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ABSTRACT There is great social and economic significance in the teaching and learning ofmotion activities.
This is notably true for teaching the activities involved in rehabilitation, sports, and professional work.
The possibility of engaging an automatic teaching system is highly significant. Nevertheless, building an
effective system is an ongoing challenge. This article describes a general outline of the teaching system,
which includes MEMS (micro-electro-mechanical systems) sensors, haptic actuators, and algorithms for
signal classification applied to the online selection of an appropriate teaching method. The main goal of this
paper was to prove that the system is able to teach fast and synchronized movements effectively. To this
end, system performance was presented and discussed. The statistical tests revealed an efficiency of the
proposed approach, especially for tasks of teaching fast and periodic movements. This result was the
primary outcome of the presented paper. The described scheme can be utilized for building two types of
motor learning systems. The first relates to the ‘‘personal’’ learning systems for rehabilitation and sports.
The second type can perform the classification of complex movements of human body parts and may
be used in teaching the remote control of machines and vehicles (excavators, cranes, search and rescue
drones, etc.).

INDEX TERMS Haptic feedback, machine learning, MEMS sensors, motor learning, pattern recognition.

I. INTRODUCTION
A. THE LEARNING OF HUMAN MOTION ACTIVITY
As a term of motion activity, we understand an execution of
a movement of certain parts of the body in order to achieve a
defined aim. Learning a motion activity is called motor learn-
ing [1] and is of immense social and economic importance.
This pertains to the acquisition of the skills necessary for
professional work, sports, and the rehabilitation of patients
with musculoskeletal disorders [2]–[7], [9], [11]–[13]. In the
learning for many kinds of motion activity, the emphasis is
placed on the speed, synchronicity, and accuracy of move-
ments. This is especially relevant for teaching sports and pro-
fessional tasks [13], [14]. Thus, the prospect of engaging an
automatic system for teaching fast and coordinated motions
is of great value.

Let us study a simplified chart of a general scheme ofmotor
learning – Fig. 1. The learner as a whole can be regarded as
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an object of the control system. The teacher’s instructions
may be considered as input signals of this object, whereas
the output signals are related to the learner’s motion activities.
The teacher (or an automatic controller) assesses these output
signals and determines the means for correction of the taught
activity. This constitutes a general feedback loop related to
the process of teaching.

The learner can also be considered a subsystem that con-
trols his or her own motion activity. This is done by several
feedback loops (Fig. 1), in which the information process-
ing varies from very fast (based on a spinal core response),
through slower, but to some degree modifiable (motor cor-
tex), to slow but corresponding to voluntary and fully learn-
able movements [1]. We will denote the above kinds of
control loops by the symbols: M1, M2, and M3, respectively
(these simple indications relate to the broadly used naming of
the classes of muscular responses [1]).

To depict essential aspects of the matter we will con-
sider an example. Let us imagine an instructor attempting to
teach a child the simplest way of turning in skis, called the
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FIGURE 1. The general scheme of the motor learning. The human teacher or automatic controller assesses the
performed movements and sends corrective signals to the learner (main feedback loop of the teaching process).
The learner uses local feedbacks (M1, M2, M3) to control the movements.

‘‘snowplough’’ technique. The child is supposed to transfer
its bodyweight to the appropriate leg. Unfortunately, the child
has difficulties interpreting instructions in the form of calls:
left leg!, outside leg! Often the child does not know which
leg is the left or outside, or time is required to think things
over. Usually, after this time the changing situation requires
a different reaction of the pupil.

Fig. 2 illustrates a known communication method
employed by ski instructors. This involves the instructor
pointing, touching and even striking the tip of the relevant ski.
On sensing the vibration the child is able to react instantly.
The method is highly effective, with often only a dozen or so
minutes being needed for the child to learn how to turn like a
snowplough.

FIGURE 2. The snowplough technique being taught by the use of haptic
stimuli.

After these preliminary considerations, let us return to the
problem of building a teaching system. The system described
in the paper is intended to teach periodical and mutually
synchronized movements of specific parts of the body. These
types of movements are performed in:

- activities involved professional tasks, such as driv-
ing, piloting, machinery operation (excavators, cranes), and
remote controlling,

- the rehabilitation (in particular for patients with diseases
of the musculoskeletal system of the limbs), and

- sports (e.g.: race walking, swimming, and
snowboarding).

The above applications make it possible to articulate spe-
cific problems and system requirements, namely:
1. The problems of sensors and actuators. Considering the

possible applications, the learning system should have the
ability to work in outdoor environments using convenient
systems of motion sensors and actuators [15], [16].
2. The communication problems. The communication

between a teacher and a learner should be fast and unambigu-
ous. Additionally, in order to focus a learner’s attention on the
other valid actions (sports, machine operating), the communi-
cation should not involve a high mental activity of the learner.
3. The teaching method problems. In order to modify the

fast responses of the human motor system (Fig. 1), the mes-
sages should be sent to the learner in a suitable context
(it refers to the appropriate moment in the period of move-
ment and the corresponding arrangement of the learner body
parts). Accordingly, the automatic system ought to recognize
this context correctly.

In this study, we concentrated on themethodology of build-
ing an automatic system that is able to recognize aspects of
the learning process to effectively teach synchronous move-
ments. This problem has not yet been discussed in the liter-
ature. However, similar matters involving automatic motion
teaching have been considered.

The article [5] (Zahradka, Behboodi, et al.) presented
a system for neuromuscular rehabilitation of children. The
signal analysis was limited to a gait phase detection. Feed-
back was provided using a functional electrical stimulation.
Bark et al. [17] described a system to support rehabilitation
after a stroke. With the use of haptic and visual feedback,
the system was able to control the position of the patient’s
arm. The paper [6] (Bächlin, Förster, and Tröster) described
an integrated environment that aided learning to swim.
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TABLE 1. The main properties of selected teaching systems that apply diverse kinds of sensors, types of feedback, and ranges of motion analysis.

The system, using an array of motion sensors, calculated
several parameters describing the movements. Nevertheless,
their interpretation was performed by the trainer. The similar
systems were proposed by Wang et al. [7] and Stamm [11].
The systems calculated the movement parameters, however,
the feedback data was provided to the learner after per-
forming the motion. The usage of real-time tactile instruc-
tions in a snowboard training system was presented in the
work of Spelmezan et al. [8]. Similarly, another article [9]
(Petermeijer, Abbink, Mulder, and de Winter) described var-
ious strategies for using haptic feedback in driver assistance
systems. The authors of the last two papers suggested ana-
lyzing the current teaching context in order to change the
teaching method accordingly (however, they did not propose
specific methodologies). A system that used the results of
the motion signal classification in the task of learning a
trajectory, was described by Wójcik and Piekarczyk [10].
The authors concluded however, that, due to a problem with
the system-learner communication, the proposed approach
was not suitable for teaching fast movements. Examples of
typical solutions used inmotor learning systems are presented
in Table 1.

B. MOVEMENT SENSORS AND ELEMENTS THAT
TRANSFER INSTRUCTIONS TO THE LEARNER
Several types of sensors can be utilized in a subsystem of
motion capture. For instance, we can use image sensors coop-
erating with image recognition software. These, however,
require a prior prepared environment. This disadvantage does
not apply to MEMS (micro-electro-mechanical systems) [16]
sensors. A typical MEMS inertial sensor includes a triax-
ial accelerometer, gyroscope, and magnetometer. The sensor
allows for determining the acceleration, as well as speed and
position of body parts in a selected coordinate frame.

Communication from the teaching system to the learner
may be realized by the use of senses of sight, hearing, touch,

balance and proprioception. Considering the requirement of
fast and ‘‘intuitive’’ (without cerebral involvement) convey-
ing the messages, the sense of touch should be preferred.
It may be supplemented by the use of auditory and visual
senses. Vibrotactile and haptic sensations can be generated
by many types of devices, for example, vibration motors,
servomotors, and electrodynamic units [17], [21]. All the
devices, regarding their role in the automatic system, should
be named actuators or effectors [22].

C. LEARNING METHODS AND THE ROLE OF EXPERT
KNOWLEDGE
The main objectives of the motor learning process should
refer to the prospective consequences of teaching like improv-
ing athletic performance, person’s health, or productivity of
a machine being operated. Achieving these goals requires the
use of the expert’s knowledge and experience. Knowledge is
also necessary to properly interpret motion signals, that are
typically unstable and depend on the features of individual
learners. Therefore, an online classification of the motion
signals must be performed.

Many classification techniques can be utilized. For exam-
ple, using the Bayesian classifier [23], [24], it is possible to
estimate the probability of affiliation of the signals to prior
defined classes. A probabilistic approach is also utilized in the
Hidden Markov Model (HMM) [25]. Other widely applied
methods use Artificial Neural Networks (ANNs) [3], [24],
[26] or Support Vector Machine (SVM) [2], [18]. According
to another methodology, the signals may be modeled and
recognized by the use of an ontology [27]. A relatively simple
idea is employed by a wide group of pattern recognition
techniques named minimal distance methods. This involves
the comparison, using a predefinedmetric function [28], of an
unknown signal to several pattern signals, who are known to
belong to previously defined classes [24], [29].
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FIGURE 3. Diagram of the signal flow of the prototype teaching system. The thick gray arrow represents the output of
the classification process that is used to select the teaching algorithm.

In order to conduct the classification task, a process of
knowledge acquisition should be performed. We assume that
this will be done with the participation of the teacher (expert).
The expert can examine a set of exemplarymotion signals (we
will call them objects) and assign them to defined classes.
As a result, a sequence of pairs: (object , label_of _class) is
created. Such a string, called a learning sequence, can be
utilized in the process of ANN training, in tasks of creating
pattern objects (in minimal distance methods), etc. [24], [28].
The expert contributes to building the learning sequence,
however, he or she should also be able to modify the created
classes in order to adapt them to changing conditions of the
learning process. To do this, the representation of system data
should be as simple as possible.

The creation of specialized learning algorithms is another
important problem, which must be performed with the par-
ticipation of experts [8], [10]. However, the experts might
not necessarily perceive critical relationships between the
aspects of the automatic teaching process, and generally may
be unprepared for the challenges of creating new, unconven-
tional algorithms of teaching. Therefore, the use of methods
and tools supporting the construction of the automatic teach-
ing system has an enormous significance.

D. THE AIM OF THIS STUDY
With a view of building a motor learning system, we have
many essential questions to answer, e.g., What type of sensor
and actuator subsystems should be used? Or, what signal pro-
cessing methods have to be applied? However, as the above
review showed, the key problems are the appropriate use of
motion signal recognition methods and the proper utilization
of expert knowledge. We believed that the expert aiming to
build the effective motor learning system should utilize the
extended description of the teaching process delivered by the
classification procedures.

The main research question was formulated as follows:
Can the classification methods be considered to be an

effective tool to construct an automatic system for learning
the synchronous motions?

A major goal of the article is to answer this question.
To this end, the author of the paper designed and implemented
a prototype motor learning system. During the initial test,
certain variants of the methods were chosen. Then, using
a selected motor task an interaction of the teaching system
with the learning persons was tested. The tests were analyzed
with the help of statistical methods. The result was positive;
thus, we can answer in the affirmative to the main research
question. This is an important contribution to the existing
research.

With the aim of replicating the experiment, key elements
of the built prototype systemwere described. This description
may be regarded as an additional goal of the paper. How-
ever, due to the limited space, some issues were omitted.
These mainly concerned the standard algorithms of signal
processing.

The article is organized as follows. After the introduction,
the main matters involving the classification task and teach-
ing algorithms are presented (Section II). Section III presents
results of testing the system work. Major outcomes of the
article are summarized in Section IV.

II. THE AUTOMATIC TEACHING SYSTEM
Fig. 3 depicts a simplified signal flow diagram of the pro-
posed automatic motor learning system. The general system
structure from Fig. 1 was enriched by a block containing
a number of teaching algorithms (surrounded by a double
line) and by modules performing signal classification and
producing a description of the teaching process. The system
is a discrete control system [22], that operates in real time
(the sampling rate is 100 Hz). In each cycle, the follow-
ing major operations are performed: reading the signals of
motion, signal preprocessing, classification, and the execu-
tion of the automatically chosen teaching algorithm. The nor-
mal system operation, i.e., the teaching of the human motion
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activity, is preceded by a stage of system learning in which
the expert knowledge is used. The prototype of the system is
implemented on a laptop computer (I5 processor, 2.4 GHz).
The software was written in C++ language.

A. THE MOTION SENSORS
The teaching system should be able to work in an out-
door environment (see Subsection I-A). For this reason, the
MEMS inertial sensors were applied (in the prototype sys-
tem VN-100 sensors were used [30]). Each sensor, which
is equipped with a microcontroller, sends motion signals to
the main minicomputer of the system. The acceleration is
sent as a vector as = [ax ay az]T of real components. The
rotation from the gyroscope is provided as a quaternion qs =
(vx , vy, vz, k). It allows for the calculation of a rotationmatrix,
let it be denoted by A, representing the sensor’s orientation
expressed in an Earth–fixed reference frame [31]:

A=

2(k2 + v2x)− 1 2(vxvy − kvz) 2(kvy + vxvz)
2(kvz + vxvy) 2(k2 + v2y)− 1 2(vyvz − kvx)
2(vxvz − kvy) 2(kvx + vyvz) 2(k2 + v2z )− 1


(1)

The Earth–fixed frame will be simplistically called an iner-
tial frame. Note that the vector as, obtained from the
accelerometer, is expressed in its local frame. As a conse-
quence, a calculated trajectory of themotion strongly depends
on an accidental rotation of the body part to which the sensor
is attached. Therefore, we should express the acceleration
vector in the inertial frame. We can use the matrixA obtained
from the gyroscope, that is:

ag = A−1as (2)

where ag is the acceleration vector in the inertial frame.
After subtracting the constant value of the gravitational

acceleration from the ag, we obtain an acceleration con-
nected with the motion. Then, using an integration operation,
we determine velocity and position vectors.

It should be emphasized here that the calculated values are
strongly influenced by the noise of the accelerometer and
gyroscope. In teaching system the motion signals are rela-
tively slow, so the noise can be reduced using a low-pass filter
(in the presented system, the IIR (Infinite Impulse Response)
filter [31] was utilized). For the sake of limited space we
must omit the description of other problems concerning the
accuracy of the obtained motion signals [30], [31].

B. THE ACTUATORS
Considering the requirements for fast and intuitive infor-
mation transfer, the vibrotactile effectors were imple-
mented. Each actuator includes four miniature vibrotactile
devices (units) containing a permanent magnet and moving
coil. With the help of a small tappet, the vibrations are
transmitted to the person’s skin. The units are attached to
the chosen parts of the body with an elastic hook–and–loop
strip – see Fig. 4.a. The actuators are controlled by a spe-
cialized driver (based on the Atmega 128 microcontroller),

that is connected to the main minicomputer. In typical cases,
the actuator impulses should inform the learner about the
needed direction of the corrective movement [17].We assume
that the corrective direction is an output of a particular
algorithm of teaching. This output, corresponding to the ith
actuator, can be expressed by a vector in the inertial reference
frame:

gi = [gix giy giz]T (3)

The problem is how to select which unit in the actuator ought
to be activated. First, vector gi should be transformed to
the actuator’s frame. The actuators are rigidly mounted near
the sensors; thus, using the sensor’s rotation matrix we can
calculate actuator vector wi, expressed in its local frame:

wi = Agi (4)

The actuator units are placed on a ring located on a certain
plane p. It is perpendicular to some contractually defined axis
of the given body part – see Fig. 4.b. Then, we can project
vector wi onto the plane p, receiving the vector:

oi = Fwi (5)

where oi is the actuator’s vector on the plane p, and F is a
2× 3 transformation matrix.

A direction of the vector oi on the plane p determines the
index of actuator’s unit to be activated.

Let us note that the describedway of installing the vibrotac-
tile devices cannot stimulate motion in the normal direction
of the plane p. This direction may be achieved by installing
a supplementary actuator on a selected adjacent body part.
For instance, suppose the additional actuator is installed on
the arm, between the biceps and the elbow. Thus, the forearm
(Fig. 4.b.) can be stimulated to move in parallel along its axis,
that is, along the normal direction of the plane p.

FIGURE 4. Actuator units (a) and an actuator band built using the elastic
strip (b).

C. THE ANALYSIS OF MOTION SIGNALS
A wide range of methods for motion signal classification are
depicted in Section I-C. The question on the choice of an ade-
quate method is broadly discussed in the subject literature [2],
[10], [18], [25], [32]. Regarding the character of the particular
motion and the sensors used, the SVM, kNN, and HMM
approaches are suggested. However, as we noted, the data
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utilized in the proposed system must be easy to interpret by
the experts. This requirement prefers classification methods
based on the minimal distance methodology. In the prototype
system a version of ‘‘k-NNModel’’ method is used [29], [33].
It requires defining the generalized and non-redundant rep-
resentation of pattern signals. But now, let us focus on the
definition of the used motion signals.

We assume that the taughtmovements have a periodic char-
acter. Let us also assume that the expert, using the knowledge
and experience, has suitably selected a number of motion sig-
nals for analysis. These signals (e.g., acceleration, speed, and
position) refer to specified coordinates of individual sensors.
Each chosen signal, denoted by Si, is represented by a time
sequence of samples:

Si = (s1i , s
2
i , . . . , s

n
i ); i ∈ K (6)

where i is a unique signal index, K is a set of indices
of selected signals, ski is the kth sample of the Si signal
(we assume that the upper index refers to the sample number
in the sequence), and n is the number of samples in the signal.

The Si sequence will be named a one-dimensional sig-
nal. We will call a set of one-dimensional signals a
multi-dimensional signal:

S = {Si : i ∈ K} (7)

In an analogous way, we define the signal patterns that we
use in the classification process. The one-dimensional pat-
tern is defined as a certain generalized signal. Additionally,
we assume that it refers to only one motion period:

Pi = (p1i , p
2
i , . . . , p

w
i ); i ∈ K (8)

where Pi is the one-dimensional pattern, pki is the kth sam-
ple of Pi, and w is the number of samples in the pattern
(we assume that this is equal to the pattern’s period).

The one-dimensional patterns are built on the basis of
one-dimensional signals - see Subsection II-E. A set of
one-dimensional patterns:

P = {Pi : i ∈ K} (9)

will be named a multi-dimensional pattern.
Let us concentrate on the knowledge representation in

the learning sequences (Subsection I-C). This should con-
sist of pairs containing examples of objects and their class
labels [24], [29]. We assume that the objects are repre-
sented by the multi-dimensional signals. Let us replace each
multi-dimensional signal in the learning sequence with the
multi-dimensional pattern that was created from this signal.
As a result, we obtain a sequence:

P = ((P1, ι1), (P2, ι2), . . . , (Pq, ιq)) (10)

where Pu is the uth multi-dimensional pattern, and ιu is a
class label, u = 1, 2, . . . , q.

Let us consider the Pu pattern from the sequence P . As a
rule, it is composed of several one-dimensional patterns. Let
the symbol Pi,u stand for a one-dimensional pattern that has

been built from the ith signal (i ∈ K), and that corresponds
to the uth element of the sequence P . Using this denotation,
we can write:

Pu = {Pi,u : i ∈ K} (11)

According to our general goal, we should perform the classi-
fication of amulti-dimensional signal that refers to themotion
at the current moment. Let this current signal be denoted by S̃.
It consists of many one-dimensional signals:

S̃ = {̃Si : i ∈ K} (12)

where S̃i = (s1i , s
2
i , . . . , s

m
i ) is a one-dimensional signal in

which the mth sample refers to the last value from the sensor.
The classification of the S̃will be performed by comparing

it to defined patterns. At the beginning, values of a certain
distance function between S̃ and all the multi-dimensional
patterns belonging to the sequence P are calculated. From
the sequenceP , we choose k elements that contain the closest
patterns. Next, the set of chosen elements is split into subsets
whose elements have identical class labels. Then, a subset
having the greatest cardinality is selected. The class label of
its elements indicates the final result of the classification.

An important problem in the described approach is the
proper construction of generalized patterns (also called
models) [33].Wewill deal with this matter in Subsection II-E.
Another problem is the appropriate definition of the dis-
tance (metric) function. Let it be denoted by d̂ . It is important
that its output be easily interpreted by the experts and that
its computation time not exceed a certain value, referring to
the sampling interval of the control system. Arguments of
the function d̂ should be a multi-dimensional signal and a
multi-dimensional pattern. They are finite sets consisting of
one-dimensional signals and patterns. Thus, the d̂ function
can be constructed by the use of a prior defined distance
function ĥ, between the one-dimensional signal and pattern.
For example, we can apply a weighted average:

d̂(Pu, S̃) =
1∑

i∈K wi

∑
i∈K

wi ĥ(Pi,u, S̃i) (13)

where Pi,u ∈ Pu is the one-dimensional pattern, S̃i ∈ S̃ is the
one-dimensional signal, and wi is the weight of the ith signal.
The function ĥ(Pi,u, S̃i) is intended to measure a

similarity between the one-dimensional pattern and the
one-dimensional signal. It may be defined in many ways.
However, its value should not be affected by linear scaling
nor by a shift of the signals (the function should have a
property of scale and translation invariance). This property
ensures a consistency of the similarity estimation provided by
the automatic system and the expert (teacher). Consequently,
it allows experts to recognize key aspects of the system and
supervise its work.

Let us focus on the way of defining the scaling and shift
operation. The result is a transformed value of a sample of the
one-dimensional pattern. For simplicity, the operation will be
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FIGURE 5. The comparison of the one-dimensional signal S and the pattern P using the function ĝ.
In the presented example: m = 300, υ = 160,b = 240,a = 1.15, c = 1, and d = 0.2. We assume that
the depicted signals are dimensionless.

denoted by scal
a,b,c,d

(P, k) and defined as follows:

scal
a,b,c,d

(P, k) = p nod(b−ak)c+ d (14)

where P = (p1, p2, . . . , pw) is the one-dimensional pattern,
w is the number of elements of P, k is the input index of the
sample (before transformation), a, b, c, and d are the values
of the scaling/shift parameters that belong to the established
sets A,B,C,D ⊂ R, respectively, and nod is a function that
performs a normalization of the sample index; the function
converts its argument (b−ak in our case) to the closest integer
number and appropriately shifts it by the period value so that
it belongs to 〈1,w〉, in which the pattern is defined.
The parameters a and b refer to scaling and shift in the

time domain (this relates to the transformation of the indices);
whereas, c and d correspond to the scaling and shift of the
sample value. The adoptedway of defining the transformation
allows for easy interpretation of the parameters a, b, c, d
(Subsections II-F and II-G).

Using the scaling/shift operation, we define the function ĝ,
which assesses the distance between the one-dimensional
pattern P and signal S, after the linear transformation of the
pattern samples. The function ĝ applies the Euclidean metric:

ĝ(P, S, a, b, c, d) =
1
υ

(
υ−1∑
k=0

( scal
a,b,c,d

(P, k) − sm−k )2
)1/2

(15)

where P = (p1, p2, . . . , pw), S = (s1, s2, . . . , sm) are
one-dimensional pattern and signal, respectively, and υ is the
number of matched samples; υ ≤ w,m.

The function ĝ computes the differences between the signal
samples, indexed by m − k and the pattern samples having
index nod(b−ak) (14). Thus, in each difference, we take into
account a certain jth signal sample and its equivalent in the
pattern indexed by nod(b−a(m− j)). The way of calculating
the function ĝ is illustrated in Fig.5.

Finally, using ĝ, we can define the distance function
ĥ between the current one-dimensional signal S̃i and the
one-dimensional pattern Pi,u, after their matching:

ĥ(Pi,u, S̃i) = mina∈A, b∈B,
c∈C, d∈D

ĝ(Pi,u, S̃i, a, b, c, d) (16)

In order to calculate the ĥ function we must establish the
values of four parameters: a, b, c, and d that minimize ĝ.
There are a number of methods to perform this minimization.
Due to limited space, we can only outline two that have been
successfully implemented in the prototype system.

The first refers to a simple exhaustive algorithm [28] that
tests a certain number of values of the parameters a, b, c, d .
Let us assume that the sets A,B,C,D (to which the param-
eters belong), are finite. The number of necessary compu-
tations of the ĝ can be estimated by the product of the
cardinality of these sets. In our case the number is on the
order of 200 thousand. Nevertheless, by writing the program
code in a time-optimized assembly language and by normal-
izing the signals, we can achieve a calculation time of the ĥ
function on the order of 0.8 ms (for a I5 2.4 GHz processor).

For many cases, this result is acceptable. However, when
we compare many one-dimensional signals, we must use the
faster method (e.g., for 10 signals the total computational
time, which equals about 8 ms, is close to the sampling inter-
val of the whole discrete system - 10 ms, see the beginning
of this section). In this situation we use an effective, heuristic
method [28] of calculating the minimum (16).

The analyzed signals are periodic. Moreover, we can find,
in them, certain characteristic artifacts (objects) related to the
signal extremes, the rapid decreases, etc. Let us consider an
artifact in the current signal. Its calculated position, expressed
by a signal index, is denoted by ζsignal . Let us conjecture that
this artifact corresponds to a certain artifact in the pattern,
that has index ζpattern. If some signal and pattern areas are to
match each other, the expressions:

scal
a,b,c,d

(P, k)−sm−k , see (15), should haveminimum values.

Consequently, considering the method of scaling the signal
and pattern indices (see the comments below (15)), the index
of the artifact on the pattern should be: ζpattern = nod(b −
a(m− ζsignal)).
Let us assume that another artifact of the current signal also

has its equivalent in the pattern. If the hypothesis regarding
the mutual correspondence of two pairs of artifacts is true,
we can correctly calculate the parameters a and b. In an anal-
ogous way, using the values of the artifacts, we can calculate
the parameters c and d .
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The genuineness of the hypothesis is easy to establish. It is
sufficient to calculate the matching of the signals through the
calculation of the function ĝ for the values of the param-
eters a, b, c, and d associated with the given hypothesis.
There exists a limited number of possible hypotheses that
correspond to the combinations of artifacts (in our case, this
number does not usually exceed 50). For every hypothesis,
we calculate the value of the function ĝ, and select the hypoth-
esis for which this value is the smallest. Using the described
method, we achieve very short computational time of the ĥ
function, equal to approximately 0.015 ms.

However, there are situations in which the above
method fails (e.g., the random appearance of an additional
extremum). The fact that such situations arise can be revealed
by comparing the value of the ĥ for the best hypothesis with a
certain established threshold. In these situations we can limit
the number of compared signals and use the slower exhaustive
algorithm.

D. CLASSIFICATION BASED ON A SEQUENCE OF RESULTS
The classification task is performed in each sampling interval
of the discrete controller. Thus, we can derive an aggregate
result of the process, based not only on the last cycle but also
on the results gained in the earlier steps. The results obtained
in successive cycles form a sequence:

3 = (ι1, ι2 . . . , ιr ) (17)

where ιi is the class label and r is the number of elements in
the sequence.

For example, the 3 may contain elements: (1,2,0,0,2,2,2).
The computation of an output, ‘‘aggregate’’ class label can be
performed according to several strategies. We can point to a
few general rules:

– the output should depend on the number of elements in
the 3, that possess the specified class label,

– an impact of the individual element should be reduced
over time,

– a validity of the element ought to be related to the
value of the distance function calculated in the classification
process.

One of the approaches that meets the above requirements
is based on a certain semi–histogram function:

his(κ) =
r∑
i=1

q(κ, ιi)wi; q(κ, ιi) =

{
1, if κ = ιi
0, otherwise

(18)

where κ is an index of the class, ιi is the ith element of 3,
wi is the weight of the ith individual result: wi = i

r(δ+d̂ outi )
,

δ is a chosen small constant, and d̂ outi is the value of the
distance function d̂ , referring to the nearest pattern in the
P sequence (10), and gained from the classification process
in the ith cycle.
The choice of the output class is made according to the

maximum semi–histogram value.

E. BUILDING OF PATTERNS
At the beginning of the pattern creation process, the learner
performs a series of movements, which are recorded in
the learning sequences. The teacher/expert establishes the
class label of the conducted motions, but also manages the
whole process in order to generate representative examples
of classes.

Let us focus on a chosen one-dimensional signal from
the signals recorded in the learning sequence. In the sig-
nal, we find fragments corresponding to periods of move-
ment [35]. Then, using an arithmetic mean, an average signal
shape is calculated. Next, a certain number of fragments that
have the most distance (in terms of ĥ function) to the average
signal is rejected. The second averaging of the remaining
fragments leads to the pattern creation. The above process
refers to a simple clusteringmethod [36]. The quality, denoted
by Qp, can be assessed by the mean distance between all the
remaining fragments (again, the ĥ function is used). We can
apply the pattern creation process to several one-dimensional
signals, as a result of which, a multi-dimensional pattern
is created. It is important to notice that the expert can
upgrade the system by constructing new patterns. Accord-
ingly, the system can be adjusted to the time–varying process
of teaching.

F. PATTERNS OF CLASS, SHAPE, AND TIME
We can distinguish several kinds of teaching algorithms
that refer to controllers of position, speed, or motion
accuracy [17]. Let us focus on a simple algorithm of the
position control. An input of the algorithms is a motion
error, which can be calculated as a difference between the
motion signal at the current moment and the sample value
corresponding to that moment, in a specific, one-dimensional
pattern. Such kinds of patterns will be called shape patterns.
Thus, we need to know an index of the sample in this pat-
tern that refers to the present moment. This index will be
designated by the term ‘‘time point’’. It may be calculated
through the matching of the current signal to another specific
one-dimensional pattern called a time pattern. The above pro-
cess can be performed by the minimization of the ĝ distance
function. As a result, we obtain the set of fit parameters
(a, b, c, d (16)). The parameter b can be interpreted as the
index in the time pattern that refers to the present moment
(see (15) and Fig.5, sample indices for k = 0). Accordingly,
the b directly refers to the time point.

To sum up, we can define three kinds of patterns:
- class patterns: the earlier introduced patterns defining

classes of motion signals,
- shape patterns: the patterns defining the correct signal,

and
- time patterns: the patterns designated to determine the

time point.
In an analogous way to the case of the class patterns,

we can define multi-dimensional patterns of shape and
time.
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On the grounds of the multi-dimensional time pattern
(i.e., a set of one-dimensional time patterns) we can establish
a more reliable time point value, resistant to signal noise
and accidental moving of the learner’s body parts. First,
we calculate time point values for all one-dimensional time
patterns (by minimizing the ĝ, see above). Let the calculated
individual results create a sequence: (τ1, τ2, . . . , τρ) where
ρ is the number of time patterns. To obtain the value of the
more reliable, aggregate time point, we can rank these results
according to a certain reliability measure, or take a vote, etc.

Particularly, we can easily implement a method, in which
a ranking criterion utilizes distance function ĥ between the
individual one-dimensional time pattern and the current sig-
nal. Let us consider a sequence of pairs containing the cal-
culated values of time points and related values of distance
function:

2 = ((τ1, ĥ1), (τ2, ĥ2), . . . , (τρ, ĥρ)) (19)

The output, generalized value of time point is computed as a
weighted average of certain number of the best results (the
weight of the ith result is calculated as follows: wi = 1

ĥi+e
where e is a small constant).

G. CALCULATION OF THE ERROR SIGNAL
The value of the error can be calculated as the difference
between the value of the current signal and the value of the
corresponding sample in the shape pattern. This solution,
however, is sensitive to disturbances and noise. To reduce
their impact, we can calculate a mean value from a given
number of samples. A similar effect is achieved by matching
the final part of the signal and a relevant part of the pattern,
using the minimization of the ĝ function (analogously to
the time point calculation). One of the results obtained is
a value of parameter d , which can be treated as the error
signal (15). An advantage of this method is the possibility to
predict, to some extent, the error value. Using this method,
we can compute the motion errors related to all defined
one-dimensional shape patterns, obtaining an error vector:

e = [e1 e2 . . . eη]T (20)

where η is the number of shape patterns.
The vector e is applied in particular algorithms of teaching

(Subsection II-I).

H. A GENERAL DESCRIPTION OF THE TEACHING
PROCESS
The match parameters (a, b, c, and d), which have been
computed in the classification process, can be utilized in the
time point (parameter b), and errors (parameter d) calculation.
Similarly, the parameter a, which determines the scaling in
the time domain, can be used to control the proper pace of
movements. Analogously, the c parameter can evaluate the
range of the performed motions. In general, the parameters
and other variables, e.g., speeds, positions, and values of the
ĥ function, calculated at successive stages of the analysis,

provide concise information regarding the signals and the
relationships between them. This information can be uti-
lized to improve the classification process; however, it is
also applied in particular algorithms of teaching. Therefore,
we can regard this information as an extended input of the
algorithms. In summary, the input of the teaching algorithms
can be understood in the broad sense, referring not only to
the error vector but also to any data structure produced by
processes executed in the system (this property is exposed
in Fig.3 by the generalized module ‘‘creation of the teaching
process description’’). In this light, the whole system can be
considered as a set of specialized units and tools utilized to
construct the teaching algorithms.

I. ALGORITHMS OF MOTION TEACHING REFERRING TO
DEFINED CLASSES
Before proposing the teaching algorithms, we should under-
line the limitations concerning the human responses to the
actuator signals. The problems involve the proper reaction
to signals generated by many effectors in a relatively short
time. Particularly, during one period of motion (about 2–4 s),
the learner is capable of correctly interpreting the messages
from only one actuator. The messages from other effectors
have a disturbing effect. Similarly, too frequent messages
coming from one actuator are also unclear.

1) A1 ALGORITHM – SERVO–MECHANISM
We deal with an algorithm that controls the position of the
selected body part. As an input of the algorithm, we consider
the vector of error e = [e1 e2 . . . eη]T (20), which was
computed on the base of the current multi-dimensional signal
and the multi-dimensional shape pattern (Subsection II-G).
The output of the algorithm is related to the vector gi =
[gix giy giz]T (3), which determines the way of activating
the ith actuator. A relationship between the vectors e and gi
defines a character of the motion regulator; in the proposed
algorithm this is defined by a linear transformation:

gi = Yi e (21)

where Yi is a 3 × η transformation matrix (η - number of
shape patterns, (20)).

The matrix Yi determines which one of the components of
the e vector influences which component of the ith actuator.
Typically, a component of the error signal obtained from a
certain sensor affects the relevant component of a nearby
actuator (see Subsection II-B). In this case, the transfor-
mation (21) becomes a scaling function, and, accordingly,
the teaching algorithm has the character of a simple propor-
tional servo–mechanism.

Having the gi vector, we calculate the wi (4) and oi (5)
vectors, and select the vibrotactile unit in the ith actuator
to activate. To indicate the corrective direction of motion,
a sequence of short impulses is generated (typically with
the frequency of 20 Hz). Additionally, as previously noted,
we must consider the human ability to interpret the actuator
impulses. The described algorithm, in some cases, generates
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messages that force a quick change in the direction of cor-
rective movements. Such rapid changes cannot be made by
man. The problem is solved by setting a minimal interval (lag
time) between successive messages (in the prototype system
this interval equals 1.6 s).

2) A2 ALGORITHM – SYNCHRONIZATION OF PERIODIC
MOVEMENTS
Information provided to the subject during the motion teach-
ing can be regarded to be a temporal sequence of instructions
describing the moves needed. Instructions delivered by haptic
stimuli are often imprecise; this is especially true for poorly
innervated body parts. However, a transfer of information
regarding an exact moment at which the move should occur
(e.g., a simple indication of this moment), can be fast and
reliable. Let us use this property to design a regulator that has
input and output corresponding to time moments.

Let us denote bym, a certain move (e.g., an elbow flexion),
which should be properly synchronized with the movements
performed by other body parts. The appearance of the m can
be detected by analyzing the specific features in the signal
(e.g., a rapid increase in the signal value). Suppose, that the
m is occurring in the present moment. Then, the current value
of the time point (Subsection II-F), calculated according to
the defined time pattern can be regarded as the position of
the m in the current movement period. This position, let it be
denoted by tcur , is expressed by the index in the time pattern.
Additionally, let tset be a given by the expert moment when
the move m should occur. A difference: eph = tcur − tset we
will define as a phase error.

This value can also be calculated by another method that
does not require the determination of tcur nor tset . Let us
assume that a certain one-dimensional signal in which the
movement m is observable, is utilized to compute an ‘‘indi-
vidual’’ time point. Simultaneously, we have, at our disposal,
the reliable, general time point value (calculated on the base
of other signals, Subsection II-F). The difference between
these two time points can be considered as the phase error.
Let us define an additional valid point in time. This is

a moment, denoted by tcom, when the corrective command
should be sent to the learner (the tcom is also expressed by
the index in the time pattern). A simplified example of the
location of the defined moments is presented in Fig. 6.

FIGURE 6. Exemplary location of the moments defined in the phase
regulator; tcur is the moment of the performed movement, tset is given
by the expert moment in which the movement should occur, tcom is the
calculated moment of sending the command, and t ′com is the moment of
sending the command that refers to the next period of the motion.

The moment of command sending tcom may either precede
or follow the tcur . However, there is a certain difficulty:
the tcom may correspond to the ‘‘past’’ in relation to the
tcur . This problem can be solved by taking advantage of
the periodic character of the motion. Sending the command
(the moment tcom) can be performed in the next period of the
move – see Fig. 6.

Let us relate the moment tcom to the phase error eph by a
function:

tcom = freg(eph) (22)

If the freg has a linear character, we obtain a proportional
phase regulator. In many practical cases, we can use a simple
strategy, in which the function freg has only two output values
corresponding to two clear commands.

Similarly to the A1 algorithm, due to human limitations,
the minimal time interval between sending successive com-
mands is defined (it is equal 1.9 s).

III. TESTING OF THE SYSTEM
A. MAIN GOAL OF THE EXPERIMENT
The main aim of the conducted test was to evaluate the
general idea of using an array of tools and methods to
design a system for teaching synchronous motion. With this
aim, two distinct approaches corresponding to two teaching
methods were tested and compared. The first one, denoted
by Mclass, was designed according to the idea described,
and this approach used the results of the signal classification
to online select the teaching algorithm. For simplicity, only
two teaching algorithms (corresponding to A1 and A2) were
automatically selected. The second method, utilized a single
value of the eph phase error to select the proper algorithm
(A1 and A2 were also utilized). The method will be denoted
byMsgv (single decision variable).
The details of the test are described in the following points,

and now we depict its basic outline. A specific exercise
was selected for testing both methods. It involved teaching a
synchronization between the movements of the person’s left
hand and the right foot (the person was sitting on a chair).
The hand moved according to a semi–ellipsoidal trajectory
with a straight line at the bottom. The trajectory, projected
on a vertical plane passing through the learner’s shoulder
blades, is illustrated in Fig. 7.a. At a precisely defined point
in the motion period, the foot should perform a fast, short
move up and down. The described exercise is an example of
a broad class of synchronous movements taking place during
the control of specific machines and mobile robots.

B. PARTICIPANTS
All participants of the experiment were volunteers; they
were students of Automatics and Robotics from the Cra-
cow University of Technology. The participants, 2 women,
14 men, aged 22—25 years, were healthy and were not aware
of the test goals. There were three excluding criteria: left-
handedness, declared neurological disorders, and abnormal
motor control of the extremities. Prior to the experiment,
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FIGURE 7. The movement of the left wrist; (a) the movement that was utilized to build the pattern of the class C1,
a disappearing trajectory color reflects the passage of time, the axes’ units are 0.1 m; (b) the symbolic map of the
pattern of the C1 class; (c),(d) symbolic maps of the patterns of the C2 class.

the participants provided their informed consent. The subjects
were divided at random into two equinumerous groups (each
group contained one woman).

C. TESTED METHODS OF TEACHING
1) TEACHING METHOD Mclass
The Mclass method of teaching used the results of the clas-
sification process. The expert, after a short preliminary test,
created two classes of signals and ascribed them to the two
teaching algorithms.

2) C1 CLASS OF MOVEMENTS
The first class, denoted by C1, corresponded to motions that
refer to minor, irrelevant errors of hand movement (in respect
to the defined trajectory), and correctable phase errors of the
foot motion.

The C1 class was constructed on the basis of a single
multi-dimensional pattern. Fig. 7.a illustrates the movement
associated with this pattern (the depiction was created by the
graphical interface of the system). Additionally, a symbolic
chart of this pattern is shown in Fig. 7.b.

We assumed that when the current movement belonged
to the class C1, the more substantial error was the phase
error eph, which can be successfully corrected by apply-
ing the A2 algorithm. The phase error eph was calculated
using the vertical acceleration signal of the learner’s right
foot (the signal was provided by the VN-100 MEMS sen-
sor). The calculation was based on the signal matching
method, which used the value of the ‘‘individual’’ time point,
Subsection II-I.
The phase regulator was defined by a simple function

that had only two output values determining the moments
of the actuator activation (see (22)). The specific values of
parameters defining this function are given in Fig. 8. The
generated impulses were directed to the actuator that was
fixed to the foot of the learner.

FIGURE 8. The parameters defining the phase regulator, the range
(−e1, e1) refers to the inactive area (in which the actuators were not
activated); e1 = 11, t1 = 78, t2 = 114.

3) C2 CLASS OF MOVEMENTS
The second class, which is denoted by C2, corresponded to
the typical errors observed in the learners’ movements. In the
majority of cases, the improper movement was characterized
by a lack of the straight section in the hand trajectory and
a decrease in the hand’s speed just before the moment of
the foot movement. The hand errors coexisted with relatively
great phase errors. The expert decided that the hand trajec-
tory errors should first be corrected using the A1 algorithm
(A2 was inactive).

The C2 class was constituted according to two patterns
that are examples of the errors described. The patterns refer
to premature and delayed foot movements in relation to
the movements defined by the class C1 (the delays were
of ±0.3 s). All the defined patterns are presented in a sym-
bolic manner in Fig. 7. The executed A1 algorithm utilized
the VN-100 type sensor (it was attached to the learner’s wrist)
and the actuator indicating the desired direction of the motion
(also mounted on the wrist, see Fig. 4).

At the end of this description, let us highlight the signif-
icant aspects of the system building. The expert who deter-
mined the classes and teaching algorithms was supported by
the analysis of the motion parameters carried out during the
preliminary test. In our case, these were: the peak acceleration
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of the hand, its speed (the expert can analyze graphs of
patterns), the calculated period of the created patterns, and the
values of the distance function ĥ between the tested signals
and patterns. The expert took into account the quality of the
created patterns expressed by the parameter Qp (see Subsec-
tion II-E). Further, the expert decided that themotion could be
effectively taught by particular algorithms. He adjusted them
and set their parameters (the parameters of the phase regulator
were selected based on the phase errors observed in the tested
movements). In summary, the system provided information
and tools that could be used for its development.

4) TEACHING METHOD Msgv

The second method,Msgv, also used the algorithms A1 (tra-
jectory control) andA2 (phase control). However, the method
did not perform the signal classification. The choice between
A1 andA2 wasmade according to the value of the phase error
(this error was computed by the method of signal matching;
it did not use the classification process). If the absolute value
of the eph error exceeded an experimentally chosen threshold
(equal to 17 sample intervals), the algorithm A2 was exe-
cuted. Thus, when the trajectory and phase errors occurred
simultaneously, only the phase errors were corrected.

D. TEST PROCEDURE
In order to only examine the transfer of learned skills, and
not skill retention [1], [37], the test duration was reduced to
a few minutes. The test procedure consisted of the following
phases:

• Phase 1.Using the automatic system for motor learning.
The first group of subjects was taught by the use of the
Mclass method; the second group was taught using the
Msgv method. This phase lasted 3 min.

• Phase 2. 1–minute break.
• Phase 3. Testing of the learned skills.
The learned movements were repeated; however,
the actuators were switched off. The duration of this
stage was 2 min.

E. OUTCOME MEASURES
The motor learning efficiency should be evaluated by mea-
suring the results of the performed motor task. That final
assessment is typically approximated by a number of parame-
ters, for instance: movement time, velocity, positionmatching
errors, torques, and forces [1], [37]. Moreover, having at our
disposal digital signals of motion (in the described system
all signals were registered during the course of the test)
we can easily compute the learning parameters defined in
time and frequency domains (RMSE errors from selected sig-
nals, amplitudes corresponding to specified frequency bands,
etc.) [37], [38].

In order to evaluate the Mclass and Msgv teaching meth-
ods, the accuracy of the motion synchronization may be
assessed. Let us introduce a parameter, called Fph, that is
based on the RMSE of a sequence of phase errors: eiph; i ∈ U ,

relating to the foot motion. This sequence is defined using
a string of indices U , that refer to the consecutive sampling
intervals of the discrete system. We assume that the U cor-
responds to the signal range: 〈0.3 n, 0.8 n〉, where n is the
total length of the signal. We also assume that the sequence
of errors is calculated during the third (test) phase of the
experiment. The Fph parameter is computed as follows:

Fph = RMSEi∈U (eiph) =

(
1/n

∑
i∈U

(eiph)
2

)1/2

(23)

However, we should also evaluate the accuracy of the hand
motion.We can calculate the hand’s position errors in relation
to the relevant shape patterns, obtaining the sequence of
errors: eitr ; i ∈ U . Then, analogously to (23), the parameter
assessing the accuracy of the hand trajectory can be defined as

Ftr = RMSEi∈U (eitr ) (24)

Using a weighted average of the parameters Fph and Ftr we
can define the aggregate error of the movement. Neverthe-
less, in order to more precisely estimate the total errors we
should calculate the RMSE value of a function that assesses
a combined error in each individual sample of the signal.
Accordingly, we define the parameter:

F = RMSEi∈U (µ(ei)) (25)

where ei = [ei1 . . . e
i
v] is the vector of error components

corresponding to the ith moment, v is the number of vector
components, and µ is the norm function that outputs the total
error at the distinct moment.

We can define the function µ using p-norm: µ(ei) =(∑v
k=1 |e

i
k |
p
)1/p

. By the choice of a suitable value of the
constant p, we can establish the impact of the greatest vector’s
component on the output value of the norm.

In the performed tests, p was equal to 1 (this refers to the
Manhattan norm, which emphasizes the influence of rela-
tively small components). The argument of the norm µ was
a vector having two components, referring to the phase (eiph)
and hand trajectory (eitr ) errors, i.e.,

ei = [αeiph βe
i
tr ] (26)

The scale factors α and β determined the influence of the eiph
and eitr errors on the µ value, and consequently on the finalF
value. In order to illustrate this impact, the F was computed
for two pairs of values: α = 1, β = 4 and α = 1, β = 10.
These two obtained efficient parameters are denoted by F4
and F10, respectively.

F. DATA ANALYSIS
Table 2 presents the calculated values of the Fph, F4, F10,
and Ftr learning efficiency parameters for two groups of
subjects corresponding to two learning methods (theFph was
expressed in seconds, reflecting the sampling rate= 100 Hz;
the unit of Ftr is meter, re-scaled in the table to millimeters;
F4 and F10 are considered dimensionless).

141418 VOLUME 8, 2020



K. Wójcik: Pattern Recognition Methods as a Tool to Build an Automatic System for Learning Coordinated Human Motions

TABLE 2. The Fph, F4, F10, and Ftr parameters of teaching efficiency related to the teaching methods Mclass and Msgv .

The comparison of the groups of data will be conducted
by the use of the Student’s t-test (a two-sample location test).
However, taking into account the fact that the data were the
results of the discrete and nonlinear processes, we should
check the conditions for using the t–test. Two groups of data
should have a normal distribution and homogeneous vari-
ances. These requirements were verified by the Shapiro-Wilk
and Levene’s tests, respectively. Table 3 depicts computed
values of statistics related to both tests, and their critical
values that correspond to a confidence level 0.95 (in the case
of Levene’s test the value of statistic should be less than the
critical value, in Shapiro-Wilk test - greater). According to
the test results we can apply Student’s t-test only for the
parameters F4 and F10.

G. DISCUSSION
The calculated values of Student’s t distribution, and the cor-
responding p-values are presented in Table 3. On the basis of
Student’s t-test, we rejected, with an error probability of 0.02
(p-value), the hypothesis claiming that the F4 efficiency of
both teaching methods is equal, favoring a hypothesis stating
that the efficiency of method Mclass is greater. We can for-
mulate the analogous statement for the efficiency parameter
F10 (p-value= 0.048). The above results clearly indicate the
effectiveness of the proposed tools for building the teaching
system. This can be considered to be the main outcome of the
performed experiment. Let us now discuss a few additional
issues. We will organize them in the following points.

1) MOTION ERRORS, INADEQUATE MESSAGES, SYSTEM
STABILITY, AND PROPER SELECTION OF THE TEACHING
ALGORITHM
In both teaching methods, relatively great motion errors
were observed. Particularly in the case of the phase error
(parameter Fph) the mean error was equal to 0.31 s for the
Mclass method and 0.43 s for Msgv. Similarly, the mean
errors of the hand trajectory (parameter Ftr ) were: 48 mm
and 54 mm. The algorithms A1 and A2 utilized meth-
ods based on the signals matching (using the function ĝ
(15)). As a result, both the algorithms were sensitive not
only to improper signal timing but also to irregular sig-
nal amplitudes. As a consequence, the output signals of
the algorithms were often generated too early or too late.
The incorrect, confusing instructions sent to the learner
were equivalent to disturbance signals. Using the terms of

the control theory, the incorrect output of the controller
(see Fig. 3) can cause an instability of the whole learning sys-
tem. This is particularly true for the objects being controlled,
i.e., the humans, which have a delay time and generally a
non-stationary character [22].

We can minimize these effects by using properly selected
teaching algorithms. It seems, that the choice can be made
according to the value of the phase error (Msgv method).
This simple decision-making does not take into account the
many properties and relationships between the movements
performed. For example, as the observations of the subjects
showed, the delayed footmovement not only caused the phase
error but also changed the trajectory of the hand. The expert
can detect this situation, create a suitable motion pattern, and
associate it to the proper algorithm.

The created patterns constituted an advanced description of
the motion signals, which included non-obvious relationships
andmotion properties that were difficult to express and define
in an analytical manner. The usage of this knowledge resulted
in a less chaotic character of the learners’ movements in
response to the teaching system messages. This effect was
visible in a lower value of standard deviation of all the param-
eters for the method Mclass in comparison to the Msgv (see
Table 2,Mclass : 7.4, 6.2, 12, 15, Msgv : 19, 18, 27, 28).

2) DIFFICULT READING OF HAPTIC MESSAGES, PERIODIC
NATURE OF MOVEMENTS, INSTANT CORRECTION OF
MOTION, AND MOVEMENT SYNCHRONIZATION
Teaching fast motions required rapid messages from the
vibrotactile effectors. However, sending messages too fre-
quently had a disturbing effect (Subsection II-I). This was the
main reason, in addition to the problems of generating inad-
equate messages, for observed incorrect student responses
to the teaching system. The erroneous reactions were of a
non-stationary nature, which caused the t-test for all effi-
ciency parameters could not be used (see the values of the
Levene’s and Shapiro-Wilk statistics, Table 3).
The way to overcome this serious problem was to use lag

times between successive messages. Their necessary values
were relatively high (they were chosen by the expert who
observed the learners; the lag times were 1.6 and 1.9 s, for
A1 and A2 algorithms respectively, Subsection II-I). A high
value of lag times can result in key messages not being sent.
The question arises here, whether the length of the lag time
should be automatically selected depending on the type of
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TABLE 3. The calculated values of the statistics related to Levene’s, Shapiro-Wilk, and Student’s t-tests; the values correspond to particular parameters
and methods.

the movement? In this context, we can note that with the
approach described in the article, it is possible to classify
these movements (using additional classes) and adjust the lag
time accordingly.

In the tested teaching system, the problem of adverse
mutual influence of haptic messages was also minimized
by simplifying the form of these messages (A2 algorithm).
Additionally, the periodic nature of the movements allowed
for repetition of the messages at a suitable moment of the
period. This enabled almost instant correction of the taught
movements. The forced quick reactions make it possible,
to some degree, to modify motor programs stored in the
human memory. The programs, described by Schmidt and
Lee [1], are responsible for the very fast movements, and are
crucial for learning the movement synchronization.

The problems of interpreting the messages may also be
overcome by the use of additional senses, such as sight or
hearing. However, this solution extends the human reaction
time and engages the person’s mental attention. Therefore,
in the automatic learning system implemented for sports and
machine operating tasks, it can be applied in a limited scope.

3) CALCULATION OF TEACHING EFFICIENCY PARAMETERS
The mean values of the parameter Fph that assessed the
phase error were about seven times greater than the trajectory
parameterFtr expressed in meters (Table 2). Therefore, using
the values α = 1 and β = 10 in the vector ei = [αeiph βe

i
tr ]

(26) we obtained slightly higher relative impacts of the tra-
jectory errors, in comparison with the phase errors, on the
final F10 parameter. Analogously, the parameter F4, where
α = 1, β = 4, to a greater extent depended on the phase
errors. Using several kinds of variables describing themotion,
we were able to effortlessly construct and employ parameters
that assessed the particular learning tasks.

4) EMBEDDED AND PERSONAL MOTOR LEARNING
SYSTEMS
The described approach may be applied in two kinds of motor
learning systems. The first uses several motion sensors and
actuators, and performs classification of many signals. It can
be implemented as an embedded system cooperating with
control systems of several types of machines and vehicles.
This makes it possible to acquire the system knowledge
(patterns of proper movements) from experienced operators.
In addition, the training of beginners can be performed in a
real environment. The second type of system (which uses a

limited number of sensors and actuators) relates to miniature
‘‘personal’’ teaching systems for rehabilitation and sports.

IV. CONCLUSION
Building an effective, automatic motor learning system for
fast and synchronousmovements is a serious challenge. How-
ever, as the author demonstrated using the results of the
conducted test, this task may be accomplished by the applica-
tion of several tools, particularly related to the classification
methods. Consequently, the answer to themain research ques-
tion: ‘‘Can the classification methods be considered to be an
effective tool to construct an automatic system for learning
the synchronous motions?’’ is affirmative.

The paper described key properties of the system and
provided ways to achieve them. Their articulation can be
treated as the important outcome. In this context let us itemize
the most essential matters. The system was based on expert
knowledge and experiences. The acquisition and applica-
tion of this knowledge required a suitable communication
between the expert and the system, with the use of sev-
eral concepts that described learning process (e.g., class and
shape patterns). The expert improved the teaching algorithms
using an augmented description of the entire learning process,
whichwas provided by the classificationmethods. The results
of the classification process were utilized to select the teach-
ing algorithms. Haptic messages were used to ensure the fast
communication between the learner and the system.

Moreover, we can extend the last statement by a significant
conclusion. The usage of haptic feedback in teaching very fast
movements that refer to trajectory tracking is problematic.
This is mainly caused by human limitations in detecting fast
haptic signals. However, in the task of teaching the syn-
chronization of movement, the impact of these limitations is
reduced.

The general ideas presented in the paper can be utilized
to create two types of motor learning systems. Considering
the size of the system, both personal learning systems (for
rehabilitation and sports) and embedded teaching systems
(integrated with control systems of machines) can be built.

The conducted test of the prototype disclosed many prob-
lems and pointed to necessary future modifications. The
essential enhancements should include creating teaching
algorithms that minimize errors of reading the haptic mes-
sages and developing algorithms to edit the class and shape
patterns in order to adapt them for the individual features of
the learners. Another improvement ought to be the creation of
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a software repository containing the verified algorithms for
specific learning tasks.
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