privacy is as follows:
Definition 1: Given n users, with each user corresponding

to a record, a randomized algorithm F satisfies ε-local dif-
ferential privacy if for any two records t and t ′ ∈ D and for
any output t∗ ⊆ Range(F),

Pr[F(t) = t∗] ≤ exp(ε) · Pr[F(t ′) = t∗] (1)

where ε denotes the privacy budget, and D represents the
domain of privacy data.

For local differential privacy technology, the privacy pro-
cess is transferred from the data collector to a single client,
so that no trusted third party intervention is required. It also
eliminates privacy attacks that may be caused by untrusted
third-party data collectors.

B. MULTIVARIATE RANDOMIZED RESPONSE
We consider the multivariate input domain χ = {X1,X2, · · ·
,Xm}, which is the category data withm categories. Similar to
binary category data, a real category x is released with a finite
probability q, and a false category is uniformly and randomly
selected from χ−{x}with probability 1.0−q. The definition
of MRR [22] is as follows:
Definition 2: For category data x = Xi ∈ χ , where χ =
{X1,X2, · · · ,Xm}, suppose that the output of the multivariate
random response mechanism is z; then, z is equal to Xi with
probability q(0.0 ≤ q ≤ 1.0), and to Xj(Xj ∈ χ,Xj 6= Xi)
with probability (1− q)/(m− 1).
The following theorem 1 guarantees that the multivariate

randomized response mechanism meets the local differential
privacy protection. The theorem also provides the random-
ized response parameters required to achieve the correspond-
ing level of privacy protection.
Theorem 1: The local differential privacy protection level

satisfied by themultivariate randomized response mechanism
is

ε = log (max {
q(m− 1)
1− q

,
1− q

q(m− 1)
}) (2)

For the statistical analysis task of local differential privacy,
the service provider usually needs to determine the frequency
distribution of each category in the user group. Since the
multivariate randomized response mechanism disturbs the
real category data x, the frequency distribution of z observed
by the service provider is different from the frequency dis-
tribution of x. Assuming the number of users is n and the
true frequency of category Xi is Fi, the following relationship
exists for the frequency F ′i of Xi observed from z:

E[F ′i ] = Fiq+ (n− Fi)
1− q
m− 1

(3)

Therefore, an unbiased estimate of Fi can be obtained
from F ′i :

Fi = E[
F ′i − n(1− q)/(m− 1)

q− (1− q)/(m− 1)
] (4)

In the above multivariate randomized response mechanism
for multivariate category data, the input domain is the same
as the output domain. When the privacy protection level ε =
log (max { q(m−1)1−q ,

1−q
q(m−1) }) is fixed, as the attribute candidate

value dimension m becomes larger, q will decrease. The
probability of outputting the real category is reduced, thus
increasing the final single category frequency estimation or
distribution estimation error.
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TABLE 1. Multi-valued frequency statistics method under local differential privacy.

C. BINARY RANDOMIZED RESPONSE
In the aforementioned multivariate randomized response
mechanism for multivariate category data, the output domain
is the same as the input domain. Given a privacy protection
level ε, if the number of categories is large, the value of qwill
decrease as the number of categories l increases, so that the
final frequency estimation or distribution of a single category
will have a larger error.

To solve the effect of the number of categories on the error
of frequency estimation of a single category, Duchi et al. [12]
proposed a binary randomized response mechanism, BRR.
This mechanism first represents the category data in the
form of a d-length bitmap, and then a binary random
response is performed independently for each bit in the
bitmap. The formal definition of the BRR mechanism is as
follows:
Definition 3: For category data x = Xi ∈ χ , where

χ = {X1,X2, · · · ,Xm}, the bitmap of x is represented as
bx ∈ {0, 1}m. The output of the binary randomized response
is z ∈ {0, 1}m. For any given j ∈ [1,m], the jth bit zj of z is
equal to bx j with probability q(0.0 ≤ q ≤ 1.0), and to 1−bx j

with probability (1− q).
The following theorem 2 guarantees that the binary ran-

domized response mechanism meets the local differential
privacy protection requirements. The theorem also gives the
randomized response parameters required to achieve the cor-
responding level of privacy protection.
Theorem 2: The local differential privacy protection level

satisfied by the binary randomized response mechanism
is:

ε = 2 log (max {
q

1− q
,
1− q
q
}) (5)

Now, for the statistical analysis of local differential privacy
based on a binary randomized response mechanism, the ser-
vice provider usually needs to determine the frequency dis-
tribution of each category in the user group. Since the binary
randomized response mechanism disturbs the real category
data x, the frequency distribution of z observed by the service
provider is different from the frequency distribution of x.
Assuming the number of users is n and the true frequency
of category Xi is Fi, the following relationship exists for the

frequency F ′i of Xi observed from z:

E[F ′i ] = Fiq+ (n− Fi)(1− q) (6)

Therefore, an unbiased estimate of Fi can be obtained
from F ′i :

Fi = E[
F ′i − n(1− q)

2q− 1
] (7)

The BRR mechanism incurs O(m) communication costs
for each user, and the MRR incursO(1) communication costs
in single attribute scenario. As far as the communication cost
is concerned, MRR is superior to BRR. In work proposed
by Kairouz et al. [22], BRR and MRR are called staircase
mechanisms. BRR has been proven to be optimal in the high-
privacy regime, and MRR has been proven to be optimal
in the low-privacy regime [26]. In fact, BRR is suitable for
high-dimensionality cases with low privacy budgets, while
MRR is suitable for low-dimensionality cases with high pri-
vacy budgets. We assume that the privacy budget ε is fixed,
and the data have only one attribute X . The dimensionality of
the candidate value of attribute X is m. The number of users
is n. Then, the mean square error of the frequency estimation
of BRR and MRR is calculated as follows:

SE(BRR) =
nm exp( ε2 )

(exp( ε2 )− 1)2

SE(MRR) =
n(m− 1)(2 exp(ε)+ m− 2)

(exp(ε)− 1)2

We let exp( ε2 ) = x, then

f = SE(BRR)− SE(MRR)

= n
mx3 + mx − m2

+ 3m+ 2x2 − 2
(x − 1)2(x + 1)2

By calculating the first partial derivative, we can see that
when m is fixed, a larger x means a larger SE(BRR). In con-
trast, when x is fixed, a larger m means a smaller SE(BRR).
This also verifies the conclusion that BRR is suitable for
high-dimensionality caseswith low budgets, andMRR is suit-
able for low-dimensionality cases with high budgets. Since
the dimensions are fixed, we apply BRR to the part of the
data with higher dimensionality and apply MRR to the part
of the data with lower dimensionality. The optimal privacy
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budget allocation scheme is designed to take advantage of
the strengths of BRR and MRR. Considering the advantages
of BRR and MRR, in the next section, we will present a
combinational randomized response mechanism, CRR, for
multiple unbalanced categorical data.

IV. COMBINATIONAL RANDOMIZED RESPONSE
A. PROBLEM DESCRIPTION
This paper focuses on frequency estimation over unbalanced
multivariate nominal attributes. The unbalanced multivari-
ate nominal attributes indicate that the data have a set of
attributes A = {a1, a2, · · · , al}, and each attribute ai has
a specific number of categories ai = {ai1, ai2, · · · , aiki},
where ki is the number of candidate values for the i-th
attribute, that is, |ai| = ki, i = 1, 2, · · · , l. Specifically,
each user uiu possesses a set viu = {viu1, viu2, · · · , viul}
of items, where viui ∈ ai, i = 1, 2, · · · , l. The aggrega-
tor queries participants about the domain V, in which each
participant uiu holds a secret value viu . To ensure that the
participant’s privacy response will not be disclosed, each par-
ticipant randomizes their secret response viu independently
using a privacy preserving randomizer F to obtain a san-
itized version of the response v′iu ∈ Range(F) and then
publishes v′iu to the aggregator. After receiving the sanitized
data list {v′1, v

′

2, · · · , v
′
n}, the aggregator attempts to decode

an estimation over the domain V. According to the estimated
results from the sanitized data set, the aggregator tries to
provide users with better network services. In the process
of data release with local differential privacy, no one knows
the secret information they release except for the participants
themselves.

Let n be the total number of users, d = k1+k2+· · ·+kl be
the total number of candidate values, and fj be the frequency
of the j-th item(denoted as νj), the portion of users possessing
item νj, 1 ≤ j ≤ d . Formally, we have

fj =
|{ui|νj ∈ vi, 1 ≤ i ≤ n|

n
Unbalanced multivariate nominal data have different items
for each attribute, which indicates that if the user applies
the same privacy budget to all attributes, the estimation of
the frequency may be unsatisfactory. To obtain greater accu-
racy of the results while satisfying local differential privacy,
the aggregator needs to implement a reasonable privacy bud-
get allocation scheme. Some of the notations employed in this
paper are listed in Table 2.

B. COMBINATIONAL RANDOMIZED RESPONSE
MECHANISM
The essence of our method is to solve the problem that
the estimation error increases due to the imbalance of dif-
ferential privacy budget allocation under the condition of
high-dimensional heterogeneous data. In this paper, we pro-
pose a combinational randomized response mechanism CRR.
CRR gives full play to the advantages of BRR and MRR in
different dimensions to solve the problem of the excessive

TABLE 2. Notation.

error caused by an uneven allocation of privacy budget. In this
paper, we start with the mean square estimation error of CRR,
so that the optimal solution satisfying the minimum mean
square error of CRR is taken as our final privacy budget allo-
cation scheme.

The basic idea of optimizing multiple unbalanced categor-
ical histogram aggregation errors is explicit: more privacy
budgets should be allocated to a large number of items than
to a small number of attributes. Due to the different number
of candidate attribute values, the distribution of the privacy
budget is different, and we can reasonably combine BRR and
MRR to take advantage of their strengths in different privacy
regimes.

To separate the attributes into two groups, we first sort
them in ascending order according to the number of candidate
values of each attribute, that is, k1 ≤ k2 ≤ · · · ≤ kl .
According to the number of candidate values in the attribute
category, we choose a parameter h as the dividing index.
We then take the first h attributes as the low-privacy regime
domain Sl , and the remaining attributes as the high-privacy
regime domain Sh. We then apply BRR to the high privacy
regime Sh and apply MRR to a low privacy regime Sl . In the
next section, we will introduce the privacy budget allocation
method; here, we assume that the optimal privacy budget
sequence {ε1, ε2, · · · , εl} has been obtained. The mechanism
of CRR is shown in Algorithm 1. In summary, the randomizer
naturally embeds a multivariate randomized response into a
binary randomized response on a bitmap. This randomizer is
carried out by each participant, and its privacy guarantee is
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Algorithm 1 Combinational Randomized Response
Input: ε-privacy budget; {k1, k2, · · · , kl}-number of items

for each attribute; v ∈ {0, 1}k1+···+kl -a secret value that
is represented as a bit map. {ε1, ε2, · · · , εl}-optimal bud-
get allocation; h-divided index.

Output: v′ ∈ {0, 1}k1+···+kl -a sanitized bit map that satisfies
local ε-differential privacy.

1: initialize d = k1 + k2 + · · · + kl ; v′ = 0 ∈ 0d ;m = 0
2: for i = 1 to h do
3: if i 6= 1 then
4: m = m+ ki−1
5: end if
6: for j = 1 to ki do
7: if vj == 1 then
8: t = j
9: end if
10: end for
11: p = random[0, 1]
12: if p < exp(εi)

exp(εi)+ki−1
then

13: t ′ = t
14: else
15: t ′ = random([1, ki]\{t})
16: end if
17: v′t ′+m = 1
18: end for
19: m = k1 + k2 + · · · + kh
20: for i = h+1 to l do
21: for j = 1 to ki do
22: p = random[0, 1]
23: if p < exp(εi)

exp(εi)+1
then

24: v′j+m = vj+m
25: else
26: v′j+m = 1− vj+m
27: end if
28: end for
29: m = m+ ki−1
30: end for

declared in Theorem 3, the proof of which is clear and will
not be shown here.
Theorem 3: The randomizer shown in Algorithm 1 satis-

fies the local ε-differential privacy constraints in Definition 1,
where ε = ε1 + · · · + εh + 2εh+1 + · · · + 2εl .

Now consider the statistical analysis of local differen-
tial privacy based on the CRR mechanism. Each user uiu
publishes a length-l bit vector v′iu = {v

′

iu1
, v′iu2, · · · , v

′
iul}.

The data collectors aggregate the collected v′iu into h′iu ,
which is obtained by perturbing the original bit vector
hiu . The true histogram H = sum{h1, · · · ,hn}. The san-
itized histogram H′ = sum{h′1, · · · ,h

′
n}. Let H′′ =

{H ′′11, · · · ,H
′′

1k1
,H ′′21, · · · ,H

′′

2k2
, · · · ,H ′′lkl } denote the unbi-

ased estimation ofH; for each attribute, we haveH ′′ijpi+ (n−
H ′′ij )(1− pi) = H ′ij, i = 1, · · · , h, j = 1, · · · , ki, where pi =
exp(εi)

exp(εi)+1
; H ′′ijpi + (n−H ′′ij )(1− pi) = H ′ij, j = 1, · · · , ki, i =

Algorithm 2 Divided Index Selection
Input: {k1, k2, · · · , kl}-number of items for each attribute;
Output: h-divided index
1: initialize {ad1, ad2, · · · , adl} = 0
2: for i = 1 to l do
3: for j = 1 to l do
4: adi = adi + abs(ki − kj)
5: end for
6: end for
7: for i = 1 to l − 1 do
8: diffi = adi+1 − adi
9: end for
10: [h, value] = max(diff1, · · · , diffl−1)

h+ 1, · · · , l, where pi =
exp(εi)

exp(εi)+ki−1
. Therefore, we have:

H ′′ij =
H ′ij(exp(εi)+ 1)− n

exp(εi)− 1
, i = h+ 1, · · · , h

H ′′ij =
H ′ij(exp(εi)+ ki − 1)− n

exp(εi)− 1
, i = h+ 1, · · · , l

j = 1, · · · , ki

(8)

All that remains is to develop a method to optimize the
parameters h and {ε1, · · · , εl}, which we will introduce in the
next section.

C. OPTIMAL PARAMETER SELECTION
1) h-DIVIDED INDEX
How should we choose a suitable h for (8)? We first define
the attribute dispersion (AD) as given in Definition 4. By def-
inition, we can derive a discrete AD value for each attribute
ai, denoted as ad i, i = 1, 2 · · · , l. Then, we calculate the
AD difference between two adjacent attributes, denoted as
diffi = ad i+1 − ad i, i = 1, · · · , l − 1. Next, we choose the
maximum diffi′ . Finally, we let h = i′ be the dividing index.
The procedure is detailed in Algorithm 2.
Definition 4: Let A = a1, a2, · · · , al , and the number of

categories for each attribute ai is equal to ki. The dispersion
of attribute ai is defined as AD(ai) =

∑l
j=1,j 6=i |ki − kj|

2) OPTIMAL ε-PRIVACY BUDGET ALLOCATION
In this section, we will present a method for choosing the
optimal budget allocation scheme. The parameters k, l, ε are
defined in the same way as before, and the h-divided index
is calculated by employing the method proposed in Algo-
rithm 2. According to (8), the square error, SE, from decoding
CRR (Algorithm 1) is given as follows:

SE(ε, h, l, d)

=E[
l∑
i=1

ki∑
j=1

(H ′′ij − Hij)
2]

=

l∑
i=1

ki∑
j=1

E[(H ′′ij − Hij)
2] =

l∑
i=1

ki∑
j=1

Var[H ′′ij ]
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=

h∑
i=1

ki∑
j=1

(
exp(εi)+ 1
exp(εi)− 1

)2Var[H ′ij]

+

l∑
i=h+1

ki∑
j=1

(
exp(εi)+ ki − 1
exp(εi)− 1

)2Var[H ′ij]

=

h∑
i=1

nki · exp(εi)
(exp(εi)− 1)2

+

l∑
i=h+1

ki∑
j=1

Hij exp(εi)(ki−1)+(n−Hij) exp(εi)+ki−2
(exp(εi)−1)2

=

h∑
i=1

n(ki − 1)(2 exp(εi)+ ki − 2)
(exp(εi)− 1)2

+

l∑
j=h+1

nkj exp(εj)
(exp(εj)− 1)2

(9)

Let exp(εi) = xi. To satisfy the privacy guarantee, our goal
is to minimize the following equation L(x):

L(x) = min
x1···xhx2h+1···x

2
l =exp(ε)

[
h∑
i=1

n(ki − 1)(2xi + ki − 2)
(xi − 1)2

+

l∑
j=h+1

nkjxj
(xj − 1)2

] (10)

To prove that the equation (10) has a minimum, let’s first
look at two general theorems.
Theorem 4: If f (x) is continuous in [a, b] and has first

and second derivatives in (a, b). Then if f ′′(x) > 0 in (a, b),
f (x) is concave in [a, b].
Theorem 5: If f (x, y) is a concave function with contin-

uous partial derivatives in the open region D, (x0, y0) ∈ D
and f ′x (x0, y0) = 0,f ′y (x0, y0) = 0, then f (x0, y0) must be the
minimum value of f (x, y) in D.

The above theorem in low dimensional space can be easily
extended to high dimensional space. In high dimensional
space, since the second-order partial derivative ∂2L(x)

∂2xi
>

0, i = 1, 2, · · · , l, L(x) is a strictly concave function for
the variable xi. The solution to which the first derivative
of equation (10) is zero is the minimum solution, that is
∃ x∗ = (x∗1 , · · · , x

∗
l ), s.t.

∂L(x∗)
∂x∗i

= 0, i = 1, 2, · · · , l,

x∗1 · · · x
∗
hx
∗

h+1
2
· · · x∗l

2
= exp(ε). x∗ is the minimum solution.

Equation (10) is a conditional constrained optimization
problem, which is difficult to solve directly. Therefore, we
employ LM method to translate the conditional restrictions
into unconditional constraints:

L(x, λ) = [
h∑
i=1

n(ki − 1)(2xi + ki − 2)
(xi − 1)2

+

l∑
j=h+1

nkjxj
(xj − 1)2

]

+ λ(x1 · · · xhx2h+1 · · · x
2
l − exp(ε)) (11)

Its optimal solution is obtained by solving the following
equations:

∂L(x, λ)
∂xi

= λ exp(ε)(xi − 1)3

−2n(ki − 1)(xi + ki − 1)xi
= 0, i = 1, 2, · · · , h

∂L(x, λ)
∂xi

= 2λ exp(ε)(xi − 1)3 − kin(xi + 1)xi

= 0, i = h+ 1, · · · , l
∂L(x, λ)
∂λ

= x1 · · · xhx2h+1 · · · x
2
l − exp(ε) = 0

(12)

Let us make a simple transformation to the equation, and we
can obtain:

(1) 2λ exp(ε)x3i − (6λ exp(ε)+ nki)x2i +
(6λ exp(ε)− nki)xi − 2λ exp(ε) = 0
i = 1, 2, · · · , h

(2) λ exp(ε)x3i − (3λ exp(ε)+ 2nki − 2n)x2i +
(3λ exp(ε)− 2nk2i − 4nki + 2n)xi − λ exp(ε) = 0
i = h+ 1, h+ 2, · · · , l

(3) x1 · · · xhx2h+1 · · · x
2
l = exp(ε)

(13)

The above equation relates to the problem of solving the
univariate cubic equation. There are a variety of methods to
solve the univariate cubic equation; here we employ the CF
method. We let

(1) ai1 = 2λ exp(ε), bi1 = −(3a
i
1 + nki),

ci1 = 3ai1 − nki, d i1 = −a
i
1

i = 1, 2, · · · , h

(2) ai2 = λ exp(ε), bi2 = −(3a
i
2 + 2nki − 2n),

ci2 = 3ai2 − 2nk2i − 4nki + 2n, d i2 = −a
i
2

i = h+ 1, h+ 2, · · · , l

The univariate cubic equation in (13) can be changed into:

ai1x
3
i + b

i
1x

2
i + c

i
1xi + d

i
1 = 0

i = 1, 2, · · · , h
ai2x

3
i + b

i
2x

2
i + c

i
2xi + d

i
2 = 0

i = h+ 1, h+ 2, · · · , l
x1 · · · xhx2h+1 · · · x

2
l = exp(ε)

(14)

To find the root of the equation, we let xi = yi −
bik
3aik
, k =

1, 2; i = 1, · · · , h. The first two equations in (14) can be
changed into:

y3i + (
cik
aik
−

bik
2

3aik
2 )yi + (

d ik
aik
+

2bik
3

27aik
3 −

bikc
i
k

3aik
2 ) = 0. (15)

We let p =
cik
aik
−

bik
2

3aik
2 , q =

d ik
aik
+

2bik
3

27aik
3 −

bikc
i
k

3aik
2 , so (15) can be

expressed as

y3i + pyi + q = 0. (16)
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By using the CF method, we can obtain the root of (16) as
follows:

yi1=
3

√
−
q
2
+

√
(
q
2
)2 + (

p
3
)3 + 3

√
−
q
2
−

√
(
q
2
)2 + (

p
3
)3

yi2=ω
3

√
−
q
2
+

√
(
q
2
)2 + (

p
3
)3 + ω2 3

√
−
q
2
−

√
(
q
2
)2 + (

p
3
)3

yi3=ω2 3

√
−
q
2
+

√
(
q
2
)2 + (

p
3
)3 + ω 3

√
−
q
2
−

√
(
q
2
)2 + (

p
3
)3

(17)

where ω = −1+
√
3i

2 . By solving l equations, we can obtain
the roots xij = yij − b

3a , j = 1, 2, 3 of (14) represented
by λ. We only take xi1 as our final real root. The finally
obtained l solutions x∗1 , x

∗

2 , · · · , x
∗
l are applied to equation

f (λ) = x∗1x
∗

2 · · · x
∗
l −exp(

ε
2 ) = 0. We can also obtain a higher

order equation of λ.We employ the existingNewton-Raphson
Method (NRM) to solve equations of high degree with one
unknown. The NSM first chooses two initial values λ0, λ1.
At each iteration, let λk , λk−1 be the initial value of the next
iteration, which is given as:

λk+1 = λk −
f (λk )
f (λ′k )

(18)

The NSM will produce an infinite sequence {λ1, λ2, · · · },
and this sequence converges to the true root of the function
f (λ). After obtaining the asymptotic answer λ∗, we can obtain
the value of {x1, x2, · · · , xl}. The privacy budget εi can be
obtained by εi = log xi, i = 1, · · · , l for each attribute.
To analyse the optimal answer {ε1, ε2, · · · , εl}, we arrive at
the following conclusions:
Theorem 6: For multiple unbalanced categorical data,

the optimal privacy budget value εi of CRR is positively
correlated with the number of items ki.

D. ERROR BOUNDS, COMPUTATIONAL COMPLEXITIES
AND COMMUNICATION COSTS
1) ERROR BOUNDS
In this subsection, we present several methods to get the upper
error boundaries under special conditions, for example h =
0, h = l or k1 = k2 = · · · = kl . These error boundaries
are all derived from equation (10). If we set h = 0, CRR
will degenerate into OBRR. Then, the equation (10) will be
changed into:

L(x) = min
x21 ···x

2
l =exp(ε)

l∑
i=1

nkixi
(xi − 1)2

(19)

OBRR is optimal in the high-privacy regime when deal-
ing with multivariate unbalanced nominal attributes. If we
assume the solution of equation (19) is {x1, · · · , xl}. We can
calculate the privacy budget εi = log xi allocated for each
attribute, where i = 1, · · · , l refers to the index of attributes.
The mean square error of OBRR will be changed into

∑l
i=1

nki exp(εi)
(exp(εi)−1)2

. Then we have:

SE(CRR) ≤
l∑
i=1

nki exp(εi)
(exp(εi)− 1)2

If we set h = l, CRR would be degenerate into OMRR. Then,
the equation (10) will be changed into:

L(x) = min
x1···xl=exp(ε)

l∑
i=1

n(ki − 1)(2xi + ki − 2)
(xi − 1)2

(20)

OMRR is optimal in the high-privacy regime when deal-
ing with multivariate unbalanced nominal attributes. If we
assume the solution of equation (20) is {x ′1, · · · , x

′
l}. We can

calculate the privacy budget ε′i = log x ′i allocated for each
attribute, where i = 1, · · · , l refers to the index of attributes.
The mean square error of OMRR will be changed into∑l

i=1
n(ki−1)(2 exp(ε′i )+ki−2)

(exp(ε′i )−1)
2 . Then we have:

SE(CRR) ≤
l∑
i=1

n(ki − 1)(2 exp(ε′i)+ ki − 2)

(exp(ε′i)− 1)2

Thus, we have:

SE(CRR) ≤ min{
l∑
i=1

n(ki − 1)(2 exp(ε′i)+ ki − 2)

(exp(ε′i)− 1)2
,

l∑
i=1

nki exp(εi)
(exp(εi)− 1)2

}

Actually, for multiple unbalanced categorical data,
the optimal privacy budget value εi of OBRR or OMRR is
positively correlated with the number of items ki. Specially,
if k1 = k2 = · · · = kl , the allocation scheme ε1 = · · · = εl
is optimal. To meet the local differential privacy guarantee,
if we set h = 0, the allocation scheme ε1 = · · · = εl =

ε
2l

for OBRR is optimal, and its mean square error equals to
dn exp( ε2l )

(exp( ε2l )−1)
2 . When the dimensions of attributes are different,

we have

SE(CRR) <
dn exp( ε2l )

(exp( ε2l )− 1)2

If we set h = l, the allocation scheme ε1 = ε2 = · · · =

εl =
ε
l for OMRR is optimal, and its mean square error equals

to
n(d−l)(2 exp( εl )+

d
l −2)

(exp( εl )−2)
2 . When the dimensions of attributes are

different, we have

SE(CRR) <
n(d − l)(2 exp( εl )+

d
l − 2)

(exp( εl )− 2)2

Thus, we have

SE(CRR)≤min{
dn exp( ε2l )

(exp( ε2l )−1)
2 ,
n(d − l)(2 exp( εl )+

d
l −2)

(exp( εl )−1)
2 }

Therefore the estimated histogram in the CRR mechanism
is no less favorable than the estimated histogram by the state-
of-art BRR [12], [15] or MRR [23]. CRR is also superior to
OBRR and OMRR which are presented in this paper.
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2) COMPUTATIONAL COMPLEXITIES
In this part, we discuss the issue of time complexity from
two perspectives, aggregators and participants, and com-
pare them with existing methods. For participants, CRR
does not cause additional computing overhead. For each
participant, the CRR mechanism proposed in Algorithm 1
has a computational complexity of O(d), where d is the
domain of the participants’ secret values and the domain
of histogram buckets. The time complexity of CRR on the
client side is the same as that of other local differential
privacy technologies using Bloom filter technology, such as
LoPub [20], RAPPOR [15], RAPPOR-unknown [36] and
DLDP [44].

For the aggregator, searching the optimal divided index
h requires O(l2) computational complexity where l is the
number of attributes, and finding the optimal budget allo-
cation scheme {ε1, ε2, · · · , εl} with md -digit precision, pro-
vided that a good initial approximation is known, requires
O(log(md )F(md )) complexity, where F(md ) is the cost of
calculating f (x)

f ′(x) withmd -digit precision. The biggest problem
using the NRM method lies in the selection of the initial iter-
ation values. If the initial value is far from the true solution,
it is difficult for the NRM method to converge. To improve
the shortcomings of the overreliance of the NRM on the
initial value, we add the selection of the best initial value
to the iteration process. The iteration is divided into two
processes. We first calculate whether |f (λk ) − f (λ)| falls
within a reasonable interval [a, b] on the basis of the given
initial value λ0. If it does not match, then we add a fixed step
size λk+1 = λk + δ and recalculate until a suitable initial
value λ′0 is found. Based on the best initial value λ

′

0, the NRM
method is used to improve the iteration accuracy. The global
threshold is set to ξ = 0.01. When the iteration error f (λ∗)−
f (λ) ≤ ξ , the iteration is terminated. To show the relationship
between the overall number of iterations and the number of
iteration errors, we performed experiments on two data sets.
The data sets are detailed in section V. The results are shown
in Figure 1. To facilitate the comparison, the error is normal-
ized to [0, 1]. It can be seen from the figure that the number
of iterations is on the order of 1e4. Therefore, the time com-
plexity of calculating the optimal budget allocation scheme
is approximately O(t log(md )F(md )), where t is the aver-
age number of iterations. Estimating the histogram from the
observed sanitized data costs O(nd + n) time, where n is the
number of participants.

The total time complexities of the CRR mechanism are
O(l2 + nd + d + t log(md )F(md )). For the aggregator,
RAPPOR-unknown needs to learn the correlations between
dimensions via an EM-based learning algorithm. However,
the EM algorithmwill have an exponentially higher complex-
ity.When the dimension is high, the time complexities will be
far larger than those from the CRR mechanism. Lopub also
uses the EM algorithm to estimate the joint probability distri-
bution. Their total time complexities are O(ndk lavg + tnk

2l
avg),

where kavg = d
l denotes the average dimensions of each

attribute, and t denotes the number of iterations. When the

FIGURE 1. The relationship between the number of iterations and
convergence.

number of attributes is large, the time complexity of Lopub is
very high.

3) COMMUNICATION COSTS
In the face of high-dimensional data, compared with the
existing local differential privacy mechanisms, our method
will not cause extra delay for participants. For the aggregator,
our method has a relatively small delay, and as the number
of dimensions increases, the effectiveness of our method will
become more prominent. In conclusion, the CRR mecha-
nism is highly efficient for high-dimensional categorical data
aggregation.

The communication cost of CRR is

C =
l∑
i=1

ki = d

If we assume that the domain of each attribute is publicly
known by both users and the server, and the dividing index
h is known, then the minimal communication cost of CRR is

Cmin = h+
ln(1/p)
(ln 2)2

l∑
i=h+1

|ki|

The reason is that only randomly flipped bit strings (not
original data record) are sent.

For comparison, under the same condition, when RAPPOR
is directly applied to l-dimensional data, all a1 × · · · al can-
didate values will be regarded as 1-dimensional data; then,
the cost is

CRAPPOR =
ln(1/p)
(ln 2)2

l∏
i=1

ki

where
∏l

i=1 ki is due to the size of the candidate set a1×· · · al.
This is one of the reasons why we cannot directly apply the
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TABLE 3. Communication costs of different local differential privacy
mechanisms.

univariate local differential privacy to the high-dimensional
data. Additionally, we compare CRR with existing local
differential privacy mechanisms, and the results are shown
in Table 3. r represents the number of substrings in the
RAPPOR-unknown [36] method, s is the encoding length
of the string in the S-Hist [25] method and d is defined as
previously. It can be seen from the table that our method has
a smaller communication cost than other mechanisms.

V. SIMULATION
A. DATA SET
We assume that each participant’s secret data value is drawn
from histogram H , which is uniform randomly generated
during each aggregation. The dimensions of the data set is
[n, d]. The selection of the data set guarantees the following
criteria. First, each participant can only vote for l tickets,
that is, the sum of each row of the data set matrix is l.
Second, the total number of tickets for all participants is l ∗n.
Without loss of generality, we assume there are 5 attributes,
and each attribute has a different number of candidate values.
We selected two data sets in total. The number of attribute cat-
egories is randomly selected to demonstrate the optimal effect
of budget allocation for unbalanced data. Without loss of
generality, we let {k11, k12, · · · , k15} = {5, 6, 150, 200, 250}
and {k21, k22, · · · , k25} = {2, 4, 6, 7, 100}. For simplicity,
we denote the data set {k11, k12, · · · , k15} as a higher degree
of dispersion (HDD) and the data set {k21, k22, · · · , k25} as
a lower degree of dispersion (LDD). The number of partici-
pants in the two datasets was 1000 and 10000. The privacy
budget ranged from 1.0 to 6.0, and we employed normalized
square error (NSE = SE

n ) as the metric to measure the
performance of themechanisms, where SE is the square error.

B. COMBINATIONAL RANDOMIZED RESPONSE
MECHANISM
Considering the two extreme cases, h = 0 and h = 1
in (9), when h = 0, CRR allocates all privacy budgets to
BRR. At this time, MRR does not work. This is equivalent to
finding the optimal privacy budget allocation scheme in BRR.
At this time, the differential privacy mechanism is called
OBRR. Similarly, when h = l, we call it OMRR. OBRR
and OMRR have greatly improved data availability than BRR
and MRR, respectively. CRR combines the advantages of
OBRR and OMRR. By properly adjusting the parameters,
CRR is optimal regardless of the attribute category or the
privacy budget. We compared the local differential privacy
mechanism CRR proposed in this paper with BRR, OBRR,
MRR, and OMRR for the different data sets HDD (n =
1000, 10000) and LDD (n = 1000, 10000). In particular,

FIGURE 2. The relationship between the estimated histogram error
measured by log(NSE) and privacy budget ε.

we need to calculate the dividing index using the DIS method
proposed in Algorithm 2. The calculated dividing index is 4
for LDD and 2 for HDD. We employ 5 different mechanisms
to randomize the secret data sets HDD and LDD, and then
use the decoder to estimate the frequencies of each item. The
detailed experimental results are presented in Fig. 2.

Fig. 2(a) and Fig. 2(b) denote the NSE of encoding LDD
when the number of participants is 1000 and 10000, respec-
tively. Fig. 2(c) and Fig. represent the NSE of encoding
HDD when the number of participants is 1000 and 10000,
respectively. The light green dotted lines denote the estimated
square error ofMRR, and the bottom green lines represent the
estimated square error of OMRR. The pink lines and the red
lines denote the estimated square errors of BRR and OBRR,
respectively. The black lines denote the combinational mech-
anism CRR. As seen from the figure, the optimal privacy
budget allocation scheme proposed by this paper has had
a beneficial effect. In Fig. 2(a) and Fig. 2(b) respectively,
the OBRR mechanism can reduce the estimated square error
by 41.6% and 40.2% compared to the BRR and the OMRR
reduces the estimated square error by 72.8% and 72.0%
compared to theMRR. In Fig. 2(c) and Fig. 2(d), respectively,
the OBRR mechanism can reduce the estimated square error
by 33.2% and 36.4% compared to the BRR and the OMRR
reduces the estimated square error by 73.0% and 73.7%
compared to the MRR. Because the number of items in HDD
is 611, the situation where MRR is not suitable-resulting in
the effect of OMRR-performs worse than the OBRR. CRR
has the best performances over the two different secret data
sets, the results of which are consistent with our theoretical
analysis. In summary, CRR reduces the mean square estima-
tion error by approximately 55% compared with differential
privacy mechanism using other budget allocation schemes.
It can be concluded from the experimental results that the
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magnitude of the error reduction is independent of the number
of participants n but is related to the number of attribute values
(k1, k2, · · · , kl). In fact, the larger the dimension difference
between attributes, the more effective the privacy budget allo-
cation scheme proposed in this paper will be.

VI. DISCUSSION
VII. CONCLUSION
Aiming to solve the privacy budget allocation problem for
data with unbalanced multivariate nominal attributes, tradi-
tional local differential privacy algorithms usually assign the
same privacy budget to all attributes with a different number
of values, resulting in an undesired frequency estimation.
To solve the problem, we propose an optimal privacy bud-
get allocation scheme with high-dimensional heterogeneous
data based on the Lagrange multiplier algorithm, Cardano
Formula and Newton-Raphson methods. In addition, to meet
the local privacy guarantee and the different needs of data for
different privacy concern levels, we use the optimal privacy
budget allocation scheme obtained by the above processes
to improve BRR and MRR, which are then called OBRR
and OMRR respectively, and propose a novel combinational
randomized response mechanism, CRR. CRR combines the
advantages of BRR and MRR to address the problem of
high and low attribute dimensionality. The simulation results
demonstrate that the proposed mechanism can achieve con-
siderable improvement by reducing the estimated square
error by 55% compared to that of the BRR and MRR on
average.
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