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ABSTRACT The access of photovoltaics can reduce the carbon emissions of the integrated energy system
and can also improve the economics of terminal energy supply, but the uncertainty of photovoltaic output
also brings greater challenges to the optimal operation of the system. This paper focuses on coordinated
optimization for the multiple energy systems in consideration of demand response. Latin hypercube sam-
pling and the K-means algorithm are used to generate acceptable scenarios to deal with the photovoltaic
uncertainty. Demand response based on Time-of-Use (TOU) electricity price is employed to realize the peak
load shifting, and in consequence to improve the system operation. The optimization objective is to minimize
the operational cost, subject to the constraints of electric grids, natural gas grids, and hot water pipeline grids.
Due to the nonconvex constraints of these grids, the constraints are relaxed by means of the mixed integer
linear programming approach, and the whole problem is established as a mixed integer linear programming
model. Case studies show that demand response in each energy system and the coordinated optimization
between the multiple energy systems can reduce the operational cost of the whole system. Even though the
photovoltaic uncertainty results in a higher operational cost, the system has a more reliable operating point.

INDEX TERMS Integrated energy systems, multiple energy stations, multiple energy flow model,
photovoltaic uncertainty, demand response.

I. INTRODUCTION
Compared to the conventional energy supply, multiple energy
sources and their coordinated operation in the integrated
energy systems can improve the efficiency and the economics
of the whole system and the terminal consumption [1]. It is a
trend to coordinate multiple energy stations in an integrated
energy system in consideration of users’ higher requirements
on energy consumption, and therefore it is significant to
investigate the coordinated operation of the energy systems.

Combined cold heat and power (CCHP) units, gas boilers,
electric boilers, heat pumps, electric refrigeration devices,
power to gas devices, electric energy storages, heat storage
tanks, and ice storage tank [2]–[5] are common devices in
the integrated energy systems. CCHP units can be coal-based
draw condensing and back pressure units [6], [7] as well
as gas turbines and gas internal combustion engines [8], [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Elizete Maria Lourenco.

Different units can be used in different scenarios [10]. For
example, coal-based draw condensing and back pressure
units are usually used in large thermal power plants [11], and
the gas turbines are usually deployed in medium-sized power
plants [12]. With the development of manufacturing tech-
niques, the gas turbines with small capacities become popular
[13]. There have been many research studies on the physical
models of the integrated energy systems. In consideration of
different dynamic responses of electric networks, natural gas
networks, and heating/cooling networks, different dynamic
models are established to integrate the control systems [14].
The steady-state models are used in [15], [16] to obtain the
optimal scheduling with the objective of system economics.
Due to network limits, the impacts of the networks of the
integrated energy systems are investigated [17]–[19]. For
example, the impacts of the natural gas grids on the elec-
tric network are analyzed in [20], in which the gas flow in
each pipeline is modeled by means of the piecewise linear
programming approach. In [21], the thermal model and the
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hydraulic model of the hot water pipelines are investigated to
obtain the optimal operational costs with the electric grids.

In addition to accurate system modeling, accurate rep-
resentations of uncertainty and demand response also have
a critical impact on entire system optimization. In the
integrated energy systems, there are many energy sources
with high uncertainty, resulting in negative impacts on sys-
tem operation. In consideration of high uncertainty, many
research studies investigate the impacts of renewable uncer-
tainty on system operation [22]–[26]. A chance-constrained
programming model is proposed to deal with scheduling
electrothermal energy systems with wind power, and the
model is transformed into mixed integer linear programming,
which can be easily solved [27]. With the upper level used
to maximum the utility benefits and the lower level used to
maximum the social benefits, a two-stage stochastic model is
established to schedule the system in consideration of wind
power [28]. In consideration of uncertain states of storages
in the integrated energy system, [21] investigates a robust
model for integrated power, gas and heat grids. A novel
method based on information gap decision theory to evaluate
a profitable operation strategy is proposed in [29] and [30],
and furthermore demand response is considered in [30].

The integrated energy systems include multiple kinds of
loads, e.g., gas loads and power loads. Compared to one
conventional isolated system, loads in the integrated energy
systems can be scheduled [31], [16]. Demand response of
these loads can contribute to the peak load shifting, which
makes the entire system more economic [32]. Interactions
between different energy loads are analyzed in [33], and a
game-based demand response in consideration of energy hubs
are discussed. [34] focuses on the economic dispatch of the
integrated energy systems with demand response.

At present, there are many research studies on modeling
and scheduling of a single energy station. However, few stud-
ies focus on multiple energy stations and the impacts of their
interdependency on the entire system operation. This paper
focuses on coordinated scheduling for the integrated energy
system with multiple energy hubs in consideration of pho-
tovoltaic uncertainty and demand response. Latin hypercube
sampling and the K-means algorithm are used to gener-
ate scenarios representing photovoltaic outputs, and demand
response is based on Time-of-Use (TOU) electricity prices.
Multiple energy stations and their interactions are modeled
as a group of mix integer linear constraints. The impacts of
different photovoltaic outputs and demand responses on the
integrated energy systems with the multiple energy stations
are investigated.

II. INTEGRATED ENERGY SYSTEM WITH MULTIPLE
ENERGY STATIONS
Fig. 1 is a multi-energy network topology of a comprehensive
energy system demonstration project in Zhejiang Province.
It shows a geographic map of an integrate energy system
with five energy stations, and the power load, gas load, and
cooling/heating load in each region with different colors are

FIGURE 1. Geographical junction diagram of regional energy network.

FIGURE 2. Flow chart of multi-energy supply system of an energy station.

supplied by each energy station. Fig. 2 shows the topology of
five energy stations.

Single energy station equipment consists of: CCHP unit,
gas boiler (GB), multiple energy storage equipment, electric
refrigeration (ER), heat pump (HP), roof photovoltaic (PV)
power generation device. Among them, CCHP units are com-
posed of gas turbines (GT), lithium bromide refrigeration
(LR), and waste heat recovery systems (WHS). Multiple
energy storage equipment includes electric energy storage
(ES), heat energy storage (HS), and cold energy storage (CS).
The No.1 energy station is connected to the external power
grid and the natural gas network.

III. OPTIMIZED OPERATION MODEL
A. OBJECTIVE FUNCTION
The optimization objective for the coordinated scheduling of
the integrated energy system is listed in (1). The objective is
to minimize the entire operational costs. Because PV uncer-
tainty is included, the optimization objective is expressed as
min-max formulation. CF is the fuel cost, CE is the cost of
net electricity in the integrated energy system,CS is the restart
cost,CM is the maintenance cost, andCR is the revenues from
demand response. The term 2.a is the fuel cost of CCHP, 2.b
is the fuel cost of gas turbines, 3.a is the cost of purchasing
electricity of the integrated energy system from the external
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grid, 3.b is the cost of selling electricity to the external grid.
4.a is the restart cost of CCHP, and 4.b is the restart cost of
gas turbines.

min
x∈X ,o∈O

max
w∈W

(CF + CE + CS + CM − CR) (1)

CF =
T∑
t=1

NS∑
o=1

(
cf · F

g
b,o (t) ·1t

)
︸ ︷︷ ︸

2.a

+

T∑
t=1

NS∑
o=1

(
cf · F

g
d,o (t) ·1t

)
︸ ︷︷ ︸

2.b

(2)

CE =
T∑
t=1

(
ce (t) · P

e
e (t)

)
·1t︸ ︷︷ ︸

3.a

−

T∑
t=1

(
ce (t) · P

e
e (t)

)
·1t︸ ︷︷ ︸

3.b
(3)

CS =
T∑
t=1

( NS∑
o=1

cb,o ·
∣∣ob,o (t)− ob,o (t − 1)

∣∣)
︸ ︷︷ ︸

4.a

+

T∑
t=1

( NS∑
o=1

cd,o ·
∣∣od,o (t)− od,o (t − 1)

∣∣)
︸ ︷︷ ︸

4.b

(4)

CM =
T∑
t=1

NA∑
a=1

(ca · Pa (t) ·1t) (5)

CR =
T∑
t=1

NS∑
o=1

cR ·
(
PeR,o (t)− P

e
L,o (t)

)
(6)

where Fg
b,o is fuel input rate of the gas turbine units;Fg

d,o is
fuel input rate of the gas boilers;cf is the price of natural gas;
ob,o is starting-up and stopping status of gas turbine units;
od,o is starting-up and stopping status of gas boilers;Pee and
P
e
e are power purchased and sold by the grid; ce and ce are

purchasing and selling price of electricity to the grid;cb,o and
cd,o are starting and stopping costs of gas turbine and gas
boilers;ca is equipment maintenance costs; cR is income from
the participation of the electric load to demand response; PeL,o
is power load of energy station o; PeR,o is electric load of the
energy station o after conducting demand response; T is the
total time period in one day;NS is set of energy station in IES;
NA. is number of equipment in IES.

B. DEVICE MODELING
1) CCHP UNIT
A CCHP unit includes a gas turbine (GT), a waste
heat boiler (WHB), LiBr absorption refrigeration (LR). Its
model is expressed as follows. Equation (7) represents the
mathematical relation between the CCHP output and the gas
consumption, (8) shows the relation of electricity generation
and heating production of each CCHP system, (9) shows the
relation between cooling production and heating production

in each LiBr refrigeration unit. (10) shows the output con-
straint of the CCHP unit, (11) shows the constraint of cooling
production from the CCHP system, (12) shows the minimum
start-up and shut-down time constraint of the CCHP. (13)
and (14) are the ramp-up and ramp-down constraints of the
CCHP unit.

Fg
b (t) = ob (t) · Peb (t)

/
(LHV · ηb) (7)

Phb (t) = βb · P
e
b (t) (8)

Pcr (t) = Phr (t) · ηr (9)

Peb · ob (t) ≤ P
e
b (t) ≤ P

e
b · ob (t) (10)

0 ≤ Phr (t) ≤ min
{
0.8 · Phb (t) , P̄

h
r

}
(11)

(
T on
b (t)− T

u
b

)
(ob (t − 1)− ob (t)) ≥ 0

ob (t − 1) = 1(
T off
b (t)− T ub

)
(ob (t)− ob (t − 1)) ≥ 0

ob (t − 1) = 0

(12)

Peb (t)− P
e
b (t − 1) ≤ (2− ob (t − 1)− ob (t))Peb

+ (1+ ob (t − 1)− ob (t))P
u
b (13)

Peb (t − 1)− Peb (t) ≤ (2− ob (t − 1)− ob (t))Peb
+ (1− ob (t − 1)+ ob (t))Pub (14)

where Phb and Peb is thermal output and electrical output of
CCHP unit;LHV is low heating value of natural gas; βb
is the thermal power ratio of CCHP unit; ηb is generation
efficiency of the gas turbine unit; ηr is absorption refriger-
ation efficiency of LiBr; T on

b and T off
b are starting-up and

stopping time of gas turbine units; T
u
b and T

u
b are minimum

starting and stopping time of gas turbine unit; Phr and P
c
r are

input heat power and output cold power of LiBr absorption
refrigeration; P̄hr is the maximum input thermal power of LiBr
unit; Peb and P

e
b are minimum and maximum electric output

power of CCHP unit; P
u
b and Pub are maximum uphill and

downhill speed of CCHP unit.

2) GAS BOILER
The gas boiler heats the medium water through the heat
energy generated by natural gas combustion, and then trans-
mits the heat energy to the users through hot water pipelines.
The mathematical model can be expressed as follows.
Equation (15) shows the relationship between the thermal
output power and the fuel input rate of the gas boiler. (16)
shows the output constraint of the gas boiler. (17) show
the minimum start-up and shut-down time constraint of the
gas boiler, and (18) and (19) represent the ramp-up and
ramp-down constraints of the gas boiler, respectively.

Fgd (t) = Phd (t)
/
LHV · ηd (15)

Phd · od (t) ≤ Phd (t) ≤ P
h
d · od (t) (16)

(
T on
d (t)− T

u
d

)
(od (t − 1)− od

(t)) ≥ 0 od (t − 1) = 1(
T off
d (t)− T ud

)
(od (t)− od

(t − 1)) ≥ 0 od (t − 1) = 0

(17)
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Phd (t)− P
h
d (t − 1) ≤ (2− od (t − 1)− od (t))Phd

+ (1+ od (t − 1)− od (t))P
u
d (18)

Phd (t − 1)− Phd (t) ≤ (2− od (t − 1)− od (t))Phd
+ (1− od (t − 1)+ od (t))Pud (19)

where, ηd is efficiency of the gas boiler; Phd is thermal output
of GB;Phd /andP

h
d areminimum andmaximum thermal output

of GB; T on
d and T off

d are starting-up and stopping time of gas
boilers; T

u
d and T ud are minimum starting and stopping time

of gas boiler; P
u
d and Pud are maximum up and down slope

rate of GB.

3) ELECTRIC REFRIGERATION
The double-working-condition electric refrigeration devices
have two working conditions: air conditioning refrigeration
and ice making. When working in the ice making condition,
it needs to work with the ice storage tank. Its mathematical
model is expressed as follows. Formula (20) shows the func-
tion of the cooling production with regard to power into the
electric refrigeration, and (21) shows the limits of cooling
production.

Pcv (t) = Pev (t) · ηv · COPv (20)

Pcv ≤ Pcv (t) ≤ P
c
v (21)

where, Pev and Pcv are input electric power / output cold
power of the electric refrigeration units; ηv is efficiency of the
electric cooling; COPv is coefficient of electric refrigeration;
Pcv and P

c
v are minimum and maximum cooling output of

electric refrigeration;

4) HEAT PUMP
The heat pumps are divided into geothermal pumps and
air source heat pumps. The heat pump can collect the heat
energy of the earth through high-quality electric energy to
get low-quality heat energy, which is much higher than the
efficiency of the electric heating boiler. It is a kind of high
efficiency electric-heat conversion device, where (22) shows
the function of the cooling production with regard to power
into the electric refrigeration, and (23) shows the limits of
heat production.

Phw (t) = Pew (t) · ηw · COPw (22)

Phw ≤ Phw (t) ≤ P
h
w (23)

where, Pew and Phw are input electric power and output thermal
power of the heat pump; ηw are efficiency of the heat pump;
COPw is heating coefficient of heat pump; Phw and P

h
w are

minimum and maximum heat output of the heat pump.

5) ENERGY STORAGE
Each energy station includes different kinds of storages,
e.g., battery, heat storage tank and ice storage tank. Themodel
can be expressed as follows. Formula (24) is the charging
and discharging model of the storage, (25) represents the
state of charge constraint of the electric heating and cooling
multi-energy storage, (26) represents the power constraint

FIGURE 3. Topology of electric network between different energy stations.

of charge and discharge of the multiple energy storage,
and (27) represents the constraint of energy storage state at
the beginning and the end.

E(·)(t) = E(·)(t − 1) · (1− δ(·) ·1t)

+

(
Pcha(·) (t) · η

cha
(·) −

Pdis(·) (t)

ηdis(·)

)
·1t (24)

SOCmin
(·) ≤

E(·)(t)
E r
(·)
≤ SOCmax

(·) (25){
0 ≤ Pcha(·) (t) ≤ γ

cha
(·) · E

r
(·)

0 ≤ Pdis(·) (t) ≤ γ
dis
(·) · E

r
(·)

(26)

E(·)(0) = E(·)(T ) (27)

where,Pcha(·) andPdis(·) are charge and discharge power of energy
storage; ηcha(·) and ηdis(·) are charge and discharge efficiency of
the energy storage; SOCmin

(·) and SOCmax
(·) are minimum and

maximum state of charge of energy storage; E(·) is energy
storage of electrical, thermal and cold energy storage; E r

(·) is
rated energy storage of energy storage;γ cha

(·) and γ dis
(·) are max-

imum charge and discharge ratio of energy storage;δ(·) are
self-consumption rate of energy storage; E(·)(0) and E(·)(T )
are energy storage at the beginning and end of the day.

6) PURCHASE/SELL ELECTRICITY
Only one energy station is connected to the large power
grid, and this energy station is No. 1 energy station. The
transmission power of the tie line in integrated energy system
is limited by the capacity of transformer.{

Pex ≤ P
e
e (t) ≤ P

e
x

Pex ≤ P
e
e (t) ≤ P

e
x

(28)

where, Pex and P
e
x are minimum and maximum power

purchased and sold by the grid.

C. NETWORK MODELING
1) ELECTRICITY NETWORK
The topology of the electric grid between different energy
stations is a radial distribution network, it is shown in Fig. 3.

It is assumed that No. 1 energy station is the reference node
of the integrated energy system. The reference energy station
is directly connected to the external grid, and can have direct
power interactions with the external grid. Since the distance
between multiple energy stations is less than 5 km, the loss of
distribution network is ignored in this paper. The power flow
model of the distribution network is expressed as follows:

Pei = −
∑

j∈�(i)
Peij (t)+ P

e
e (29)
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where, Pei is input electric power of energy station i; Peij is
active power of the power line between node (energy station)
i and j; Pee is the synthesis of purchasing and selling power in
power grid.

The model of the electric network can be expressed as
follows [35]:

U2
i (t)− U

2
j (t) = 2

(
rijPeij (t)+ xijQ

e
ij (t)

)
(30)

whereUi is voltage of node (energy station) i; rij is resistance
of power line ij; xij is reactance of power line ij;Qe

ij is reactive
power of the power line between node (energy station) i and j;
Substitute U2

i with Vi to obtain the following equation [36]:

Vi (t)− Vj (t) = 2
(
rijPeij (t)+ xijQ

e
ij (t)

)
(31)

where (31) is a linear model. In addition, the constraints
with regard to voltage and line power should be satisfied as
follows [37]:

V i ≤ Vi (t) ≤ V i (32)

−
√
2Sel ≤ Peij (t)+ Q

e
ij (t) ≤

√
2Sel l ∈ L, t ∈ T (33)

−
√
2Sel ≤ Peij (t)− Q

e
ij (t) ≤

√
2Sel l ∈ L, t ∈ T (34)

where (32) is the voltage constraint, and (33), (34) are the
power flow limits for the line l. V i and V i are square of
the minimum and maximum voltage allowed at node i; Sel is
maximum allowable power of power line ij.

2) GAS NETWORK
In the natural gas distribution network, the temperature
change and the dynamic process of the natural gas trans-
mission are often ignored. If the elevation of the network
is assumed to be at the same level, equation (35) shows the
pressure drop equation of natural gas network [20].

Fij (t) ·
∣∣Fij (t)∣∣ = C2

ij

(
τ 2i (t)− τ

2
j (t)

)
∀i, j, t (35)

where (35) is a nonlinear and nonconvex equation, and it
can be transformed into a mixed integer linear model as
follows (36)-(39). Fij is natural gas flow rate of natural gas
pipeline ij; Cij is pipeline parameters of natural gas pipeline
ij;τi is pressure of node (energy station) i; Substitute τ 2j with
πi to obtain the following equation.∑

k

(
Akg (t) · f

k
g (t)+ B

k
g (t) · ν

k
g (t)

)
= C2

ij
(
πi (t)− πj (t)

)
∀t, g, (i, j) ∈ g (36)∑

k

νkg (t) = 1 ∀t, g (37)

νkg (t) f
k
g
≤ f kg (t) ≤ ν

k
g (t) f

k
g ∀t, g, k (38)

Fij (t) =
∑
k

f kg (t) ∀t, g, (i, j) ∈ g (39)

where Akg and Bkg are section linearization parameters of
natural gas pipeline; f kg is linearization section flow of the

FIGURE 4. The diagram of the natural gas pipeline.

natural gas pipeline section; νkg is binary variable of segment
linearization for gas flow in pipeline.

The natural gas pressure of each node is mainly related to
the natural gas consumption, and the pressure of each node
needs to meet the pressure constraint (40).

π i ≤ πi (t) ≤ π i (40)

where π i and π i are square of the minimum and maximum
value of the pressure at node i of the natural gas pipeline.

In the operation of natural gas pipeline between
multi-energy stations, not only the pressure constraints of
pipeline, but also the flow balance constraints of nodes should
be meet, shown as equation (41).

Fgi (t) = −
∑

j∈�(i)
Fgij (t)+ F

g
01 (t) (41)

where Fgi is the amount of natural gas consumed by node i.
Fg01 is natural gas purchased from outside by the integrated
energy system.

The topology of the natural gas pipeline between different
energy stations is shown in Fig. 4, only energy station 1 is
directly connected to the urban natural gas pipeline.

3) HEAT NETWORK
The models of heat network include thermodynamic
equations and hydraulic equations. The thermodynamic equa-
tions are listed as follows. Formula (42) and (43) are the
thermal equations of hot water pipelines, (44) is the pipe
temperature constraint. When the heat transfer mode of the
hot water pipeline is constant flow and variable temperature,
the heat equation of the hot water pipeline is linear.

Pho (t) = C ·Mo (t) ·
(
T S
o (t)− T

R
o (t)

)
Tj (t) = Ti (t) φij (t)(∑

MM
o (t)

)
TMo (t) =

(∑
MB
o (t)T

B
o (t)

) (42)


Ti (t) = T ′i (t)− Ta
Tj (t) = T ′j (t)− Ta
φ (t) = e−λLij

/
CMij(t)

(43)

{
To ≤ To (t) ≤ To
Mij ≤ Mij (t) ≤ Mij

(44)

where Mo is hot water flow of node o; T S
o and T Ro are supply

and return water temperature of node o; C is the specific heat
capacity of water;Ti and Tj are the temperature of nodes i
and j after the equivalent; T ′i and T

′
j are the actual measured

temperatures of nodes i and j; φij is the temperature drop
coefficient of pipe ij;MM

o and TMo are the hot water flow and
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FIGURE 5. Thermal network topology.

temperature of themain pipeline;MB
o and T Bo are the hot water

flow and temperature of the branch pipeline; λ is the pipeline
parameter; Lij is the pipe length;T o and To are minimum and
maximum allowable temperature of node o; M ij and Mij are
minimum and maximum flow of pipeline ij.

The hydraulic equations are expressed as follows.
where (45) shows the flow balance equation of each node
and loop pressure drop equation in water pipeline. and the
connections between nodes and loops are shown in Fig. 5.{
Ah (t) ·Mij (t)=Mo (t)
Bh (t) ·MT

ij (t) diag(Kij)
∣∣Mij (t)

∣∣=0, j = 1, · · · , nst

(45)

where Ah is the node incidence matrix; Bh is the loop
incidence matrix; Kij is the pressure drop coefficient of
pipeline ij.

D. INTERNAL ENERGY BALANCE CONSTRAINT
OF ENERGY STATION
Multiple energy stations are included in the regional
integrated energy system. Each energy station is connected
by the energy pipe network, and the energy can be transmitted
among multiple energy stations to realize the efficient use of
energy. (46) is the power balance constraint in each energy
station, (47) is the heat balance constraint in each energy
station, equation (48) is the cold balance constraint in each
energy station, and equation (49) is the gas balance constraint
in each energy station.

Peo (t) = PeL,o (t)−
[
Peb,o (t)+ Ppv,o (t)− Pewp,o (t)

−Peh,o (t)− P
e
v,o (t) −P

cha
es,o (t)+ P

dis
es,o (t)

]
(46)

Pho (t) = PhL,o (t)−
[
Phb,o (t)+ P

h
d,o (t)− P

h
r,o (t)

+ Phh,o (t)− P
cha
hs,o (t)+ P

dis
hs,o (t)

]
(47)

Pco (t)=P
c
L,o (t)−

[
Pcr,o (t)+P

c
v,o (t)−P

cha
cs,o (t)+P

dis
cs,o (t)

]
(48)

Fgo (t) = Fg
L,o (t)+ F

c
b,o (t)+ F

h
d,o (t) (49)

where Peo is input electric power of energy station o; Pho is
input thermal power of energy station o; Pco is input cold

power of energy station o;Fgo is natural gas input of energy
station o.

IV. OPTIMIZATION MODEL
A. PV UNCERTAINTY
The integrated energy system faces many uncertainties on
both the supply [38] and demand [39] sides. The paper starts
from the supply side and considers the uncertainty of pho-
tovoltaic output. In our paper, we assume that the probability
density distribution of photovoltaic power generation satisfies
Gaussian distribution [40], [41] for the sake of exposition.
However, it is worth pointing out that other probability den-
sity distributions can be used in this paper. The Gaussian
distribution is shown as follows.

f
(
P̃pv
)
=

1
√
2πσpv

· exp

−
(
Ppv − P̃pv

)2
2σ 2

pv

 (50)

where P̃pv is the expected value of forecasting PV power, σpv
is the standard deviation of forecasting errors, and Ppv is the
forecasting PV power (kW).

Robust optimization is used to deal with PV uncertainty,
and it is used to obtain the optimal solution against the worst
scenario. This paper uses the following steps to generate
the PV output scenarios: 1) With the forecasted PV outputs
(Fig. 6 a) and the probability density function of the fore-
casted errors, PV output scenarios (Fig. 6 b) are generated by
means of Latin hypercube sampling method. 2) The K-means
method is used to reduce the generated PV output scenar-
ios, and N scenarios (Fig. 6 c) are selected. 3) Sort the
scenarios ascendingly, and select the N∗(0.5-0.5∗n%)th and
N∗(0.5+0.5∗n%)th values as the lower and upper bounds of
PV outputs, respectively. The range of the parameter n is
(0, 100). A larger n denotes that the corresponding strategy
is more robust.

Based on the above steps, the uncertainty range of PV
power can be determined as follows:

Ppv (t) ∈ [Ppv (t) , P̄pv (t)] (51)

where Ppv (t) and P̄pv (t) are the lower and upper bounds,
respectively.

B. OPTIMIZATION ALGORITHM
In consideration of PV uncertainty, robust optimization
model is used to deal with theworst scenario when scheduling
the system. The robust optimization model is presented as
follows [42]–[44]:

min
x,o

max
w

C (x, o,w)

s.t.G (x, o,w) ≤ 0
x ∈ X
o ∈ O
w ∈ W

(52)

where x and o are control variables, x is the continuous
variable, o is the binary variable, w is the stochastic variable,
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FIGURE 6. PV scenario generation.

C (x, o,w) is the optimization objective, G (x, o,w) is the
constraint, X and O are feasible solution set of x and o,
respectively. W is set of w, which is generated by using the
method introduced in 3.1. The corresponding objective and
the constraints are established in the previous section. The
entire model is a mixed integer linear programming model,
which is solved by Gurobi associated with YALMIP.

V. CASE ANALYSIS
A. BASIC DATA
Amulti-energy network with five energy stations in Zhejiang
Province of China is used to validate the proposed model,
and its topology is shown in Fig. 1. The cooling, heating,
power load, and the predicted photovoltaic output in the
energy stations are shown in Fig. 7 a, b, c, and d, respectively.
There are PVs in ES1, ES2, and ES3. In consideration of
the limited geographical area of each energy station, it is
assumed that the network topology in each energy station
is not considered, and we only consider the network topolo-
gies between different energy stations. Due to different user
types, the five energy stations have different peak and valley

FIGURE 7. The loads curves of each energy station.

load times. There are 96 intervals in a day, and each interval
is 15 minutes. The equipment configuration of each energy
station is listed in Table 1. The equipment parameters of
each energy station are listed in Table 2. The parameters
of energy storage equipment are listed in Table 3 [9]. The
energy network parameters of each energy station are listed
in Table 4. Time-of-use electricity price is used. The periods
of low price are 0:00∼7:00 and 23:00∼24:00, the periods of
high price are 7:00∼10:00, 15:00∼18:00, 21:00∼23:00, and
the periods of peak price are 10:00∼15:00 and 18:00∼21:00.
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TABLE 1. The equipment configuration of each energy station.

TABLE 2. The equipment parameters of each energy station.

TABLE 3. The parameters of energy storage equipment in each energy
station.

TABLE 4. The energy network parameters of each energy station.

The purchase prices for three periods are 0.17 RMB/kWh,
0.49RMB/kWh and 0.83RMB/kWh, and the selling prices
for three periods are 0.13RMB/kWh, 0.38RMB/kWh and
0.65RMB/kWh, respectively. The surplus energy of the inte-
grated energy system can be sold to the power grid, and
the TOU price is also adopted. The price of natural gas is
2.5 yuan/m3. The power factor of the power transmission
between energy stations is 0.85. It is assumed that the reactive
power compensation device of each energy station can keep
this power factor unchanged.

The impedance of power line per unit length is
0.0080 + j0.0056 (p.u.). The transmission lines of the four
sections are the same. The maximum transmission power of
the lines is 1MVA, and the maximum node voltage deviation
is ±5%. The pipeline coefficient of natural gas is 80. The
minimum value of gas pressure at pipeline nodes is 100 Mpa,
and the maximum value is 10 Mpa. The friction resistance
coefficient of hot water pipeline is 2◦C/km.

TABLE 5. The operation costs of five energy stations before considering
the power load demand response Unit: RMB.

TABLE 6. The operation costs of five energy stations after considering the
power load demand response Unit: RMB.

B. THE INFLUENCE OF ELECTRIC LOAD DEMAND
RESPONSE ON INDEPENDENT OPERATION
COST OF ENERGY STATION
This section analyzes the impacts of demand response on
integrated energy system operation. Each energy station is
assumed to be optimized independently. Table 5 shows the
optimization results without demand response, and Table 6
shows the corresponding results in consideration of demand
response.

The operating costs of five energy stations before
participating in demand response are 10846 RMB to
15722 RMB, and the costs after participating in demand
response are 10460 RMB to 15298 RMB. It is observed
that the scenarios with demand response have smaller opti-
mization objectives, indicating an operating point with the
less operational cost. For example, the operational cost of
the third energy station with demand response is reduced by
4.07% compared to the scenario without demand response.
The operational cost of the fifth energy station with demand
response is reduced by 2.13%. The results show that demand
response of different kinds of loads contributes to a more
optimal operating point with the less operational cost.

C. COMPARISON OF THE OPERATION COSTS OF
INTEGRATED ENERGY SYSTEM BEFORE AND AFTER
CONSIDERING THE DEMAND RESPONSE AND THE
PHOTOVOLTAIC OUTPUT UNCERTAINTY
This section analyzes the impacts of photovoltaic uncertainty
and demand response on integrated energy system operation.
Five scenarios are compared with each other, and the five
scenarios are listed as follows.

Scenario 1: Five energy stations are optimized indepen-
dently without consideration of photovoltaic uncertainty and
demand response;

VOLUME 8, 2020 141565



J. Zhai et al.: Optimization of Integrated Energy System Considering Photovoltaic Uncertainty and Multi-Energy Network

TABLE 7. The independent and cooperative operation costs of energy
station Unit: RMB.

Scenario 2: Five energy stations are optimized coordinately
without consideration of photovoltaic uncertainty and
demand response;

Scenario 3: Five energy stations are optimized coordinately
in consideration of demand response but with consideration
of photovoltaic uncertainty;

Scenario 4: Five energy stations are optimized coordinately
in consideration of photovoltaic uncertainty but without
consideration of demand response;

Scenario 5: Five energy stations are optimized coordinately
in consideration of photovoltaic uncertainty and demand
response.

The operational costs of the five scenarios are listed
in Table 7. It is observed that the scenario 1 has the highest
operational cost, i.e., 61940RMB, which is 21.2% higher
than the cost of the scenario 2. This shows that coordinated
operation of different energy stations can have a better oper-
ating point with the less operational cost. For all scenar-
ios, the scenario 3 has the minimum operational cost with
coordinated operation and demand response, and the corre-
sponding cost is 415RMB less than the scenario 2, indicat-
ing demand response has a positive impact on the system
operation. Compared to the scenario 2, the scenario 4 has
a larger operational cost due to photovoltaic uncertainty.
Compared to the scenario 3, the scenario 5 has a larger oper-
ational cost also due to photovoltaic uncertainty. However,
the scenario 5 has a less operational cost also due to demand
response.

In case 5, considering the demand response of electric load
and the uncertainty of photovoltaic output, the transmission
power of the power line between multi-energy stations in the
integrated energy system in each period is shown in Fig. 8.
The No.1 energy station located in the regional center is
connected to the external power grid. As a balance node, its
voltage value is assumed to be 1 and remains unchanged. The
power delivered by the integrated energy system to the power
grid is 0 and the system stops purchasing power from the
grid during the peak period of the electricity price. The peak
electricity price period corresponds to the peak period of the
grid load, which shows that the integrated energy system can
play a good role in peak shaving of the grid. This is mainly
because there are distributed power generation equipment
and multi-energy storage equipment in the integrated energy
system. No.5 energy station has transferred a lot of power to
the system.

FIGURE 8. Transmission power of power lines between multi-energy
stations in integrated energy system.

VI. CONCLUSION
In this paper, a coordinated optimal scheduling of the
integrated energy systems including multi-energy stations is
investigated. The main equipment model of integrated energy
system is established. The characteristics of energy trans-
mission network between multi-energy stations are analyzed,
and the linearization model of multi-energy network is con-
structed. Taking into account the uncertainty caused by the
accessing of photovoltaic power to the integrated energy sys-
tem, the sampling and scenario reduction methods are used to
generate typical scenarios to determine the uncertainty value
range of photovoltaic output and set the uncertainty range
of the robust optimization. Considering the participation of
multi-energy users electric load in the demand response of
electric energy, a robust optimization model is established,
in order to improves the energy supply economy of the
terminal integrated energy system and the operation safety.
Through case simulation, it is proved that the proposed multi-
energy station collaborative optimization scheduling strategy
of the integrated energy system has higher economy of energy
supply than single energy station operation. The next step is
to combine the robust optimization with the intraday rolling
optimization to improve the response speed and operation
economy of the integrated energy system, and to connect the
dispatch of the real-time energy utilization.
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