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ABSTRACT Precipitation is an important parameter of water resource management, flood warning and
hydrological analysis, so it is important to predict rainfall accurately. However, many previous studies did
not extract the information of error series and only used a single model to predict rainfall data, ignoring the
importance of model stability. Therefore, based on the idea of combination prediction and error correction
strategy, this paper proposes a novel combined prediction model for monthly mean precipitation. It combines
the variational mode decomposition (VMD), the improved butterfly optimization algorithm (IBOA), the least
squares support vector machine model (LSSVM), the adaptive Volterra and autoregressive moving average
(ARMA) model. Firstly, in order to find the best parameters of LSSVM, an improved butterfly optimization
algorithm is proposed. The simulation results show the performance of IBOA is better than that of other
algorithms, such as PSO, DE and BOA. Then the IBOA-LSSVM model and Volterra model are established
for the mode components of the VMD, named VMD-IBOA-LSSVM and VMD-Volterra. Secondly, to solve
the problem that the uncertainty of the hydrological prediction model, a combined precipitation prediction
method based on the induced ordered weighted average (IOWA) operator of VMD-IBOA-LSSVM and
VMD-Volterra is proposed. Finally, the ARMA model is established to correct the error sequence of the
combined forecasting model. The precipitation data of two stations in Shaanxi Province are predicted.
Experiment 1 is taken as an example, the maximum error of the proposed prediction model for rainfall
is less than 9 mm, and the performance of the proposed model is improved by at least 43%. It shows that
the proposed model can effectively reduce the prediction error of precipitation, and provide a new idea for
precipitation prediction.

INDEX TERMS Variational mode decomposition, least squares support vector machine, improved butterfly
optimization algorithm, combined forecasting, precipitation prediction.

I. INTRODUCTION
Precipitation is an important parameter of water resource
management, flood warning and hydrological analysis
[1], [2], and the change of precipitation has a direct impact
on the runoff of surface river [3]. It is a complex nonlinear
system, which is affected by many factors such as sea and
land location, terrain, air pressure, ocean currents and human
activities [4]. Blöschl et al. [5] put forward 23 problems in
hydrological research, and how to solve the instability of the
model has become the focus of many researchers. Therefore,
it is of great significance to establish an effective prediction
model to accurately predict rainfall [6], [7].
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Now, a lot of the traditional forecasting methods of
precipitation time series are based on statistics.
Papacharalampous et al. [8], [9] compared the application of
multiple statistical models and artificial intelligence models
in hydrological time series forecasting. Dastorani et al. [10]
used ARMA, ARIMA and SARIMA to predict the monthly
precipitation under the semi-arid condition in Iran. The
statistical model has the advantage of small computation, but
the forecasting ability of complex series is weak. With the
development of artificial intelligence prediction model, it has
been widely used in precipitation forecasting research in
recent years. Chang et al. [11] established a wavelet analysis
combined with artificial neural network (ANN) model to
predict 30-year non-linear and unsteady precipitation signals
in a certain area. The results show that this method has higher
forecasting precision than the traditional method. In the field
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of machine learning, Support vector machine [12] (SVM) is
a typical machine learning model. Compared with the ANN
method, SVM uses the minimum structural risk to optimiza-
tion, which avoids falling into the local minimum, and its
prediction result is more stable. Yuan et al. [13] established
a WA-SVM model to forecast the change of precipitation
in Shanxi Province. The prediction results provide a useful
reference for controlling the drought situation in the North
China Plain. Du et al. [14] established the SVM model of
particle swarm optimization (PSO) to predict precipitation
instead of the traditional linear threshold precipitation algo-
rithm. SVM algorithm is simple in structure, robust and not
easy to fall into a local minimum. However, the convergence
time of the SVMmodel is long, and it is difficult to implement
for large-scale samples [15]. The least squares support vector
machine (LSSVM) inherits the advantages of SVM, and
improves the disadvantages of SVM. At the same time,
it reduces the complexity of the solution and improves the
efficiency [16], [17]. However, the regularization parameters
and kernel function parameters of LSSVM have a great influ-
ence on the prediction ability of the model. So some scholars
introduce intelligent optimization algorithms into LSSVM to
find the best model parameters. Zhao et al. [18] optimized
the LSSVM model with the bat algorithm (BA) to predict
the electric charge. Xiang et al. [19] optimized the LSSVM
with the bird swarm algorithm (BSA) to predict the short-term
wind speed. Meng [20] used PSO to optimize the LSSVM for
the optimization of supporting parameters of underground
caverns. Butterfly optimization algorithm (BOA) is a new
intelligent optimization algorithm proposed by Arora and
Singh [21] in 2018. Compared with some existing meta-
heuristic algorithms, the BOA algorithm is simple in opera-
tion, with few parameters to adjust and good in robustness.
Du et al. [22] used BOA to optimize the extreme learn-
ing machine (ELM) model for port throughput prediction.
However, the accuracy of BOA algorithm is low. Besides, the
convergence speed of algorithm is slow and easy to fall into
local optimum. Inspired by [23], [24], this paper introduces
nonlinear time-varying adaptive weight to improve local
search and global search. Besides, Cauchy disturbance is
added to mutate the butterfly position information of the
global search to improve the global search ability of butterfly.

Due to the strong instability and nonlinearity of
precipitation data, multi-scale decomposition of the data
can decrease the modeling complexity of systems and
increase the precision of the forecasting model [25], [26].
Bokde et al. [27] reviewed the application of empirical mode
decomposition (EMD) and ensemble empirical mode decom-
position (EEMD) methods in wind speed power prediction,
and pointed out that data preprocessing plays an important
role in improving the accuracy of the prediction model.
Ramana et al. [28] used the wavelet neural network (WNN)
to predict the precipitation in the Darjeeling mountain in
eastern India. Hu et al. [29] used the combined model of
EEMD and general regression neural network (GRNN) to
forecast the annual precipitation. Bokde et al. [30] used

EEMD-PSF model to predict wind speed series. Experiments
showed that EEMD decomposition method can reduce the
influence of trend, seasonal and irregular components to a
certain extent. The variational mode decomposition (VMD)
is a new mode decomposition method [31]. Compared with
the traditional decomposition methods, VMD has stronger
decomposition ability and anti noise interference ability, and
its operation speed is faster [32], [33]. Wu and Lin [34]
combined VMD with prediction method to forecast AQI .
Li et al. [35] proposed a forecasting model of sunspot number
based on the combination of VMD and BP neural network.
At present, most scholars use the combination of the mode
decomposition and the single forecasting model to predict the
rainfall data. Compared with the single prediction method,
the prediction accuracy has been greatly improved. But each
model has its advantage and disadvantage, and the prediction
ability is also different. So it can not achieve the best pre-
diction effect. Hybrid prediction model combines different
single prediction methods and integrates the advantages of
multiple models to improve the performance of the prediction
model [36]. The key problem of the hybrid prediction model
is to determine the appropriate weight coefficient to improve
the forecasting precision of the hybrid forecasting model.
IOWA operator [37] weights the fitting precision of each time
point in the sample interval by each single prediction method.
It solves the problem that the weight coefficient of the
same single prediction method in the traditional combination
weight calculation remains unchanged at each time point. It is
an effective method to calculate the weight of combined fore-
casting model [38]. The hybrid forecasting model based on
the idea of decomposition integration and weight distribution
can combine the advantage of each model and improve the
forecasting precision effectively. However, due to the strong
randomness of some time points, the prediction model can’t
achieve good prediction results. Huang et al. [39] adopted
the error correction strategy based on the EEMD-LSTM
prediction model to further improve the accuracy of wind
speed prediction. If the idea of error correction can be
introduced into the prediction of precipitation signal, the
prediction accuracy of precipitation will be further improved.
By analyzing that the error sequence is stable, this paper
proposes the use of ARMA to fit the error sequence of the
hybrid model to achieve error correction.

In recent years, some forecasting methods for rainfall
series have been put forward. For example, Li et al. [40]
adopted VMD-ELM method. Hu et al. [29] established
EEMD-GRNN. Farajzadeh and Alizadeh [41] established
ARIMAX and LSSVM model based on wavelet transform.
However, with the development of forecasting technology,
there are still some limitations: (i) each prediction model
has its advantage and disadvantage, and only a single pre-
diction model is established without considering the stability
of the model; (ii) the prediction ability at each time point is
also different; (iii) the influence of rainfall error series on
the prediction results is not considered; (iiii) it is difficult
to select model parameters of LSSVM. In order to obtain
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higher precision and certainty of prediction model, a new
hybrid prediction model based on the weight combination
prediction model and error correction strategy proposed in
this paper. The model consists of four modules: data prepro-
cessing module, improved butterfly optimization algorithm
(IBOA) module, weight combination module, error correc-
tion module. Firstly, the original precipitation data is decom-
posed by VMD. And then the LSSVM model optimized
by IBOA and Volterra model is established for each mode
components. The prediction results of VMD-IBOA-LSSVM
andVMD-Volterra are combined by IOWAoperator to get the
prediction values of the combined prediction model. Third,
the ARMAmodel is established to forecast the error sequence
of the combined prediction results. Finally, the ultimate pre-
diction results are acquired by summing the prediction results
of the error series and combined model. The final prediction
results are verified by the monthly mean precipitation of the
Yan’an and Xianyang stations. The prediction model pro-
posed in this paper provides a new idea for solving the insta-
bility of hydrological forecasting model, and is an effective
precipitation forecasting model.

II. BASIC THEORY
A. VARIATIONAL MODE DECOMPOSITION
It is assumed that each subsequence has different frequency
center value and bandwidth, so that the total bandwidth
of each component is minimum [42]. Hilbert transform is
applied to {mk} to acquire the single side spectrum of the
mode function. Then, the frequency spectrum of each com-
ponent is modulated to the corresponding fundamental band
based on the center frequency e−jwk t of the analytical signal of
each mode component. The norm L2 of the demodulated sig-
nal is calculated and the bandwidth of the component is esti-
mated. The constrained variational problems are as follows:

min
{mk },{ωk }

{
K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
mk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

mk (t) = x (t)

(1)

where, {mk} = {m1,m2, · · · ,mk}, {wk} = {w1,w2, · · · ,wk};
K is the number of IMF decompositions; δ (t) is the Dirac
distribution.
α and θ (t) is the quadratic penalty factor and Lagrange

multiplier respectivily. They are introduced to solve the vari-
ational problem, which transforms the constrained problem
into the unconstrained problem. {mk} and {ωk} is the set of
sub signals and their center frequencies, f (t) is the original
signal. The extended Lagrangian function is as follows:
L ({mk} , {ωk} , θ)

= C
K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
mk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
k=1

mk (t)

∥∥∥∥∥
2

2

+

〈
θ (t) , f (t)−

K∑
k=1

mk (t)

〉
(2)

VMD uses alternating direction multiplier method to solve
the above problems. By alternating updating m̂n+1k , ωn+1k and
_

θ
n+1

(n representing the number of iterations), VMD finds
the saddle point of the extended Lagrangian expression. The
specific formula is as follows:

m̂n+1k (ω) =

f̂ (ω)−
K∑
k=1

m̂k (ω)+
θ̂ (ω)
2

1+ 2C (ω − ωk)2
(3)

ωn+1k =

∫
∞

0 ω
∣∣m̂k (ω)∣∣2 dω∫

∞

0

∣∣m̂k (ω)∣∣2 dω (4)

θ̂n+1 (ω) = θ̂n (ω)+ τ

[
f̂ (ω)−

K∑
k=1

m̂n+1k (ω)

]
(5)

When e > 0, VMD stops iteration.

K∑
k=1

∥∥∥m̂n+1k − m̂nk

∥∥∥2
2∥∥m̂nk∥∥22 < e (6)

B. BUTTERFLY OPTIMIZATION ALGORITHM AND ITS
IMPROVEMENT
1) BUTTERFLY OPTIMIZATION ALGORITHM
BOA is a new intelligent optimization algorithm proposed by
Arora and Singh [21] in 2018. This optimization algorithm is
generated by imitating the butterfly’s foraging and courtship
behavior. Each butterfly can produce fragrance with different
intensity, and the intensity of the fragrance is related to the
adaptability of a butterfly to seek optimization. The butterfly
will move towards the direction with the strongest fragrance,
which is called global search in the algorithm. This stage is
called the global search in the algorithm. In another case,
the butterfly will move randomly when it cannot perceive the
fragrance from its surroundings. This stage is a local search
stage.

When the butterflies are looking for food, all the butterflies
will send out fragrance to attract each other. The intensity of
the fragrance is calculated as follows:

A = cIa (7)

where, A is expressed according to the physical intensity,
I is the stimulation intensity related to the optimization
adaptability, a is 0.1, C is the sensory factor, usually 0.01.

According to Equation (7), the algorithm enters the stage
of global search and local search. In the global search, the
iterative formula is shown as follows:

ct+1i = cti + (r21 × g
∗
− cti )× Ai (8)

where cti is the position vector of the i-th butterfly in the t-th
iteration, r1 is the random number between [0-1], and Ai is
the fragrance of the i-th butterfly. The local position update
formula is as follows:

ct+1i = cti + (r2 × ctj − c
t
k )× Ai (9)
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where ctj and c
t
k is the position vectors of the k-th butterfly

and j-th butterfly, and r is the random number between
[0-1], indicating local random walk. Global search and local
search are transformed by switching probability. In this paper,
the random number and switching probability are used to
determine the global search or local search. The switching
probability is set to 0.8 following the reference [21].

2) IMPROVED BUTTERFLY OPTIMIZATION ALGORITHM
Because of the low accuracy of the butterfly optimization
algorithm, it is easy to stuck at local optimization and slow
convergence. In this paper, nonlinear time-varying adaptive
weights are introduced to improve local search and global
search. Besides, Cauchy disturbance is added to mutation
the butterfly position information of global search, which
improves the performance of the BOA. In the basic BOA,
a weight factor varying with the number of iterations is intro-
duced to control. Influenced by reference [23], the nonlinear
time-varying adaptive weight is used to update the butterfly
position.

w1=
1
2
·

[
1+cos(

π t
Max_iter

)
] 1
k

, t ≤
Max_iter

2

w2=
1
2
·

[
1−cos(

π t
Max_iter

)
] 1
k

, t >
Max_iter

2

(10)

where, Max_iter represents the maximum iteration, t
represents the current number of iterations, k is the
adjustment coefficient of the weight factor, k = 2.
The nonlinear time-varying adaptive weight decreases

slowly at the beginning, and the algorithm can maintain a
good global exploration ability. After a certain number of
iterations, the weight decreases rapidly, which makes the
BOA get the optimal position more precisely in the local
search. Therefore, the Equation (8) and (9) are changed as
follows:
ct+1i =w1×cti+(r

2
1×g

∗
−cti )×Ai, t ≤

Max_iter
2

ct+1i =w2×cti+(r
2
1×c

t
j−c

t
k )×Ai, t >

Max_iter
2

 (11)

In this paper, the Cauchy variation is added to the global
search. Using Cauchy mutation can generate more perturba-
tion near the current variant individuals. Cauchy mutation
is easier to make the BOA algorithm jump out of the local
optimal value and improve the ability of global search. The
probability density function of Cauchy distribution is as
follows:

f (h, h0, γ )=
1

πγ [1+( h−h0
γ

)2]
=

1
π
[

γ

(h− h0)2 + γ 2 ] (12)

where, h0 is the location parameter defining the peak value
of the perturbation and γ is the scale parameter at half of
the maximum value. When h0 = 0, γ = 1, it is called the
standard Cauchy distribution formula as follows:

f (x) =
1
π
(

1
x2 + 1

) (13)

In this paper, the Cauchy distribution random variable is
used to generate function Cauchy(0, 1) = tan[(η − 0.5) · π ],
where η is a random variable on [0,1]. So according to Cauchy
variation, the current optimal solution formula is improved as
follows:

cbest = ct+1i + ct+1i · Cauchy(0, 1) (14)

C. LEAST SQUARES SUPPORT VECTOR MACHINE
The least squares support vector machine (LSSVM) is an
improvedmethod of SVM. The quadratic programming prob-
lem is transformed into the solution of linear equations,
which improves the convergence speed of the algorithm [42].
Compared with SVM, LSSVM keeps the characteristics of
structural risk minimization and small samples, which greatly
reduces the computational complexity. The principle is as
follows:

According to the principle of minimizing the structural
risk of Vapnick, the objective function of LSSVM can be
expressed as follows:

min J (ωT ξ ) =
1
2
ωTω + C

l∑
i=1

ξ2, i = 1, 2, · · · l

s.t. yi = ωTϕ(xi)+ b+ ξi

(15)

where, ϕ(·) represents the nonlinear mapping from the orig-
inal space to the high-dimensional space, ω represents the
weight vector, b represents the offset, ξ represents the relax-
ation factor, C is the penalty parameter. Equation (15) can
be solved by Lagrange function and Karush-Kuhn-Tucker
(KKT) condition. The results of the Lagrange function are
as follows:

L(ω, b, ξ, a)=J (ωT ξ )−
l∑
i=1

ai[ωTϕ(xi)+b+ξ−yi] (16)

According to KKT condition, calculate ∂L
∂w = 0,

∂L
∂c = 0, ∂L

∂ei
= 0, ∂L

∂αi
= 0, and get the following linear

equations: [
0 QT

Q K + C−1I

] [
b
a

]
=

[
0
Y

]
(17)

where, ai is the Lagrange multiplier, I is the unit matrix,
Q = [1, · · · , 1].
The kernel function satisfying Mercer condition is

K (xi, xj) = ϕ(xi) ∗ ϕ(xj), and the radial basis function is
used in this paper. The LSSVM function obtained by the least
square method is Equation (18):

f (x) =
n∑
i=1

αiK (x, xi)+ b (18)

K (x, xi) = exp(−
‖x − xi‖2

2σ 2 ) (19)

where, σ is the width of the kernel function.
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D. VOLTERRA MODEL
The adaptive volterra algorithm can automatically adjust
its parameters according to the input signal [43], [44].
X (n) = [x(n), x(n− 1), . . . , x(n−N + 1)] is the input of the
system, and x̂(n+ 1) is the output of the system as follows:

x̂(n+ 1) = h0 +
M−1∑
i1=0

hk (i1)x(n− m1)

+

M−1∑
i1,i2=0

hk (i1, i2)x(n− m1)x(n− m2) (20)

where, hk = (i1, i2, · · · , ik ) is the Volterra kernel of
k-order,M is the length of the filter, m is the best embedding
dimension. According to Equation (21), (22), Equation (20)
can be rewritten as shown in Equation (23).

U(n)= [1, x(n), x(n− 1), . . . , x(n− m+ 1),

x2(n), x(n)x(n− 1), . . . , x2(n− m+ 1)]T (21)

H(n)= [h0, h1(0), h1(1), . . . , h1(m−1), h2(0, 0), h2(0, 1),

. . . , h2(m− 1,m− 1)]T (22)

x̂(n+ 1) = HT (n)U (n), (23)

where, U (n) and H (n) are the input vectors and filter
coefficients of the filter respectively. By using the least mean
square adaptive algorithm to solve Equation (23), the Volterra
model of time series can be obtained and the nonlinear
approximation of the model can be realized.

E. ARMA MODEL
The autoregressive moving average model (ARMA) is
created by Box and Jenkins. It is used to deal with the random
event sequence. The model parameters are few and the appli-
cation is simple [45]. There are three basic types of ARMA:
AR model, MA model and ARMA model. Equation (24) is
the basic structure:

Xt = ξ1Xt−1 + ξ2Xt−2 + · · · + ξpXt−p + δ + ht
+θ1ht−1 + θ2ht−2 + · · · + θqht−q (24)

where, ξ1, ξ2, · · · , ξp is the autoregressive coefficient,
θ1, θ2, · · · , θp is the sliding average coefficient. In Equation
(24), p and q are the order of coefficients, ht , ht−1, · · · ,
ht−p are independent white noise sequences, which are
recorded as ARMA (p, q). If the original sequence is
non-stationary and needs to be stable after the d-order dif-
ference, the original sequence can be expressed as ARIMA
(p, d , q) sequence.

F. IOWA OPERATOR
IOWA operator is called an induced ordered weighted
average operator. The observation value of the series is
{xt , t = 1, 2, · · · ,N }, and the prediction accuracy ofm single
prediction methods is:

ait =

{
1− |(xt − xit )/xt | , |(xt − xit )/xt | < 1
0, |(xt − xit )/xt | ≥ 1

(25)

where, ait represents the prediction accuracy of the
i-th prediction method at t time. i = 1, 2, · · · ,m,
t = 1, 2, · · · ,N , ait ∈ [0, 1]. xt is the actual value,
xit is the predicted value. The ait is regarded as the
induced value of the xit , then the forecasting precision at
the t-th time of the m-th single prediction methods and
their predictive value in the sample interval constitute m
two-dimensional arrays [46]. W = (w1,w2, · · · ,wn)T is the

weight vector, where
m∑
i=1

wi = 1,wi ≥ 0, i = 1, 2, · · · ,m.

Arrange a1t , a2t , · · · , amt from large to small, and mark the
i-th forecasting precision as a − index(it). The combined
prediction value of the series is:

fL [(a1t , x1t) , (a2t , x2t) , · · · , (amt , xmt)]=
m∑
i=1

wixa−index(it)

(26)

It can be seen from Equation (26) that the weighting
coefficient of the combined forecastingmodel is not related to
the single forecasting method, but closely related to the fore-
casting precision of the single prediction model at each time.
Therefore, the combination prediction model is expressed as
the following optimization model.

min S(L) =
m∑
i=1

m∑
i=1

wiwj

(
N∑
i=1

ea−indexea−index(jt)

)

s.t.


m∑
i=1

wi = 1

wi ≥ 0, i = 1, 2, · · · ,m

(27)

Each single prediction method is weighted by the order of
fitting precision of each time point in the sample interval,
and a new combined prediction method is established. The
combination forecast can reduce the forecast error effectively
by the weighted average of the forecast value at each time
point of a single forecast.

III. THE PREDICTION MODEL FOR MONTHLY
MEAN PRECIPITATION
A. THE PROPOSED HYBRID MODEL
To improve the precision of precipitation prediction, a new
hybrid precipitation prediction model is proposed by combin-
ing VMD-IBOA-LSSVM, Volterra model and ARMA. Fig. 1
is prediction the model block diagram.

Step 1: VMD process
VMD decomposes precipitation signal into modes. Each

mode have a central frequency, for example, IMF1, IMF2,. . . ,
IMFn. The function of this technique is to reduce the
non-stationarity of the sequence and improve the accuracy of
prediction.

Step 2: Weight combination forecast
The IBOA-LSSVM model and Volterra model are

established for each component. The final single model
prediction result is obtained by superposing the predic-
tion results of each component. Finally, this paper uses the
IOWA operator to combine the prediction results of the
VMD-IBOA-LSSVM and VMD-Volterra model.
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FIGURE 1. The framework of the proposed hybrid model.

Step 3: Error correction of the hybrid forecasting model
Because the prediction result of the model is the estimation

of the overall development trend of the data, the prediction
value will be too high or too low. To solve this problem,
theARMAmodel is used to predict and fit the prediction error
sequence in step 2, and the corrected error value is obtained.

Step 4: Integration process
Add the prediction error result corrected by step 3 and

the prediction value of step 2 to produce the final prediction
value.

B. EVALUATION INDEX OF PREDICTION PERFORMANCE
In order to evaluate the prediction performance of the
model, three different prediction evaluation criteria will be
used: (i) the index of accuracy evaluation; (ii) the index of
directional evaluation; (iii) statistical test.

In terms of accuracy evaluation, three commonly used error
evaluation methods are used to evaluate the model prediction
accuracy of the model such as mean absolute error (MAE),
root mean squared error (RMSE) and correlation coefficient
(R). x̂ (t) and x̂ (t)′ represent the predicted data and the pre-
dicted average data, respectively. x (t) and x (t)′ represent the
actual data and the actual average data, respectively. N is the
number of samples.

MAE =
1
N

N∑
t=1

∣∣x̂ (t)− x (t)∣∣ (28)

RMSE =

√√√√ 1
N

N∑
t=1

[
x̂ (t)− x (t)

]2 (29)

R =

N∑
t=1

(x (t)− x (t)′)(x̂ (t)− x̂ (t)′)√
N∑
t=1

(x (t)−x (t)′)2−

√
N∑
n=1

(x̂ (t)− x̂ (t)′)2

(30)

Based on the above three evaluation indexes, the
improvement rate (IR) [26] of the model can be established

FIGURE 2. The precipitation data series.

in Equation (31) and (32). IRMAPE and IRRMSE are the
improvement rates of model 1 to benchmark model 2 on the
evaluation criteria RMSE and MAPE, respectively.

IRRMSE =

∣∣∣∣RMSE1 − RMSE2RMSE1

∣∣∣∣× 100% (31)

IRMAPE =

∣∣∣∣MAPE1 −MAPE2MAPE1

∣∣∣∣× 100% (32)

In addition to horizontal accuracy, directional accuracy of
prediction is also very important [47].

Dstat =
1
N

N∑
t=1

at × 100% (33)

If
(
_x t+1 − xt

)
(xt+1 − xt) ≥ 0, then at = 1, indicating that

the model’s direction prediction in t + 1 period is correct.
Otherwise at = 0, indicating that the model’s direction
prediction in t + 1 period is wrong.
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TABLE 1. The central frequency corresponding to different K values
in site 1.

FIGURE 3. Decomposition results of VMD in site 1.

FIGURE 4. Decomposition results of EMD in site 1.

In order to test the difference in prediction performance
in a statistical sense, a statistical test is further introduced
to determine whether the prediction accuracy of model 1 is
significantly better than model 2. Therefore, this paper intro-
duces the Diebold-Mariano (DM) statistics [48]. The target
model is the proposed model. The original assumption of DM
is that the prediction accuracy of target model A is not higher
than that of benchmark model B, that is, the prediction error
of model A(eA,t = xt −

_xA,t ) is greater than or equal to the
prediction error of model B(eB,t = xt −

_xB,t ).

S =
ḡ(

_

V ḡ

/
M
)1/2 ∼ N (0, 1) (34)

where, ḡ = 1
M

M∑
t=1

gt is the average loss function value,

_

V ḡ = γ0 + 2
∞∑
l=1
γl . By testing the S statistic and P-value,

FIGURE 5. The prediction results of EMD-Volterra and VMD-Volterra.

TABLE 2. The error exponents of EMD-Volterra and VMD-Volterra.

TABLE 3. Test function.

TABLE 4. The result comparison of four test functions by using PSO, DE,
BOA, and IBOA.

the superiority of model A over benchmark model B can be
effectively identified.

IV. MODEL PREDICTION AND RESULT ANALYSIS
A. STUDY AREA AND DATASET
In this paper, themonthlymean precipitation observation data
of two stations in Shaanxi Province from 1967 to 2017 is
used as the test data. The number of sample points in each
data set is 612, and the data is from China Meteorological
Data Network (http://data.cma.cn/). The data of site 1 comes
from Yan’an City. The precipitation in Yan’an City is mainly
concentrated in summer, with heavy precipitation and great
intensity. From October to May of the next year, it only
accounts for 29% of the total annual precipitation. The data of
site 2 is from Xianyang city. The annual average precipitation
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FIGURE 6. Iterative curve of optimization algorithm. (a) F1; (b) F2; (c) F3; (d) F4.

of Xianyang city is 500-600mm, and the precipitation is
concentrated in summer.

The number of each samples data is 612. The first
564 observations are used as training sets, and the remaining
48 observations are used as test sets. The experimental envi-
ronment is as follows: the program running platform is the PC
of Windows 8 system, the processor is Intel Core i7, the main
frequency is 3.6GHz, ROM storage is 4GB,memory is 32GB,
and the experimental software isMATLABR2014a. The time
series diagram of themonthly average precipitation of the two
sites is shown in Fig. 2.

B. RESULTS OF VARIATIONAL MODE DECOMPOSITION
The number of modes K of the VMD needs to be set
manually. When the value of K is too small, the sequence
cannot be completely decomposed. When the value of K
is too large, the problem of over decomposition will occur.
At the same time, too many mode numbers will increase
the complexity of operation. It is the most common and
intuitive method to determine K [49] by observing the cen-
ter frequency. The mode center frequency corresponding to
each K value is checked. If the center frequency value is
close, it is regarded as over decomposition, and the optimal
decomposition layer is K -1. Take the precipitation data of the
site 1 as an example to calculate the center frequency values
corresponding to different decomposition numbers, as shown
in Table 1.

Table 1 shows that when K is 7, the center frequencies
of IMF6 and IMF7 are similar. It is considered that over

decomposition occurs when K = 7. The number of decom-
position K = 6. The VMD decomposition results of
precipitation are shown in Fig. 3.

VMD can overcome the phenomenon of mode mixing and
end effect of EMD, and solve the problem that the compo-
nents with similar frequency can not be separated. The results
of EMD in Site 1 are shown in Fig. 4.

As shown in Fig. 4, the IMF decomposed by EMD has
different characteristics. Fig. 4 shows that the amplitude
difference of each component is large, and the frequency
of IMF 1 is the highest, which indicates that EMD cannot
effectively separate the components with similar frequency.
Besides, Fig. 3 and Fig. 4 show that VMD decomposes the
high-frequency part more thoroughly than EMD, and the
amplitude fluctuation of the high-frequency component is
smaller. Fig. 5 and Table 2 show the prediction results of
precipitation in site 1 by EMD and VMD respectively applied
to the Volterra model. Fig. 5 shows that VMD-Volterra
has higher prediction accuracy, which proves that VMD
decomposition has higher prediction accuracy. In addition,
the RMSE index of VMD-Volterra and EMD-Volterra are
substituted into the Equation (31), which shows that the
model performance after VMD decomposition increases by
68.52% compared with EMD.

C. THE IMPROVED OPTIMIZATION BUTTERFLY
ALGORITHM TEST
Four different test functions are used to test the IBOA.
Table 3 shows the function expressions of the four
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FIGURE 7. Iterative curve of IBOA and BOA for LSSVM model optimization.

TABLE 5. The error exponents of BOA-LSSVM and IBOA-LSSVM.

test functions, where F1, F2 are unimodal functions, F3,
F4 are multimodal functions. The test results are compared
with the other three optimization algorithms, including par-
ticle swarm optimization (PSO), differential evolution algo-
rithm (DE), butterfly optimization algorithm (BOA). In order
to make the experiment objective and fair, the population size
of the test function selection optimization algorithm is 30, and
the number of iterations is 500.

The test function sphere and quartic selected in this paper
are single-mode test functions, which are used to test the
convergence performance of the algorithm. Rastrigin and
Griewangk are multimodal test functions. Generally, there
is a lot of local extremum to test the capacity of global
mining. In Table 4, where MV is the minimum value. It can
be seen that the optimized effect of the IBOA on the four
test functions is closest to the global optimal value, among
which the optimized effect of F3 and F4 can reach 100%,
indicating that the optimization ability of IBOA is better than
that of other optimization algorithms. In addition, Fig. 6 is the
iterative curves of benchmark algorithms on the test function.
From Fig. 6, we can find that the optimization ability of
IBOA is better than that of BOA, and the convergence speed
is faster.

The global optimal solution convergence success rate
is an important indicator to measure the performance
of the algorithm [50]. The success rate is defined as
SR = Nb

N × 100%, where SR is the convergence success
rate, N is the total number of trials, and Nb is the number of
tests converging to the optimal solution. Four algorithms are
used to optimize the four test functions, and each algorithm
is repeated for 20 times. The optimal convergence value and
success rate of the algorithm are shown in Table 4.

Through the analysis, it can be seen that compared with
the other three optimization algorithms, the solution obtained
by IBOA is the closest to the optimal solution, and the

FIGURE 8. The Forecast results of VMD-Volterra-LSSVM.

TABLE 6. The error-index of VMD-Volterra-LSSVM.

FIGURE 9. AIC criterion order distribution.

convergence success rate is the highest. To further verify the
practicability of the IBOA, the actual precipitation data in the
site 1 is used to verify the optimization effect of IBOA on
LSSVMmodel parameters. The population size of IBOA and
BOA is 10, and the number of iterations is 50. Fig. 7 shows
that the convergence precision of the IBOA is higher than that
of BOA, and the convergence speed is faster. Besides, Table 5
is the optimization results of IBOA and BOA for LSSVM.
From Table 5, we can see that the IBOA-LSSVM model
is better than BOA-LSSVM in precipitation prediction. The
results show that the IBOA can effectively find the optimal
regularization parameter gam and kernel parameter sig2 for
LSSVM.

D. EXPERIMENT I: THE ANALYSIS OF SITE
1 PRECIPITATION PREDICTION MODEL RESULTS
Because the information source of single model prediction
is not extensive and the model setting form is arbitrary, the
prediction ability of the single model is different at different
times. In this paper, the prediction results of LSSVM and
Volterra model are combined by IOWA operator, and each
single prediction method is weighted by the order of fitting
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FIGURE 10. Prediction results of various models in Site 1.

FIGURE 11. Prediction error box diagram of each model.

TABLE 7. Error analysis and comparison of forecasting model.

precision of each time point in the sample interval, and a
new combined prediction method is established based on the
sum of error squares. According to Equation (27), the IOWA

TABLE 8. Performance improvements by proposed model for Site 1.

FIGURE 12. Prediction error index of each model.

combined prediction model is as follows:

min S = min(4233.06w2
1 + 7795.73w2

2 + 10931w1w2)

s.t.

{
w1 + w2 = 1
wi ≥ 0, i = 1, 2

(35)
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FIGURE 13. The prediction results of various models in site 2.

TABLE 9. DM test results across different models of site1.

The above formula is solved by Matlab optimization
toolbox to get w1 = 1,w2 = 0, and the prediction value
of the hybrid prediction model can be obtained by substi-
tuting the weight into Equation (26). The prediction results
of each point obtained by combining the LSSVM model and
Volterra model with IOWA operator is shown in Fig. 8, and
the error-index of the hybrid forecasting model is shown
in Table 6.

Fig. 8 and Table 6 show that the VMD-Volterra-LSSVM
model considers the forecasting precision of the Volterra
model and LSSVMmodel at different time points. The single
prediction value with high prediction accuracy is given a large
weight. After the combination, the prediction performance of
the model has been improved. However, there are still some
points with large errors. To make the forecasting value of
the model more accurate, the error correction is carried out
for the prediction result of the combined model. The ARMA
model is established to predict and fit the prediction error
of VMD-Volterra-LSSVM. Finally, the modified prediction
error is combined with the prediction value of VMD Volterra
LSSVM to get the final prediction result. In the ARMA
model, the order p and q of the model should be calculate
firstly. In this paper, the distribution of the AIC criterion is
drawn into a heat map, the vertical axis is the end of AR,
and the horizontal axis is the order MA. Fig. 9 can intuitively
select the model with the minimum AIC criterion, establish
ARMA (5,3) model, and get the corrected error value. The
modified prediction error results are combined with the com-
bined model prediction values to produce the final prediction
values as shown in Fig. 10.

To further measure the forecasting performance of the
proposed model, the combined model is compared with the
other five benchmark models, and the forecasting effect of

TABLE 10. Error analysis and comparison of forecasting model.

each model is quantitatively analyzed by MAE, RMSE, R
and Dstat . The fitting curve of forecasting data and the origi-
nal data of different prediction models are shown in Fig. 10,
where the predicted data of the proposedmodel is represented
by the blue curve, and the blue curve is relatively close to the
red original data curve. In Fig. 10, the prediction error of each
model is represented by black lines. By comparing the error
curve, it can be seen that the error amplitude of the prediction
model proposed in this paper is smaller. Corresponding to the
prediction error box diagram in Fig. 11, the distribution of
prediction error of each model can be seen more intuitively.
The height of the box reflects the degree of data fluctuation
to a certain extent, and the upper and lower edges represent
the maximum and minimum values of the group of data. The
flatter the box, the more concentrated the data, and the shorter
the end line, the more concentrated the data. In Fig. 11, M6
is the model proposed in this paper, the forecasting error
of the M6 is distributed around 0, and the change range is
the smallest compared with other models. It shows that the
combined forecasting model proposed in this paper has a
good prediction effect.

We can see from the quantitative analysis results of
forecasting results of each model in Table 7.

As an improved method of SVM, the LSSVM model
can effectively improve the forecasting performance of the
SVM model by optimizing the key parameters. The smaller
the error index, the better the effect. According to Table 7,
the RMSE of VMD-IBOA-LSSVM is 10.9941, but the
RMSE value of IBOA-LSSVM model is 42.8280. VMD is
used to decompose the complex data sequence into several
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FIGURE 14. The prediction error of various models in site 2.

FIGURE 15. Prediction error box diagram of each model.

simple sequences, which can effectively reduce the forecast-
ing difficulty and the forecasting error. Besides, the error-
index of VMD-Volterra-LSSVM is smaller than that of
VMD- Volterra and VMD-IBOA-LSSVM. Table 7 shows
that the accuracy index and directional index of the proposed
prediction model are optimal. Table 8 shows compared with
other models, the performance of the proposed model is
improved by at least 43%. In addition, Table 9 uses DM test
for statistical proof. Through the DM test, general speaking,
the proposed hybrid forecasting model outperforms other
benchmark models at a 1% level of statistical significance,
which proves that the model is an effective rainfall prediction
model.

E. EXPERIMENT II: THE ANALYSIS OF SITE 2
PRECIPITATION PREDICTION MODEL RESULTS
Experiment I shows that the combination prediction model
proposed in this paper has a better prediction performance.
To illustrate the general applicability of this method in pre-
cipitation prediction, the precipitation data of another station
in Shaanxi Province is used to test. There are 612 samples in
total. The first 564 are trained and the last 48 are predicted.

The precipitation prediction results of site 2 are shown
in Fig. 13, Table 10 quantitatively analyzes the error index
of each prediction model, and the histogram of error index
is shown in Fig. 16. When the numerical value of RMSE
and MAE is higher, the prediction accuracy is better. The
closer R is to 1, the better the prediction effect is. Fig. 14 and
Fig. 15 show the prediction error curve and error box diagram
of several models respectively. In Fig. 14, the final error

FIGURE 16. Prediction error index of each model.

TABLE 11. Performance improvements by proposed model for site 2.

TABLE 12. DM test results across different models of site2.

curve of the proposed model is represented by a blue line.
It can be seen that the error fluctuation of the model pro-
posed in this paper is the minimum. According to Table 10,
the prediction indexes of M6 are 3.3187, 2.6461, 0.9970 and
0.9375 respectively, which are better than other models. From
the improvement rate of the model, the prediction perfor-
mance of the proposed model is greatly improved compared
with other benchmark models. Through the analysis of site
2 and site 1, it shows that the model proposed in this paper has
good general adaptability and stability, and can be applied in
precipitation prediction research.

In addition, Table 12 uses DM test for statistical proof.
Through the DM test, general speaking, the proposed hybrid
forecasting model outperforms the VMD-Volterra-LSSVM
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model at a 5% level of statistical significance, and outper-
forms other benchmark models at a 1% level of statistical
significance, which proves that the model is an effective
rainfall prediction model.

V. CONCLUSION
To improve the stability and accuracy of precipitation
prediction, a novel combined prediction model for monthly
mean precipitation with error correction strategy is proposed
in this paper. The main conclusions are as follows:

(1) Compared with EMD, VMD algorithm decomposes the
precipitation series more thoroughly and the prediction accu-
racy is higher. The simulation results show that the prediction
model after VMD decomposition is enhanced in the overall
RMSE index, which is increased by 68.52% compared with
EMD. Therefore, VMD decomposition is more suitable for
precipitation prediction, and the prediction accuracy of the
model is effectively improved.

(2) Aiming at the problem of low convergence precision
and easy to fall into the local optimum of the BOA algo-
rithm, an improved BOA algorithm is proposed. Four test
functions are compared with DE, PSO and BOA. The results
in Section 4.3 show that the improved BOA algorithm can
obtain the optimal value and the highest convergence success
rate, indicating that IBOA has better global convergence than
the benchmark algorithm.

(3) Because each prediction model has its advantage and
disadvantage, this paper proposes using the IOWA operator
to combine VMD-IBOA-LSSVM and VMD-Volterra. From
the analysis of the prediction results of Experiment I and
Experiment II, it can be seen that the combined model
improves the prediction performance.

(4) By analyzing that the error sequence of
VMD-IBOA-LSSVM-Volterra is stable, this paper uses
ARMA with a simple model and fewer parameters to correct
the error. The prediction results from the site1 data show that
the prediction performance of the combined prediction model
with error correction is improved by at least 43% compared
with the other models.

(5) Compared with the method proposed in reference [40],
this paper uses IBOA optimized LSSVM to predict the pre-
cipitation data in Xianyang and Yan’an areas. The experiment
shows that the forecasting precision of VMD-IBOA-LSSVM
is much higher than that of VMD-ELM proposed in ref-
erence [40]. Besides, in this paper the idea of combined
prediction and the idea of error correction are introduced
to improve the precipitation method VMD-IBOA-LSSVM,
which is used to increase the performance of precipitation
prediction model.
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