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ABSTRACT Eye tracking is becoming a very important tool across many domains, including human-
computer-interaction, psychology, computer vision, and medical diagnosis. Different methods have been
used to tackle eye tracking, however, some of them are inaccurate under real-world conditions, while some
require explicit user calibration which can be burdensome. Some of these methods suffer from poor image
quality and variable light conditions. The recent success and prevalence of deep learning have greatly
improved the performance of eye-tracking. The availability of large-scale datasets has further improved the
performance of deep learning-based methods. This article presents a survey of the current state-of-the-art
on deep learning-based gaze estimation techniques, with a focus on Convolutional Neural Networks (CNN).
This article also provides a survey on other machine learning-based gaze estimation techniques. This study
aims to empower the research community with valuable and useful insights that can enhance the design and
development of improved and efficient deep learning-based eye-tracking models. This study also provides
information on various pre-trained models, network architectures, and open-source datasets that are useful
for training deep learning models.

INDEX TERMS Convolutional neural network, deep learning, eye tracking, eye movements, gaze estima-
tion, computer vision, region of interest.

I. INTRODUCTION
Currently, different types of commercial and non-commercial
eye-tracking solutions exist, including model-based and
appearance-based methods; however, some of these solu-
tions are expensive or inaccurate under real-world condi-
tions, while some require explicit user calibration which
can be burdensome [1]. Hence, recent eye-tracking studies
are focusing on developing deep learning-based eye-tracking
techniques that do not require explicit user calibration [1].
With the recent rise of deep learning, Convolutional Neu-
ral Network (CNN) based gaze estimation models are
becoming very popular and prevalent. It became popular
when LeCun, et al. [2] successfully applied them to hand-
written digit classification. CNN models are also suit-
able for handling large scale datasets, and they have been
successfully applied to many different domains, such as
computer vision [3], speech recognition [4], and language
modelling [5]. CNN models are capable of directly mapping
image features, such as pupil and glint locations, to gaze
points without the use of hand-engineered features [6].

This article presents a survey of appearance-based gaze
estimation techniques, with a focus on CNNs. This article
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also presents a survey of other machine learning-based gaze
estimation techniques. The primary highlights of this study
are as follows:

a. This article presents a survey of recent CNN-based gaze
estimation techniques to provide researchers with valu-
able and useful insights that can enhance the design of
improved and efficient deep learning-based eye-tracking
models.

b. This article provides a discussion on the performance
of various gaze estimation models. It also provides
useful insights on various large-scale datasets, network
architectures, and pre-trained models that are useful for
building improved deep learning-based gaze estimation
models.

This article will empower the research community with a
gaze estimation kit that can enhance the design of improved
gaze estimation techniques. This article could serve as a
reference and starting point for researchers seeking to design
efficient deep learning-based techniques.

II. BASIC CONCEPTS
This section provides an overview of some fundamental
concepts that are related to this study; specifically gaze
estimation and CNN.
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A. GAZE ESTIMATION
Gaze estimation is a technology that aims to understand the
intent and interest of users [7]. Gaze estimation techniques
focus on the relationship between the image data and gaze
direction [8]. Gaze directions are estimated based on specific
eye features (such as pupil and corneal reflection) extracted
from the eye regions of image data collected from single or
multiple cameras [9]. Generally, gaze estimation techniques
can be grouped into two: model-based and appearance-based
techniques [8]. More information on the two techniques is
provided in the next sub-sections. Some practical applications
of gaze estimation includemobile gaze interactions [10], [11],
driver gaze monitoring [3], [12], on-screen keyboard typ-
ing [13], and Virtual Reality (VR) [14].

1) APPEARANCE-BASED GAZE ESTIMATION
Appearance-based techniques rely on the photometric
appearance of the eye to perform gaze estimation [9]. They
generally need a single camera to capture eye images which
are then used to build gaze estimation models that can map
the appearances of the captured images to certain gaze direc-
tions. These models do not require hand-engineered features
for training; they can extract image features implicitly from
the data. Compared to model-based techniques, appearance-
based techniques require a larger number of eye images for
training, and this gives them the capacity to learn invariance
in appearance disparity [15].

Appearance-based gaze estimation models are considered
to produce good results in real-world settings [11]. They
are designed to directly predict screen coordinates, implying
that they can only be used for a single device and orienta-
tion [16], [17]. This is because their gaze location is directly
defined in the coordinate system of the target screen [18].
Some studies designed techniques that can predict gaze loca-
tion relative to the camera [10], [19]. The gaze location of
these techniques is defined as a virtual plane in the camera
coordinate system [18].

2) MODEL-BASED GAZE ESTIMATION
Model-based techniques perform gaze estimation by combin-
ing the geometric model of the eye with eye features, such
as cornea reflection and pupil centre [20]. Figure 1 shows
the geometric model of the eye. As shown in the figure,
the optical axis is defined as the line that connects the cornea
centre to the pupil centre. The gaze direction is determined
by the visual axis, which goes through the cornea centre
and the fovea. The point of regard (PoR) can be defined
as the intersection between the visual axis and the dis-
play surface [1]. The angle kappa is defined as the angle
between the visual axis and the optical axis. The angle
difference between the optical and visual axis is expressed
as θ = (α, β), where θ is a constant vector for each
individual [1]. Personal calibration for model-based tech-
niques is typically used to estimate the value of θ for each
subject.

FIGURE 1. 3D eye model [1].

3) PERFORMANCE METRICS FOR GAZE ESTIMATION
In the literature, gaze tracking accuracy metrics have
been reported in different ways, including angular accu-
racy in degrees [1], [14], [21], distance accuracy in
cm/mm [10], [22], and gaze estimation accuracy in percent-
age [3], [13], [23].

In this article, the terms accuracy and prediction error are
used to describe the performance of various gaze estima-
tion systems. Accuracy is mostly reported for classification
problems, such as driver gaze zone classification and eye
movement classification. It is used to measure the percentage
of correctly classified categories, based on the number of
frames in the evaluation dataset. As an example, for driver
gaze zone classification, accuracy measures how well the
gaze zones of each frame (in the evaluation dataset) are
correctly classified. A correctly classified frame refers to the
frame where its predicted gaze zone is equal to the actual
gaze zone. Prediction error is mostly reported for regression
problems. It is used to measure how well a model predicts
the gaze coordinates. It shows the difference between the
predicted and actual gaze coordinates. Some calculations for
gaze estimation accuracy are given below [24]:

a: GAZE POINT COORDINATES IN PIXELS
The calculation for the gaze point coordinates in pixels can
be obtained from (1) and (2)

Gaze_X = mean
(
xleft + xright

2

)
(1)

Gaze_Y = mean
(
Yleft + Yright

2

)
(2)

where (Xleft ,Yleft ,Xright ,Yright ) represents the actual gaze
coordinates of the left and right eye as obtained from the eye
tracker.

b: GAZE POSITION IN mm
The gaze position in mm of on-screen distance can be calcu-
lated by using (3) to (4):

X_Position(mm) = µ ∗ Gaze_X (3)
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Y_Position(mm) = µ ∗ Gaze_Y (4)

where µ is the pixel size of the monitor that is used for eye
tracking. It is calculated based on the dimension and pixel
resolution of the monitor’s screen. The calculation for µ is
can be obtained from (5)

µ = dimm/dimp (5)

where dimm is the diagonal size of the screenmeasured in mm
(originally in inches), and dimp is the diagonal size of the
screen measured in pixels as shown in (6).

dimp =
√
width2p + height

2
p (6)

wherewidthp and heightp is thewidth and height of the screen
respectively, measured in pixel.

c: ON-SCREEN DISTANCE
If the origin of the gaze coordinate system is located at
(Xpixels,Ypixels), then as shown in (7), at the bottom of the
next page, the on-screen distance of the gaze point of a user
is the distance between the origin and a specific gaze point.
The offset is defined as the distance between the sensor of
the eye tracker and the lower edge of the display screen.
If the tracker is attached directly below the screen, then the
offset is 0 and the origin is the centre of the screen. That is,
Xpixels, ypixels = (0, 0).

d: GAZE ANGLE RELATIVE TO THE EYE
The gaze angle of a point on the screen relative to the eye of
a user can be obtained using (8).

gaze angle(θ) = tan−1OSDist/Z (8)

where Z is the distance of the eye from the screen. The
distance between the eye and the gaze point on the screen
is estimated as shown in (9):

EstGP(mm) =
√(
(Gaze_X)2 + (Gaze_Y )2 + (Z )2

)
(9)

e: PIXEL DISTANCE
During calibration, some points are displayed on the screen
and users are asked to look at the displayed points. The
(x, y) coordinates displayed on the screen form the ground
truth for the captured images. The shift between the ground
truth coordinates (GTx ,GTy) and the estimated gaze points
(Gaze_X ,Gaze_Y ) can be calculated using (10).

pix_shift(pixels)

=

√(
(GTx − Gaze_X)2 +

(
GTy − Gaze_Y

)2) (10)

f: ANGULAR ACCURACY
The gaze estimation accuracy (or prediction error) of an eye
tracker (in degrees) can be expressed as the angular deviation
between the actual and the estimated gaze locations. Using

equations (8) to (10), the prediction error can be calculated
using (11).

ang_acc =
(
µ ∗ pix_shift ∗ cos(mean(θ))2

)
/EstGP (11)

g: EUCLIDEAN DISTANCE IN cm/mm
Some studies [10], [19] used the Euclidean metric to evaluate
the accuracy of their techniques. They reported the Average
Euclidean Distance (AED) from the location of true fixation.
The average Euclidean distance between the estimated gaze
coordinates (x, y) and the ground truth gaze coordinates can
be obtained from (12):

AED=
1
n

∑n

i=1

√
(gt_xi−e_xi)2+(gt_yi−e_yi)2 (12)

where gt_xi and e_yi refers to the ground truth label for each
input, and e_xi and e_yi refers to the estimated (x, y) gaze
coordinates for each input.

h: STRICTLY CORRECT ESTIMATION RATE
Gaze accuracy can be measured based on Strictly Correct
Estimation Rate (SCER) [3]. SCER can be obtained by divid-
ing the number of strictly correct frames by the total number
of frames. The strictly correct frames refer to the frames
where the predicted gaze zone is equal to the actual gaze zone.

i: LOOSELY CORRECT ESTIMATION RATE
Gaze accuracy can be measured based on loosely correct esti-
mation rate (LCER) [3]. LCER can be obtained by dividing
the number of loosely correct frames by the total number of
frames. The loosely correct frames refer to the frames where
the predicted gaze zone is around the surrounding region of
the actual gaze zone.

More information on gaze estimation performance metrics
can be found in [24]. Most of the performance metrics used
in the literature are not similar and cannot be compared to
each other, hence it is the decision of developers to choose
a suitable performance measure. Generally, there is no stan-
dard performance measure used for benchmarking the perfor-
mance of deep learning models. This makes the comparison
between gaze estimation systems difficult. Lemley et al. [22]
argues that angular resolution is the most consistent because
it properly describes the performance of an algorithm regard-
less of other system parameters, such as screen pixel size or
distance from eye tracker. Kar and Corcoran [20] proposed a
framework that can be used to practically evaluate different
gaze estimation techniques.

B. CONVOLUTIONAL NEURAL NETWORKS
In deep learning, CNNs are a class of deep neural networks
that are mostly applied to evaluate visual images [25]. They
are inspired by the organization of the visual cortex in the
brain [22]. The visual cortex is the main region of the brain
that receives and processes visual information transmitted
from the eye [26]. As shown in Figure 2, CNNs are very
similar to regular neural networks made up of different neu-
rons with learnable weights and biases. Each neuron in the
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FIGURE 2. A regular 3-layer neural network and a regular convolutional
neural network [28].

network accept an input, performs a dot product operation,
and optionally follow the dot operation with a non-linearity
operation (such as Rectified Linear Unit (ReLU)). CNN
architectures make the explicit assumption that all inputs are
images and thus allow users to encode certain properties into
the architecture [27]. Typically, a CNN consists of multiple
convolutional layers followed by pooling, non-linearity, and
finally fully connected layer(s) plus output layer. The first
three layers are responsible for feature extraction, while the
fully connected layer is responsible for classification [13].

1) CONOLUTIONAL LAYER
The convolutional layer consists of a set of trainable param-
eters that in turn consist of a set of learnable filters. Each
filter (also called kernel) is small in width and height, but
they extend through the entire depth of the input volume [27].
When an input is forwarded into a network, each filter is
convolved across the width and height of the input volume,
and the dot operation is computed between the entries of
the filter and the entries of the input using (13) [29]. As the
filters are slid over the width and height of the input volume,
a 2-dimensional activation map (or feature map) is produced.

H [i, j]= (m ∗ k)[i, j]=
∑

a

∑
b
k[a, b]m[i−a, j−b]

(13)

wherem represents the input image and k represent the kernel,
a and b represent the row and column of the resultant matrix.

2) POOLING LAYER
The pooling layer performs a down-sampling operation along
the width and height of the input, resulting in a reduc-
tion in the volume dimension. There are different types

of pooling techniques, including max-pooling and average
pooling. Both operations are performed by applying a filter
to a non-overlapping subregion of an input. For example,
as shown in Figure 1, if our input is a 4 × 4 matrix, and we
are sliding a 2 × 2 filter over the input, we will have a stride
of 2. For each region represented by the 2 × 2 filter, we will
take the maximum (for max-pooling) or average (for average-
pooling) of that region and create a new matrix, where each
entry in the new matrix is the maximum or average of the 2×
2 regions in the 4× 4 matrix. As shown in Figure 3, the result
for sliding the filter over the input without overlapping any
region of the input will be a 2 × 2 matrix.

FIGURE 3. Max pooling and average pooling example.

3) NON-LINEARITY LAYER
The non-linearity layer is responsible for applying an elemen-
twise activation function on the input. An activation function
is used to determine whether a neuron in the network should
be activated or not. The non-linear activation performs a
non-linear transformation of the input making it possible for
a network to learn complex relationships in datasets. There
are different types of non-linear activation function, including
sigmoid, tanh, Rectified Linear Unit (ReLu), and softmax.
The ReLu activation function is the most used because it pro-
duces good results. The ReLu activation function is defined
mathematically in equation (14) and shown in Figure 4.
As shown, the ReLu function is linear for all positive values
and non-linear for negative values; it outputs all negative
values as zero.

relu(x) = max(0,x) (14)

where x is the input of the function

4) FULLY CONNECTED LAYER
The fully connected layer performs the final classification or
regression. It is composed of different neurons, like the neu-
rons in artificial neural networks. The output of one layer of
neurons is computed using (15) [30]. A fully connected layer
takes the output (i.e. feature map matrix) from the previous

OSDist(mm) = µ

√√√√((Gazex − xpixels
2

)2
+

(
ypixels − Gaze−Y +

offset
pixelsize

)2
)

(7)

142584 VOLUME 8, 2020



A. A. Akinyelu, P. Blignaut: CNN-Based Methods for Eye Gaze Estimation: A Survey

FIGURE 4. ReLu activation function.

layers and converts them into a single vector (or 1D array) that
can be used as input to the layer. The 1D array is then passed
through one or more fully connected layer(s). The fully con-
nected layer performs linear transformation and non-linear
transformation on the 1D array. The linear transformation is
performed using (15), while the non-linear transformation is
performed using equation (16).

Z = W T
· X + b (15)

where X refers to the input, b refers to the bias, andW refers
to the learnable parameters (or weights) in the network.W is
a matrix of randomly initialized numbers.

output = σ (Z ) (16)

where σ refers to the activation function (such as ReLU), and
Z refers to the output of the linear transformation operation.

5) OUTPUT LAYER
The last fully-connected layer (or output layer) is finally
passed through an activation function to produce the final
output, which could be a continuous value if we are solving
a regression problem or categorical value if we are solving a
classification problem.

In this fashion, CNN transforms an input image layer by
layer from the initial pixel values to the final classification
or regression. The convolutional layers and fully connected
layers are the trainable layers, and their transformations are
based on their various trainable weights, biases, and activa-
tions. The non-linearity and pooling layers are not trainable
as they simply perform fixed functions. The parameters in
the convolutional and fully connected layers are trained using
a gradient descent algorithm so that the final output of the
network will correspond to the labels that are used to train the
network. More details on the operations of CNN can be seen
in [31]. A CNN can be applied to inputs of any dimension,
however, due to their success in 2D images, they are mostly
applied to 2D inputs plus the colour channels [22].

III. SURVEY OF GAZE ESTIMATION METHODS
Different appearance-based gaze estimation studies have
been designed for 2D [11], [18], 3D gaze estima-
tion [18], [32], [33], classification and regression. Earlier

studies focused on Artificial Neural Networks (ANNs) [34],
[35], random forest [21], [33], linear regression [36], support
vector regression (SVRs) [19], multimodal models [11], [32],
deep end-to-end CNN models [3], [10], incremental learn-
ing [37] and transfer learning [38]. Some studies intro-
duced hybrid appearance-based techniques. For example,
Zhang, et al. [11], Wang, et al. [21] combined classical
feature extraction techniques with ANN regressors. Dif-
ferent network architectures were designed in the litera-
ture. Some networks were designed to accept only eye
images [8], [11], [21], [36], while other networks were
designed to accept both eyes and head pose feature vector to
simultaneously model free head movement [10], [11]. Recent
studies combined full-face images with CNNmodels for gaze
estimation [3], [39].

The task of designing a deep learning model for gaze
estimation can be considered as a regression or classification
task. Although both are very useful, regression provides the
best prediction flexibility [22] thanks to its ability to find gaze
angles that correspond to eye images. This section presents a
survey of appearance-based gaze estimation techniques with
a focus on deep learning-based classification and regression
techniques.

A. MACHINE LEARNING-BASED CLASSIFICATION
METHODS FOR GAZE ESTIMATION
1) 2D CLASSIFICATION-BASED METHODS FOR GAZE
ESTIMATION
a: CLASSIFICATION METHODS FOR DRIVER GAZE ZONE
ESTIMATION
Different studies have designed classification models for
gaze estimation. Choi et al. [12] proposed a five-layered
CNN-based technique for driver gaze zone classification and
head-pose estimation. They created a dataset consisting of
different images of male and female drivers, including drivers
using eyeglasses. Based on the dataset, they built a CNN
model that can classify 9 gaze zones of drivers and esti-
mate their head-pose. Each gaze zone represents different
regions in a car, including left mirror, right mirror, rear-
view mirror, steering, gear, middle, left windscreen, and
right windscreen. A version of AlexNet architecture [40] was
used in the study, and experimental results showed that the
technique produced a classification accuracy of 95% correct
gaze zone detections. There have been significant improve-
ments in the design of personalized driver gaze zone clas-
sification systems. Nevertheless, the design of generalized
systems is still lagging [41]. Generalized systems should be
capable of classifying gaze zones of different subjects and
different perspectives Vora, et al. [41] took a step forward
by designing a generalized CNN-based technique for gaze
detection. The technique consists of two units, namely the
pre-processing and fine-tuning units. The pre-processing unit
consists of three pre-processing strategies used to extract
sub-images (from the raw input images) that are most rele-
vant for eye gaze classification. The first strategy involves
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extracting the full-face image for training, while the second
strategy involves extracting the upper half of the face for
training. In the third strategy, some context was added to
the driver’s face by extending the face bounding box in
different directions. The images were extracted and passed
to the fine-tuning unit for training. The fine-tuning unit con-
sists of two pre-trained models: AlexNet and VGG-16 [42].
Overall, the authors built six different CNN-based gaze clas-
sification models, based on a different combination of the
above-mentioned pre-processing strategies and pre-trained
model. During training, one pre-processing technique and
one pre-trained model were chosen and trained at a time. The
experimental result shows that the combination of VGG-16
and half face image produced the best classification accuracy
of 93.36%. The combination of AlexNet and half face image
produced an accuracy of 88.91%. The authors noted that the
low performance of AlexNet is due to the large kernel size
(11 × 11) and a stride of 4 used in the first convolutional layer
of the AlexNet model. This large kernel size and stride cannot
efficiently capture slight movements of the eyelid or pupil,
which is very important because the gaze zone changes with
slight movements of the eyelid or pupil. The VGG-16 model
consists of convolutional layers with a kernel size of 3× 3 and
a stride of 1. The small kernel size and stride enabled the
network to capture slight eye movements for efficient gaze
estimation. In another study [39], the same authors intro-
duced a similar gaze classification approach using four pre-
trained networks, namely: AlexNet, VGG-16, ResNet50 and
SqueezeNet. However, instead of using three pre-processing
units and two fine-tuning units, they used four pre-processing
and four fine-tuning units. They evaluated the different con-
figurations, and the best configuration (SqueezeNet + Half
face image) produced a classification accuracy of 95.18%.

Monitoring the gaze attention of drivers in automobiles
poses some risks to the driver, such as extreme lighting
changes, obstructions, and dizziness from long drives [3].
Some gaze estimation systems require the driver to use
glasses, which can affect the accuracy of the monitoring sys-
tem [3]. Naqvi, et al. [3] tackled this challenge by introducing
a CNN-based model using a near-infrared (NIR) camera that
considers head and eye movements and does not obstruct
the view of drivers. The designed system is made up of
one NIR camera, one zoom lens and six NIR light-emitting
diodes (LEDs) for illumination. The NIR camera is used to
capture the frontal view image of the driver, which is then
transmitted to a laptop through a USB interface line. The Dlib
facial feature tracker [43] was used to detect 68 different face
landmarks, which are then used as reference points to extract
a region of interest (ROI) images of the driver’s face, left
eye, and right eye. The mean of all the pixel values in each
of the ROI images was calculated and used to normalize the
brightness of the ROI images. Normalization improves the
performance of learning models and simultaneously reduce
the effect of light [3]. Three sets of features (for face, left eye,
and right eye) were extracted by passing the captured face,
left and right eye images through three different VGG-16

pre-trained models. The gaze zone of a driver was then cal-
culated by combining the extracted features from the three
networks, using a method described by.Naqvi, et al. [3]. The
accuracy of the proposed method was measured based on two
metrics: strictly correct estimation rate (SCER) and loosely
correct estimation rate (LCER). More information on the two
metrics is provided in Section IV. The experimental results
show that it achieved an average SCER and LCER of 92.8%
and 99.6%, respectively.

b: CLASSIFICATION METHODS FOR NEAR-EYE DISPLAY
GAZE ESTIMATION
Some studies introduced deep learning methods for Virtual
Reality (VR) systems [14], [44], [45]. VR systems attempt to
imitate several natural stimuli to provide a sense of immersion
into VR [14]. In every immersion experience, the major
interphase between the user and the non-physical world is
the near-eye display [14]. Near-eye display methods focus
on predicting eye gaze on a screen placed close to the eye.
Some characteristics of near-eye display that determine the
quality of user experience are resolution, contrast, field of
view, eye tracking, and positional tracking. Some of these
characteristics have been improved inVR systems, except eye
gaze tracking [14].

Many techniques have been proposed to bridge this gap;
however, the vast majority are suitable for far-eye displays;
they focused on predicting eye gaze on a screen placed some
distance away from the eye [14]. Far-eye display methods are
not suitable for near-eye displays, where eye imaging is lim-
ited to a small region [14]. This is because their performance
might be affected by occlusions and a partial view of the iris
and pupil [14]. Konrad, et al. [14] addressed this problem by
introducing an end-to-end CNN-based gaze estimation tech-
nique for near-eye displays. They created a dataset containing
eye images of users looking at various calibration points on
a screen. The images were captured by a camera placed very
close to the face of different subjects. Based on the dataset,
they built a simple CNNmodel (using the LeNet architecture)
that takes the images of users as input and estimate the gaze
direction of the users, based on the x and y coordinates on
the screen. The authors treated the gaze estimation problem
as a multi-class classification problem, where each class is
treated as a point on the screen. The technique was evaluated
on the captured dataset, and it produced an angular error of
6.7 degrees, which is poor. The poor performance is likely due
to the poor image quality (28×28) and the dataset variability
used to train the network. The dataset contains images from
only 5 subjects. The poor performance may be also due to the
LeNet-based architecture used to learn the image-gaze map-
pings. The LeNet architecture is not large enough to extract
all the features necessary for accurate gaze estimation. It was
originally designed for handwritten digit recognition [46].
The technique was also evaluated on the CAVE (Columbia
Gaze Data Set) [47]. The dataset contains 5880 images from
56 subjects for 21 gaze directions and 5 unique head poses.
The technique was evaluated on three classes and 21 classes
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and it produced a classification accuracy of less than 30% for
the 21 classes and less than 95% for the three classes.

Hickson, et al. [45] proposed a technique for classifying
facial expressions in VR systems using eye trackers. The
technique is designed to automatically infer facial expres-
sions by analysing only a partially occluded face of users
while they are engaged in a VR experience. In the study,
images of the user’s eye are captured from a gaze tracking
camera within a headset and used to infer a subset of facial
expressions. The images are used to generate dynamic avatars
in real-time which serves as an expressive substitute for users.
They introduced a new approach for improving the accuracy
of deep CNN models. The technique was evaluated, and it
achieved a mean accuracy of 74%.

Garbin, et al. [48] introduced a large-scale dataset for
training models for VR systems. The dataset consists of eye
images captured using a VR head-mounted system with two
synchronized eyes facing camera. The images in the dataset
were captured from the eye regions collected from 152 sub-
jects and it is divided into four subsets. The first subset
consists of 12,759 labelled images, while the second subset
consists of 252,690 unlabelled images. The third subset con-
tains 91,200 frames randomly selected from video sequences
of 1.5 seconds, and the last subset contains 143 pairs of left
and right point cloud data. An experiment was performed to
evaluate the quality of the dataset and the results show that it
is suitable for building eye-tracking models for VR applica-
tions. Kim, et al. [44] created two datasets for near-eye gaze
estimation problems. The first dataset contains over 2 million
synthetic images with variations in face shape, gaze direction,
skin colour, pupil, iris, and external conditions. The second
dataset contains 2.5 million images collected from 35 sub-
jects. They evaluated the quality of the dataset by training
NN models, and it achieved an accuracy of 2.06 degrees.

c: CLASSIFICATION METHODS FOR GAZE-BASED TYPING
Some studies introduced gaze estimation techniques for
on-screen keyboard typing. These techniques use eye blink as
an input to an eye tracker. They facilitate text communication
using eyemovement Zhang, et al. [13] proposed a calibration-
free appearance-based technique that allows users to enter
input text by merely looking at the on-screen keyboard and
blinking their eyes. They divided the human gaze into nine
directions, namely: left-up, up, right-up, left, middle, right,
left-down, down, and right-down. They also built a dataset
consisting of several images from 25 people with different
lighting conditions, eye appearance, locations, and time. The
images were captured using mobile phones, webcams, and
digital cameras. They implemented many data augmentation
methods to improve the robustness of the model to image
resolution, illumination, slight head rotation, and skin colour.
They divided eye states into ten groups, consisting of the nine
directions (outlined above), and one eye-closed state. Based
on the dataset, they built a CNN gaze classificationmodel that
can learn the ten eye states from two eye images. The model
was evaluated, and it produced an accuracy of 95.01%.

Rustagi, et al. [49] introduced a gaze estimation technique
for touchless typing using head movement-based gestures.
To type a sequence of letter, a user makes a series of ges-
ture by looking at the desired letter on a virtual QWERTY
keyboard. The sequence of gestures is captured by a face
detection deep neural network-based system provided in
OpenCV [50]. The processed video frames are then used as
an input to a pre-trained HopeNet model [51]. The HopeNet
model is a CNN-based landmark-free head pose estimation
model built to compute intrinsic Euler angles (yaw, pitch,
and roll) from an RGB image. The output of the pre-trained
model was then used to train an RNN model that predicts the
sequence of clusters a user is looking at. The predicted cluster
sequence is used to suggest valid dictionary words that can
be formed out of the sequence. The method was evaluated
on a dataset consisting of 2234 video sequences collected
from 22 subjects, and it achieved an accuracy of 91.81%
Alsharif, et al. [52] introduced another gaze-based method
for typing using the LSTM network. In the method, input
data was used to train an LSTM network. During training, the
Connectionist Temporal Classification (CTC) loss function
was used to allow the network to output characters directly
without the need of HMMstates. This function allows the net-
work to map input sequences to short output sequences. After
training, the network produces a matrix that corresponds to
the set of permitted characters. To constrain the output to a
limited set of words, a Finite State Transducer was used. The
method was evaluated, and experimental results show that it
produces a classification accuracy of 92%.

d: CLASSIFICATION METHODS FOR BIOMETRIC SYSTEMS
Biometric identification techniques have attracted more
attention due to the growing demands of improved security
solutions. Eye-tracking can be used as an additional biomet-
ric input to improve the performance of biometric systems.
Liang, et al. [53] introduced a video-based identification
model for biometric systems using eye-tracking techniques.
They created video clips for different subjects to view, with
the goal of capturing eye-tracking data that reflects their
physiological and behavioural attributes, such as accelera-
tion, muscle, and geometric attributes. These attributes are
extracted from the captured eye gaze data and used as bio-
metric features to identify individuals. They used a feature
selection algorithm (based onmutual information of features)
to select relevant features for biometric identification. The
selected features were then used to train two classifiers,
namely: NN and SVM. The experimental results show that
measuring video-based eye-tracking data is a practicable
solution for biometric applications.

Jia, et al. [54] proposed a framework for biometric
identification through eye movement. They used RNN to
learn dynamic eye features and temporal dependencies from
a dataset captured from a sequence of raw eye move-
ment recordings. The model was designed to work in a
task-independent manner by using short-term feature vectors
combined with different stimuli in the training and testing
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phase. They evaluated the model on a dataset containing
samples of 32 subjects presented with static images. The
samples were recorded using a video-based eye-tracker cali-
brated for each subject. Experimental results showed that the
technique achieved a Rank-1 Identification Rate of 96.3% for
identification scenario and an equal error rate (EER) of 0.85%
for the verification scenario. Trokielewicz, et al. [55] pro-
posed a CNN-based biometric technique for post-mortem
iris recognition. They fine-tuned a pre-trained model that
was originally trained on image segmentation task, called
SegNet [56]. The fine-tuning was performed using a labelled
dataset containing cadaver iris images collected from 42 sub-
jects. Experimental results show that it achieved an EER of
less than 1% for samples collected up to 10 hours after death.
It also produced an EER of 21.45% for samples collected up
to 369 hours after death.

2) 3D CLASSIFICATION-BASED METHODS FOR GAZE
ESTIMATION
Eye-tracking techniques have high accuracy in perform-
ing gaze estimation in the x and y direction, but not in
depth [57]. Some applications (such as VR/AR systems)
requires accurate measurements of the x-and y-direction
of the eye gaze, particularly the focal depth information.
Changwani and Sarode [58] proposed a low-cost technique
for VR systems using neural networks. The technique con-
sists of two cameras for tracking the head movements in
three dimensions. Input from the two cameras is used to train
a neural network model for predicting the gaze location of
users. Foveated rendering technique is used to improve the
immersion experience of users. It is performed by rendering
the area of the screen where a user is looking at and distorting
the area that falls under the peripheral vision.

Shin, et al. [59] introduced a gaze depth estimation method
for VR and AR systems. They used a binocular eye tracker
to collect a wide range of features from two eyes, including
pupil centre, gaze direction, and inter pupil distance. These
features are then used to build a NN model for predicting
gaze depth. The method was evaluated on a dataset consisting
of images from 13 subjects. In the evaluation, individual
models were designed for each of the 13 subjects, and a
generalized model was also designed for the 13 subjects.
The experimental results show that the method produced a
gaze depth accuracy of 90.1% for the individual models and
89.7% for the generalized model. Lee, et al. [57] proposed an
NN-based technique for determining gaze depth in a head-
mounted eye tracker. They used a binocular eye tracker with
two cameras to capture gaze information of subjects looking
at fixed points at distances from 1m to 5m. The recorded
gaze vectors were used to train a NN model. The model was
evaluated, and the results show that it produced an average
classification error of less than 10%.

3) SUMMARY
The knowledge of gaze direction can provide valuable
insights into the point of attention for different users. Many

other classification techniques have proposed for gaze esti-
mation, such as techniques for identifying Eye Accessing
Cues (EAC) of users. EAC refers to certain patterns of eye
movements that provide information about the cognitive pro-
cesses of the human brain [60], [61]. George and Routray [23]
designed a computationally inexpensive real-time regression-
based CNN model for estimating eye accessing cues in a
desktop environment. In the study, eye images were extracted
from a dataset containing face images of different subjects.
The eye images were then used to build a CNN-based clas-
sification network for predicting seven EAC classes. The
network was trained on the left and right eye images inde-
pendently and jointly. All the experiments were performed
for both 3 and 7 classes, respectively. Experimental results
showed that the network that was trained on two eyes
images outperformed the network trained on a single eye.
The network produced a classification accuracy of 89.81%.
A summary of some selected gaze estimation classification
techniques is reported in Table 1. The table presents a list
of some appearance-based classification techniques and their
various performances. It also provides information on the
architectures, datasets, and image resolution used by various
techniques.

B. MACHINE LEARNING-BASED REGRESSION METHODS
FOR GAZE ESTIMATION
1) 2D REGRESSION-BASED METHODS FOR GAZE
ESTIMATION
a: REGRESSION METHODS COMBINED WITH
HANDCRAFTED OR EXTERNAL FEATURES
Regression-based gaze estimation methods attempt to esti-
mate a mapping function from the input variables (x)
to a numeric or continuous output variable (y). Different
regression-based solutions have been designed for eye gaze
estimation. Krafka, et al. [19] introduced a regression-based
eye-tracking system for mobile devices, called iTracker.
They created a large-scale dataset (called GazeCapture) con-
sisting of over 2 million images from over 1450 people
using mobile phones and tablets. The dataset was collected
under variable lighting conditions, different backgrounds,
diverse orientations, and various head pose. The inputs to the
eye-tracking system (i.e. iTracker) include full-face images,
left-eye images, right-eye images, and a face grid. The face
grid is a 25 × 25 binary mask input used to infer the
eye and head poses for each image. Based on the dataset,
the iTracker network was trained end-to-end to predict the
distance, in the X and Y directions, from the camera of
mobile phones and tablets. Experimental results showed that
the model achieved a prediction error of 1.77 cm and 2.83 cm
on mobile phones and tablet, respectively. The trained model
was fine-tuned to each device and orientation, and it achieved
a reduced prediction error of 1.71 cm and 2.53 cm for
mobile phones and tablet, respectively. In a different study,
Kim, et al. [10] introduced another regression-based model
for gaze estimation on mobile devices. Inspired by the results
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TABLE 1. Summary of appearance-based classification methods for gaze estimation.

achieved by the iTracker network, they designed a model
(called Gazelle) that takes five inputs, namely: right eye,
left eye, face, face grid, and Histogram of Gradients (HOG).
The HOG feature was created by computing the histogram
of oriented gradients from the cropped face images of each
frame. This was done to provide the network with an addi-
tional feature (than just pixel values) that can better capture
useful qualities for gaze estimation, such as head pose. They
trained the model on images from the GazeCapture dataset.
They used the OpenCV pre-trained Haar cascade classifier
to obtain face and eye bounding boxes from the images.
However, the OpenCV classifier could not accurately detect
faces and eyes from low resolution or cropped images. There-
fore, only 15% (350,000 images) of the GazeCapture images
could be used for training. They trained the model on the
350,000 images and it produced a prediction error of 4.85 cm,
which represents the distance, in the X and Y directions, from
the camera of a mobile device. The authors noted that the
HOG feature improved the model’s performance by 0.31 cm.

Some conventional techniques employed hand-engineered
features. However, some of these methods are not very
reliable under natural light conditions or free head move-
ments [21]. Wang, et al. [21] addressed this problem by
introducing a gaze estimation technique based on CNN
and random forest regression. Instead of using hand-crafted

features, they introduced a hybrid technique for learning
CNN-based image features (called deep features) for gaze
estimation. Specifically, they trained a CNN model on dif-
ferent eye images and extracted the output of the last fully
connected layer of the network. The extracted CNN-based
features were then used to train a random forest regressor
to learn mappings between the deep features and gaze coor-
dinates. The technique achieved a prediction error of 1.53◦.
The results show that the deep features substantially improve
performance on regression-based algorithms compared to
hand-engineered features.

b: REGRESSION METHODS WITHOUT HANDCRAFTED
FEATURES
Generally, eye tracking applications for consumer devices
are expected to be computationally inexpensive with low
power consumption [22]. Some studies tackled this challenge
by introducing hardware optimized CNN-based regression
techniques.

Lemley, et al. [22] designed a hardware-friendly CNN
model for low-cost consumer devices. The model was
designed to predict a gaze angle that corresponds to
low-resolution eye images. They trained the model on images
from the MPIIGaze dataset [65], a standard dataset used for
gaze estimation in unconstrained environments. Specifically,
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they trained the model on left-eye images, right-eye images,
and on both left and right eyes images. The result showed
that using information from two eye images (i.e. left and right
eye) can improve the accuracy of a CNNmodel. Besides, they
evaluated the sensitivity of the model to distance, by down-
sampling the evaluated images to different image resolutions
and training the model on the down-sampled images. The
result showed that the model’s performance reduces when a
subject is far from the camera, implying that the model is
sensitive to distance. They also evaluated the effect of data
augmentation on the model, and the result showed that data
augmentation improved the model. They designed a network
for hardware efficiency and improved accuracy. The network
consists of four convolutional layers, twomax-pooling layers,
one dropout layer, and two fully connected layers. The first
and second convolutional layers consist of 32 filters, while
the last two convolutional layers consist of 64 filters. One
of the important requirements considered in the study for
designing the hardware optimized network was the kernel
size. They stacked the network with kernels of sizes 3 × 3.
The network was evaluated, and it produced a prediction error
of 3.64 degrees.

Some existing CNN-based gaze estimation models are
trained on datasets collected under controlled environments,
implying that these models are not capable of effectively esti-
mating gaze in real-world conditions [11]. Zhang, et al. [11]
tackled this challenge by introducing an image feature extrac-
tion technique for eye tracking in uncontrolled environments.
They created a dataset (called MPIIGaze) consisting of over
213,000 images from 15 laptop users. The dataset was used
to build a CNN-based model for appearance-based gaze esti-
mation in unconstrained environments, such as driver gaze
monitoring systems. They used a face detection and facial
landmark detection technique to detect face and facial land-
marks from different images in the dataset. A generic 3D
facial shape model was also used to estimate 3D head poses
of the detected faces. The head poses, and eye images were
used to train a CNN network that learns mappings from the
head poses and eye images to different gaze directions. The
technique was evaluated on the MPII Gaze dataset, and it
produced a prediction error of 13.9 degrees for cross-dataset
evaluation and 6.3 degrees for within-dataset evaluation. The
prediction error was further reduced when the model was
trained on subject-specific information. It produced an error
of ∼3 degrees.

Zhang, et al. [18] postulated that other face regions
(beyond the eye) contain important information for gaze
estimation. To prove this, they designed a spatial weight
mechanism that can competently encode different regions of
the entire face into a CNN network. Full face images were
captured and passed through several convolutional layers to
generate a resultant feature map. The feature map was then
passed through the spatial weight mechanism to generate a
weight map. Afterwards, the weight map was multiplied with
the feature map using element-wise multiplication. Finally,
the output map was fed into fully connected layers to produce

the estimated gaze values. The technique was evaluated, and
it produced an angular error of 4.8 degrees and 6.0 degrees
for MPIIGaze and EYEDIAP datasets, respectively.

2) 3D REGRESSION-BASED METHODS FOR GAZE
ESTIMATION
a: REGRESSION METHODS FOR FREE HEAD 3D GAZE
TRACKING
Some of the existing gaze estimation techniques are only
capable of estimating gaze positions on a screen [8], [66], but
do not provide information on gaze vector and eye location.
These techniques did not capture the relationship between
head pose, eyeball movement, and gaze vectors [62]. They
were simply designed to learn this relationship from the
dataset, which will lead to overfitting of the head-gaze rela-
tionship [62]. Some techniques achieved state-of-the-art per-
formance; however, these techniques could only predict gaze
intersection on a screen and not on a 3D surface [62]. Some
applications need information on the specific object or region
a user is looking at [62]. These applications require gaze
estimation techniques that can calculate the gaze intersections
between the 3D gaze vector and various objects in a 3D
scene [62]. Examples of such applications include driver gaze
attention monitoring, analysis of advertisement and investi-
gations [62]. Free-head 3D gaze estimation techniques can
estimate both the eye location and the gaze vector in a 3D
space [63]. Zhu and Deng [62] proposed an effective and
low-cost 3D gaze estimation technique for eye tracking. They
introduced a strategy for building gaze estimationmodels that
can effectively capture both free head movements and eyeball
movements. In the strategy, they divided the gaze estimation
into two separate modelling tasks, where they trained two
different CNN models for modelling the eye movement and
head movements. They introduced an additional layer (called
gaze transform layer) that combines the predictions from the
two CNN models, and aggregate them into a gaze vector.
They also proposed a two-step training strategy that divides
the training task into two stages. In the first stage, the eye-
ball and head pose model were trained separately on coarse
head pose and eyeball movement labels. In the second stage,
the two models were trained jointly on accurate gaze labels.
The authors created a dataset consisting of 240,000 images
from 200 subjects with full coverage of various head poses,
eyeball movements, lighting conditions, glasses occlusions
and reflections. The technique was evaluated, and it achieved
a cross-subject error of 4.3◦.

Extrapolating human gaze from low-resolution eye images
is still a challenging task. Sugano, et al. [63] addressed this
problem by proposing a learning-by-synthesis technique for
appearance-based gaze estimation. They used a fully cali-
bratedmulti-camera system to collect a large amount of cross-
subject 3D annotated datasets consisting of 64,000 images
from 50 subjects. They also constructed a synthesized dataset
by performing a 3D reconstruction of the eye regions in the
collected dataset. Using the synthesized dataset, they trained
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TABLE 2. Summary of appearance-based regression methods for gaze estimation.

a random forest regression model for 3D gaze estimation, and
it produced a cross-subject mean error of 6.5 degrees.

Funes Mora and Odobez [32] introduced another method
for gaze estimation in 3D surfaces. They used a 3D Mor-
phable Model to generate person-specific 3D templates for
different faces in a dataset. Specifically, they used the Basel
Face Model [67], which was built from a large group of
subjects. Using the person-specific templates, they estimate
the head pose for each subject using a 3D face tracker. The
eye tracker is based on video and ground truth data obtained
from a multimodal Microsoft Kinect sensor. Based on the
estimated head pose and 3D templates, they map the head
image to a frontal image of the face and crop the eye region
from the resulting image. The eye images are then used to
train an adaptive linear regression model for estimating the
eye gaze in the reference system of the head. The eye gaze is
then transformed to a gaze direction in the world coordinate
system. The method was evaluated, and it produced a mean
error greater than 10 degrees.

Palmero, et al. [64] tackled the problem of head-pose
and person-independent 3D gaze estimation in remote
camera. They designed a method that can model both
appearance-based and shape-based gaze estimation cues. The
appearance-based cues are represented by the full-face and
eye images, while the shape-based cues are represented by 3D
facial landmarks obtained from a 68-landmark model which
models the global shape of the face. The appearance-based
and shape-based features are used to jointly train an RCNN

model for 3D gaze estimation. The method was evaluated
for both static and moving head scenarios. The experimen-
tal results show that it produced an average angular error
of 5.1 and 6.2 degrees for the static and moving head,
respectively.

3) SUMMARY
Many other appearance-based regression gaze estimation
methods have been proposed in the literature. Table 2 presents
a summary of some selected regression-based gaze estimation
techniques.

IV. GENERAL DISCUSSION
This section presents a general discussion on CNN-based
gaze estimation techniques. The section is divided into four
subsections. The first subsection provides a discussion on
existing gaze estimation techniques, while the second sub-
section provides a discussion on the comparison between
calibration-based and CNN-based techniques. The third sub-
section provides a discussion on various datasets used to eval-
uate the performance of CNNmodels, and the last subsection
provides information on the network parameters used to train
CNN-based gaze estimation models.

A. MACHINE LEARNING METHODS FOR EYE TRACKING
Eye-tracking is a very interesting domain that has attracted
the interest of many researchers. It is a great tool for any
human behaviour research applied in different domains,
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including psychology, medicine, marketing, and automo-
bile [3], [68]. It can also be used to improve the interaction
between humans and computers, as eye gaze can be used
for navigation and control. A good number of eye gaze
estimation techniques have been proposed and applied in the
literature [20]. In recent times, however, we have experienced
a departure from conventional eye gaze tracking methods -
the majority of which are model-based methods. Compared
to model-based approaches, much work has not been done
on appearance-based eye gaze estimation. Some of the exist-
ing appearance-based methods addressed 2D and 3D gaze
estimation. Earlier studies focused on ANNs, random forest,
linear regression, SVRs, deep end-to-end CNN models, and
transfer learning. However, compared to other appearance-
based methods, the CNN-based gaze estimation approach has
not been fully explored. Zhang, et al. [11] are one of the first
authors to apply CNNs to eye gaze estimation.

Eye-tracking can be applied in constrained and uncon-
strained environments. Constrained gaze tracking systems are
not very useful for some eye-tracking problems, especially
problems that involve free head movements, such as driver
gaze monitoring. Such gaze detection systems will not be
effective if users move their eye to gaze at something with-
out moving their head. Therefore, some studies focused on
designing improved CNN models for unconstrained envi-
ronments, such as automobiles, mobile devices, and laptop
devices. As shown in Table 1, CNNs have not been fully
explored for driver gaze classification. Among the few exist-
ing methods, some of them were designed to handle seven
gaze zones [39], [41], while some were designed to handle
six gaze zones [12]. These methods are not very reliable
as they cannot accurately determine driver positions. Given
this, Naqvi, et al. [3] designed an improved method for
handling 17 gaze zones, and it outperformed the previous
techniques with smaller gaze zones. This implies that per-
formance increases with an increase in the number of gaze
zones.

Different testing methods can be used to evaluate gaze esti-
mation models. Some studies used the cross-dataset testing
method to evaluate their models [39], while some studies used
within-dataset testing method [12]. The cross-dataset testing
method ensures that the images in the training datasets are
completely different from the images in the test datasets. This
is the case in a real-world scenario, where the trained system
can be used by different subjects without personalizing the
system for each subject. Choi, et al. [12] did not use the
cross-dataset testing method, but they used the within-dataset
testing method. In their study, 70% frames for each subject
were used for training, and the other 30% frames were used
for testing and validation. Vora, et al. [39] replicated the
experimental setup used by Choi, et al. [12] and reported
that they achieved a high classification accuracy of 98.7%.
The same authors [39] used a cross-dataset testing method for
the same dataset and obtained a lower classification accuracy
of 82.5%. This shows that the within-dataset testing method
is not reliable because it overfits to subject-specific features.

The method does not reflect the true generalization ability of
a designed model. Developers are advised to be very careful
when choosing evaluation techniques for deep learning gaze
estimation models.

The task of developing a deep learning model for gaze
estimation can be considered as a classification or regres-
sion task. Although both considerations are useful, regres-
sion provides the best classification flexibility [22]. Gaze
classification can be broadly divided into outdoor environ-
ment and indoor desktop environments [3]. Indoor desktop
environments can be further divided into wearable and non-
wearable device-based techniques. Wearable device-based
techniques consist of a camera and illuminator mounted on
the head of the subject in the form of a pair of glasses or
a helmet [69]–[71]. Although wearable device-based tech-
niques can accommodate free head movements, they are
not very convenient, especially when users are required to
wear the devices for long durations. Therefore, non-wearable
device-based techniques were introduced to tackle this prob-
lem [72], [73]. These techniques use non-wearable gaze
tracking devices (such as illuminators and RGB cameras)
to acquire face and eye images for gaze estimation. A typ-
ical example of non-wearable device-based techniques is
the pupil centre corneal reflection (PCR) method introduced
in [74], [75]. These techniques can effectively handle-free
headmovements. They can also accommodate free eyemove-
ments. They are very suitable for gaze estimation, as they
do not need complex geometric knowledge on lighting, cam-
eras or eyes [3]. Non-wearable device-based techniques are
more convenient than wearable device-based techniques, but
they require initial user or camera calibration which can be
burdensome and time-consuming. Some authors proposed a
calibration-free PCR-based technique for gaze estimation.
Experimental results show that PCR-based methods are neg-
atively affected by badly captured images, where the pupil
and cornea reflection are not properly detected. Camera cal-
ibration is also required for PCR-based gaze estimation in
outdoor environments, which can be cumbersome.

In deep learning, fine-tuning of pre-trained CNN models
is a common practice and it has generally improved per-
formance. Through fine-tuning of pre-trained CNN mod-
els, reduced prediction error can be achieved with almost
negligible time to train the dense layers. Fine-tuning can
be performed on models that have been pre-trained on
generic datasets. The goal of pre-training is to extract general
image structure, while the goal of fine-tuning is to extract
domain-specific features. As shown in Tables 2 and 2, net-
work architectures can be fine-tuned for gaze estimation,
including AlexNet, VGG-16, LeNet, ResNet, SqueezeNet,
and iTracker. Fine-tuning can be achieved by updating the
pre-existing weights of all the network layers or replacing
the final layer with a new layer that is trained from scratch.
The former is used when the output dimensionality is similar
to the dimensionality of the new domain, while the latter can
be used when the output dimensionality is different from the
dimensionality of the new domain [38].
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The performances of the different pre-trained models
vary with different gaze estimation tasks. For example,
Vora, et al. [41] achieved a gaze classification accuracy
of 93.36% when they used the pre-trained VGG-16 model,
but they achieved a lower classification accuracy of 88.91%
when they used the pre-trained AlexNet model. This is
because VGG-16 was pre-trained for a task closely related to
eye gaze estimation (face recognition), compared to AlexNet
model that was pre-trained for object recognition. The net-
work depth of VGG-16 is also larger than the network
depth of AlexNet, which further explains its better perfor-
mance. Nevertheless, AlexNet architecture (pre-trained on
ImageNet) is still vastly used bymany gaze estimation studies
because the early layers of pre-trained AlexNet have already
learned different features like curves and edges, which are
very useful to most classification problems, such as eye gaze
classification, face recognition, and image classification. It is
worthy to note that using a small learning rate during fine-
tuning is recommended, primarily to avoid losing the weights
already learned by previous layers of the network. We can
use one pre-trained model for fine-tuning, or a combination
of pre-trained models, as shown in [39], [41].

The size of the training datasets plays an important role
in the accuracy of gaze estimation models. Generally, CNN
models produce very good results when trained on a large
volume of datasets. The results reported in the literature
show that the prediction error decreases significantly as the
sample size increases. This implies that small datasets are
not very suitable for building efficient CNN models from
scratch. Small datasets are mostly useful for fine-tuning
models. In the event where we have a meagre amount of
data, data augmentation can be used to increase the gaze
accuracy and generalization ability of CNN models. Some
data augmentation techniques include flip, rotation, and scale.
In addition to dataset size, variations in data samples also play
an important role in achieving good performance.Models that
are trained on a large volume of datasets of the same class will
not produce very good generalization performance. Datasets
are required to contain images of different classes, appear-
ances, head pose, and illuminations. This is to ensure that
CNN models capture these variations and provide reliable
gaze estimation. Some studies introduced large-scale datasets
for eye gaze estimation, such as MPIIGaze, EYEDIAP, and
GazeCapture. These datasets contain images with varying
head poses, illumination, and facial expressions.

Calibration in CNN models is not necessary for building
efficient gaze estimation models. Krafka, et al. [19] studied
the effect of calibration by simulating the process of calibra-
tion. In the study, images from 13 fixed positions and 47 ran-
dom positions were collected from each subject. The images
from the fixed positions were used to fine-tune a pre-trained
CNNmodel, and the remaining images were used to evaluate
the model. The model was fine-tuned on a different number
of calibration points, and results showed that its performance
decreases when trained on a few calibration points, which
could be due to overfitting. The model produced its best

performance when trained on 13 calibration points. Specif-
ically, the model achieved an improved prediction error of
1.34 cm and 2.12 cm, compared to 1.71 cm and 2.53 cm
that was achieved without calibration. Although calibration
is useful, its impact on CNN models is not very signifi-
cant because of the generalization ability of CNN models,
achieved through deep learning and large-scale datasets.

A different number of inputs can be used to train CNN
frameworks. Some frameworks can be trained on multiple
inputs independently, while some can be trained on single
inputs. Naqvi, et al. [3], Kim, et al. [10] designed a framework
that consists of three deep CNNs, where each CNN takes the
left eye, right eye and full-face image as input, respectively.
Results reported in the literature show that each of the three
inputs contributes to the overall performance of CNN mod-
els [19]. However, the contribution of each input varies. The
full-face input provides the highest contribution, compared
to the left and right eye. This suggests that a more efficient
technique can be designed using a framework that takes the
full-face image as input. Some studies designed CNNmodels
that accept hand-engineered features as inputs. For example,
Krafka, et al. [19] introduced an eye grid as an external fea-
ture, while Kim, et al. [10] introduced HOG. The eye grid is a
binary feature that specifies the size and location of the head
inside the frame, while HOG is a semantically-rich feature
that provides information on some important gaze estimation
features of the face, such as head pose. Results reported in the
literature show that hand-engineered features can reduce the
prediction errors of CNN gaze estimation models [10].

CNNs can be applied to inputs of different dimensions,
however, due to their success in 2D images, they are mostly
applied to 2D inputs [22]. CNNs have been applied to other
inputs including 1D inputs (time series) and 3D inputs (vol-
umetric or time series data) Wang, et al. [1] designed 2D
and 3D regression-based methods using Regression-based
Convolutional Neural Network (RCNN) and model-based
gaze estimation method. Specifically, they used RCNNs to
learn image features that correlate well with eye fixations.
Eye images of users were captured and used as input to
RCNNs for estimation of fixation map. The fixation map
was then combined with a model-based method to obtain the
gaze prediction. Results reveal that the 2D calibration method
produced a prediction error of 1.00 degrees, while the 3D
method produced a prediction error of 1.4 degrees.

The quality of images used to train various gaze estimation
models varies; some studies used high-resolution images,
while some used low-resolution images. Results reported by
Choi, et al. [12] show that CNNs are capable of reliably pro-
cessing images of low resolution, unlike other model-based
approaches that require high-resolution images for accurate
gaze prediction. On the contrary, the results reported by
Konrad, et al. [14] shows that low-quality images can nega-
tively affect the classification accuracy of CNN-based eye-
tracking systems. Konrad, et al. [14] trained their model
on images of size 28 × 28, and it produced a very poor
classification accuracy of 0.003%. Image resolution should
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TABLE 3. Comparison between calibration-based and CNN-based
techniques.

be taken into careful considerationwhen building CNN-based
gaze estimation models.

B. CALIBRATION-BASED GAZE ESTIMATION VS DEEP
LEARNING-BASED GAZE ESTIMATION
This section presents a comparison between calibration-based
and deep learning-based gaze estimation techniques.
As shown in Table 3, calibration-based techniques pro-
duced better results compared to calibration-free techniques.
Calibration-based models are most suitable for applica-
tions that do not require subject-independence or pose-
independence. This is because, some of them assume a
fixed head pose [18], implying that they do not permit free
head movement. Most of them also require subject-specific
training, while some of them are evaluated on a few subjects
which limit their generalization performance [76], [77]. Some
of them also require complex calibration procedures [78],
such as screen calibration and personal calibration. Some

FIGURE 5. Sample images from four datasets.

of them require very high-resolution images which can be
computationally expensive to process, while some of them
cannot be applied to multiple devices and orientations.

In contrast, deep learning-based gaze estimation models
can handle both pose-independent and subject-independent
gaze estimation and do not require complex setups or cali-
bration procedures. They have higher generalization perfor-
mance (compared to calibration-based techniques) because
they are trained on a large number of images from many
subjects ranging from 50+ subjects [47], [62], [63], [79] to
over 1000 subjects [19], [80]. They are useful for uncon-
strained eye tracking because they permit free head move-
ments. They are also generalizable to multiple devices and
orientations.

Some studies designed deep learning-based gaze estima-
tion systems that estimate 2D (X, Y) gaze coordinates relative
to the camera [10], [19]. The X coordinate specifies the
distance (in cm or mm) to the left or right direction of the
camera on a virtual plane that contains the true location, while
the Y coordinate indicates the distance in the up and down
direction of the camera. This coordinate system allows the
model to predict gaze coordinates that is generalizable to
multiple devices (such as tablets, laptops, and smartphones)
and orientations (portrait or landscape, depending on the
placement of the camera on the screen). It leverages the fact
that the front-facing camera is usually on the same plane to
the screen, and it is angled perpendicular to the screen [19].
Different devices are typically used to record the gaze track-
ing data for building CNN models, including smartphones,
tablets, and laptops. For each recording, dots are randomly
displayed on the screen of these devices and users are asked
to fixate at each dot location. The 2D gaze coordinates for
the dot locations are recorded, and in some cases converted
to a corresponding dot location on a normalized prediction
space. The screen size measurement for each device and the
placement of their camera are also recorded. The recorded
gaze data is then used to build gaze estimation models.

One of the challenges of deep learning-based gaze estima-
tion models is the lack of balanced and variable large-scale
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TABLE 4. Some selected datasets for eye gaze estimation.

dataset. Most of the available datasets are not well representa-
tive of devices and orientations. The images in these datasets
were captured from multiple devices, but the variability and
number of training data from each device (represented in the
dataset) are not well balanced. To achieve very good perfor-
mance, each device should be well represented, in terms of
size and fixation coverage. The training data from each device
should cover awide range of fixation locations for that device.
The training data from each device should also have a good
representation of variability in appearance, head pose, facial
expression, illumination, and orientation.

C. DATASET FOR GAZE ESTIMATION
The introduction of deep learning in 1943 [88] has mean-
ingfully improved many applications in the computer vision
domain [89]. Evidence from previous studies [90], [91]
shows that one secret to this success is the availability of
large-scale datasets. In the past, researchers in the domain of
computer vision were faced with the challenge of accessing

large-scale public datasets, and because of this, many of
the advances in this domain remained restricted to internet
giants, such as Facebook, Twitter, and Google [92]. For
example, in 2015, Google released a face recognition tech-
nology that was trained on 200 million images from eight
million individuals [93]. However, in recent times, many
researchers are collecting and making datasets available for
different computer vision tasks. Parkhi, et al. [92] introduced
a large-scale dataset for face recognition tasks consisting
of over 2 million images from over 2600 identities. Many
other datasets have been introduced in the literature. Figure 5
shows the sample images from some datasets used in the
literature. Some of these datasets contain images with dif-
ferent sizes, backgrounds, illuminations, and appearances.
Some datasets also contain head pose data (such as head
motions) so that appearance-based models can learn free
head movements. Generally, datasets are expected to have a
wide variety in the head pose, illumination, appearance, and
background. Although there are standard benchmark datasets
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TABLE 5. Some selected parameters for training deep learning-based gaze estimation models.

used for image classification (such as ImageNet [94] and
MNIST [95]), there is no dataset that has become the standard
benchmark for gaze estimation tasks [38].

Some early studies constructed appearance-based models
with small datasets. These models, however, do not general-
ize well to gaze estimation in-the-wild. Gaze estimation in-
the-wild is characterized by variability in illumination, eye
appearance, and head pose. Recent appearance-basedmodels,
therefore, trained models on large-scale datasets. For exam-
ple, the GazeCapture dataset contains over 1.4 million usable
images collected from over 1400 users with different head
poses, appearance, and illumination conditions. MPIIGaze
dataset contains over 213,000 images from 15 people look-
ing at different gaze positions. The dataset was collected
over three months during daily laptop usage. Some of these
datasets are still limited in head pose and illuminations. Col-
lecting such large-scale datasets can be very laborious, time-
consuming, and expensive. Instead of training models on real
eye images, some studies introduced methods for generating
synthesized eye images. Wood, et al. [96] introduced a novel
framework that combines a large amount of eye region images
for training. In the study, onemillion synthesized imageswere
generated using a combination of 3D eye models and a real-
time rendering framework. The quality and suitability of the
dataset were assessed by comparing its performance to other
datasets with real images, and it achieved competitive results.

Some useful benchmark datasets for gaze estimation
include VGG-Face [92], MPIIGaze [11], Labeled Faces
in the Wild dataset (LFW) [97] and YouTube Faces
(YTF) [98], TabletGaze [99], TurkerGaze [100], Celeb-
faces [101], BayesianFace [102]. It is noteworthy to mention

that ImageNet dataset [94] does not contain face images;
however, as shown in various results reported in the lit-
erature, fine-tuning an ImageNet-based model produces
improved results for eye gaze estimation. This is because an
ImageNet-based model has already captured different fea-
tures like curves and edges (in its early layers), which are
very useful to most classification problems. Table 4 presents a
list of some useful datasets for eye gaze estimation. Although
the scope of this study is eye gaze estimation, we have also
included popular datasets used for face recognition, because
results reported in the literature show that they are also very
useful for eye gaze estimation.

D. NETWORK PARAMETERS USED FOR TRAINING
APPEARANCE-BASED GAZE ESTIMATION MODELS
As shown in Table 5, the following parameters are required
for training a CNN: momentum, number of iterations,
mini-batch size, learning rate, and weight decay. The value
for each parameter is selected based on the problem solved.
We observed that Stochastic Gradient Descent (SGD) opti-
mizer with a momentum of 0.9 works well for most studies.
Momentum helps to increase the speed of the gradient vector
in the right directions, therefore leading to faster conver-
gence. SGD optimizer is one of the popular optimization
algorithms, and numerous state-of-the-art models are trained
with it. Different learning rates can be used for training,
depending on the model. Learning rate controls the frequency
at which the network weights are adjusted for the gradient
loss. Some studies started with equal learning rate for all the
trainable layers and manually decreased the rate by a certain
order of magnitude after some conditions. It is particularly
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TABLE 6. Some useful deep learning architectures that can be fine-tuned for gaze estimation.
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TABLE 6. (Continued.) Some useful deep learning architectures that can be fine-tuned for gaze estimation.

FIGURE 6. AlexNet network architecture [40].

recommended that a smaller learning rate is used when
fine-tuning a model, to ensure that the pre-trained weights
are preserved. Table 6 shows a description of some useful
deep learning network architectures that can be fine-tuned
for eye gaze estimation. Figures 6 - 12 also shows a repre-
sentation of some deep learning architectures, including pop-
ular architectures, such as SqueezeNet, DeepID2, DeepFace,
VGG-16, AlexNet, LeeNet, and iTracker. These architectures
can be adopted and used to design deep learning-based gaze
estimation techniques.

V. LIMITATIONS, FUTURE WORK DIRECTION,
AND SUMMARY
This section outlines the limitations of the appearance-based
gaze estimation techniques reviewed in this study. It also

provides future research directions and the summary of the
survey.

A. LIMITATION AND FUTURE WORK DIRECTIONS
Experimental results reported in the literature [1] shows that
some of the proposed gaze estimation techniques produced
state-of-the-art results. However, every study has limitations,
which are normally the basis for future research. This section
provides some limitations of CNN-based gaze estimation
techniques.

a. CNN-based techniques can be negatively affected in
cases when there are severe head and eye rotation during
image capture. This can cause one of the two eyes to
disappear in the captured image and consequently cause
an increased error in gaze estimation. This limitation can
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FIGURE 7. iTracker architecture [19].

FIGURE 8. SqueezeNet architecture [116].

be resolved by using multiple cameras, which could also
increase the processing time. Therefore, future research
can focus on designing fast and improved gaze esti-
mation methods that can efficiently handle free head
movements and eye rotations.

b. As shown in Table 3, calibration-based gaze estima-
tion techniques produced better prediction error than
CNN-based techniques. Most of the CNN-based gaze
estimation techniques produced a prediction error that
is greater than 0.5◦. One of the primary reasons could

be due to the lack of balanced and variable large-scale
dataset. Most of the available datasets are not well rep-
resentative of devices and orientations. The images in
these datasets were captured from multiple devices, but
the variability and number of training data from each
device (represented in the dataset) are not well balanced.
To achieve very good performance, each device should
be well represented, in terms of size and fixation cov-
erage. The training data from each device should cover
a wide range of fixation locations for that device. The
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FIGURE 9. DeepFace architecture [111].

FIGURE 10. DeepID2 architecture [114].

FIGURE 11. LeNet-5 architecture [117].

training data from each device should also have a good
representation of variability in appearance, head pose,
facial expression, illumination, and orientation. Future
work can focus on collecting balanced large-scale dataset
for calibration-free gaze estimation.

c. Based on some observations reported in the literature,
designing robust and effective CNN-basedmodels can be
very time-consuming, costly to implement and compu-
tationally expensive. They are time-consuming because
CNN performs many computationally expensive oper-
ations that require developers to have access to very
fast computers, such as cluster computers with GPU

accelerations or fast multi-core CPUs. CNNs are also
costly to implement, especially in cases where develop-
ers do not have access to computers with large memory
and storage space. Robust and accurate CNN mod-
els require well-balanced large-scale datasets for reli-
able eye gaze estimation. Future research can focus
on designing low-cost, computationally inexpensive,
hardware friendly and hardware optimized network
architectures for eye gaze estimation.

d. Some studies [18] proposed heatmap gaze estimation
models instead of the popular 2D gaze estimation
models. Experimental results reported in the literature
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FIGURE 12. VGG-16 network architecture [42].

suggests that heatmap models perform worse than
2D gaze point models, which could be because of
their sensitivity to hyper-parameter values or difficulty
to train [38]. Future studies can consider developing
improved heatmap models for gaze estimations.

e. Some datasets do not contain complete information
needed for constructing accurate gaze estimation mod-
els. For example, 30% of the frames in the GazeCapture
dataset were not properly captured; they do not have both
face and eye detections. Some of the frames are out of
focus or cropped in such a way that the face of the user is
occluded. These limitations can affect image classifiers
(such as OpenCV Cascade classifier) that have a poor
success rate in detecting eye and faces from poor quality
images. Having less noise in datasets could improve the
gaze accuracy of CNN models. Future research should
focus on capturing well-balanced and noise-free datasets
with variation in illumination, head poses, facial expres-
sions, and eye appearances.

f. Zhang, et al. [13] designed a CNN-based text entry sys-
tem capable of estimating eye gaze. The method is suit-
able for traditional 9-key T9 input mode widely used by
candy bar phones. These brands of phones are becoming
obsolete; hence themethodmay not be fully beneficial to
most mobile phone users. Current dispensation eye gaze
estimation techniques should be designed for the popular
keyboard layout, also known as QWERTY keyboard
layout.

g. Most of the CNN-based techniques reviewed in this
article are designed for unconstrained environments,
where captured images can be subjected to different head
poses, appearance, illumination, facial occlusions, and
more. Their results show that there is still much room
for improvement. Future research can target designing
robust and improved unconstrained techniques that can
handle many real-world variations.

h. Models pre-trained on full-face images inspired the tech-
nique introduced by Masko (2017). However, the same
technique was fine-tuned on ROI images. The difference
in the full-facemodel and ROI imagemodel could lead to
variations that can negatively affect the gaze accuracy of
the final model. Ideally, to achieve good results, models
that are designed for ROI images should use models that
are pre-trained on ROI images and not full-face images.

i. Although training CNNs on low-quality images
improves the training speed, results reported in the
literature [14] shows that low-quality images signifi-
cantly affect the gaze accuracy of CNN-based eye gaze
estimators. Future studies should consider developing
techniques with balanced speed-accuracy trade-off.

j. Some of the gaze estimation models proposed in the
literature were trained on relatively small datasets [108];
hence they did not produce competitive results. Gener-
ally, well-balanced, and large-scale datasets are required
to construct effective and robust deep learning models.
This should be the focus of future studies.
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k. Appearance-based gaze estimation methods are capa-
ble of implicitly modelling the eye geometry and eye
features from an input dataset, without explicit cali-
bration. However, they are not capable of efficiently
modelling variations in head positions. This is because
the eye appearance may appear similar under different
head poses and gaze directions. Changes in illumination
(under the same pose) can change the appearance of the
eye and affect the gaze estimation accuracy [8]. Future
research can design improved techniques that can handle
this problem.

l. As shown in Table 1, some studies introduced gaze
estimation techniques for automobiles. Most of them did
not consider drivers with low vision. Drivers with low
vision require a bioptic lens system for driving purposes.
A bioptic lens system is a system that combines two-lens
optical system with one or more telescopes attached
to the lens of a pair of eyeglasses [118]. Future work
may consider designing techniques that can handle gaze
estimation for drivers with low vision.

B. SUMMARY
This article presents a survey of appearance-based gaze
estimation methods, with a focus on CNNs. Gaze esti-
mation methods can be divided into model-based or
appearance-based techniques. Model-based techniques can
be further divided into corneal reflection and shape-based
methods. They perform gaze estimation by finding the loca-
tion of the eye on a 3D space using reflections in the eye,
also called glints [119]. Corneal reflection-based methods
rely on external light sources for feature detection, while
shape-based methods rely on the observed shape of the eye
for gaze estimation, such as iris edges and pupil centres.
Unfortunately, these methods are not capable of accurately
handling images of low quality or images with variable light
conditions. Appearance-based methods rely on the appear-
ance of the eye for gaze estimation. They directly map image
features to gaze points without the use of hand-engineered
features. Unlike model-based approaches, they can reliably
handle images of low resolution. They can also generalize
well on new faces without using specific data from users.
Early appearance-based models introduced gaze estimation
techniques that presumed a fixed head pose and training data
for users. Later works introduced improved methods that can
handle variable head pose, illuminations, and appearance.
However, these methods still require the models to be trained
on subject-specific features. Recent studies [11], [18] are
focusing on introducing methods that can handle variable
head pose and subject-independent gaze estimation. How-
ever, some of thesemethods require a huge amount of training
datasets. To satisfy this need, different studies [11], [112]
introduced large-scale gaze estimation datasets consisting of
images with different head pose and illumination conditions.

This article focused on deep learning algorithms (and
other ML algorithms) because of their popularity and effi-
cacy. Deep learning algorithms are successful thanks to the

availability of large-scale datasets and scalable computational
resources such as thousands of CPU cores and GPUs. The
primary goal of this study is to provide the research com-
munity with a comprehensive reference point suitable for
enhancing the design of state-of-the-art appearance-based eye
gaze estimation techniques. We hope that this study will be
useful to the research community and will foster the design
of improved gaze estimation techniques.
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