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ABSTRACT The accuracy of P-wave arrival picking is essential for seismic analysis. The improvement in the
accuracy of P-wave arrival picking is generally achieved through improved algorithms and the processing of
waveforms. Therefore, we propose a method that uses deep learning to detect local windows to enhance the
accuracy of P-wave arrival picking. The local window is defined as a short time window containing the main
components of the signal. The faster-RCNN model is trained on the dataset with the calibrated local window.
The trained faster-RCNN model is used for the local window detection of new records, and the existing
algorithm is going to work in the local window. As a validation, four kinds of automatic P-wave arrival
picking algorithms (wavelet-transform-based approach, PphasePicker algorithm, STAFD/LTAFD algorithm,
and deep learning method) are used to conduct experiments in synthetic seismic records and field seismic
records, respectively. The field experimental results show that the method proposed in this article can improve
the picking capacity of the four methods by 17.5%, 37.6%, 62.4%, and 46.8%, respectively. No matter which
algorithm is used, the accuracy of P-wave arrival picking in the local window is generally enhanced. The

method presented in this article has a positive effect on improving the accuracy of seismic records.

INDEX TERMS P-wave arrival picking, deep learning, faster-RCNN, local window, seismic records.

I. INTRODUCTION
P-wave arrival picking is a crucial step in seismic analysis,
and it is the premise of the event location, source mechanisms
calculation, origin time determination, and subsurface veloc-
ity inversion. Nevertheless, the P-wave picking has always
been a drag in the whole seismic analysis process. With
the continuous economic investment, the sources of seismic
data acquisition are becoming broader, and the amount of
data is gradually increasing. Manual P-wave arrival picking
has become a very exhausting task for analysts. Therefore,
finding a way to pick the P-wave arrival automatically and
accurately is not only suitable for earthquake early warning
but also allows analysts to shift their energy to more mean-
ingful tasks.

For a long time, many methods have been proposed to
automate the P-wave picking and have achieved excellent
results. These methods can be roughly divided into traditional

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Babu Thanikanti

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

numerical calculation methods and emerging artificial intel-
ligence methods. The most typical of numerical calculation
methods are STA/LTA (short and long time ratio) [1] and AIC
(Akaike information criterion) [2]. STA/LTA uses the sliding
time window to calculate the characteristic curve, while AIC
calculates it using the entire given time series. Based on these
two classic algorithms, many improved algorithms have been
derived, such as MER (Modified energy ratio) [3], [4], MCM
(Modified Coppens’ method) [5], [6], PAL-K (Phase arrival
identification - Kurtosis) [7], [8], S/L-Kurt (Short-term kur-
tosis to long-term kurtosis ratio) [9], JER (Joint energy ratio)
[10], [11], wavelet-transform-based approaches [12], [13],
and waveform cross-correlation methods [14]-[16]. Over the
past decades, these traditional numerical calculation methods
have played an essential role in seismic monitoring.
Although the traditional numerical calculation methods
performed very well, they are still not fully automated in
practical applications because of the influence of signal qual-
ity. Thanks to the rapid development of computers, a new
class of P-wave arrival picking methods with high robustness
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FIGURE 1. Data preprocessing.

based on artificial intelligence technology has been continu-
ously proposed. Since the 1990s, machine learning and neural
network have been applied to pick seismic arrival, leverage
a data-driven approach to provide many new ideas for seis-
mic analysis [17]-[19]. Chen [20] tried to use unsupervised
machine learning to promote the quality of P-wave arrival
picking by dividing data into noise and signal segments.
With the rise of deep learning, Perol et al. [21] proposed a
CNN (convolutional neural network) model for earthquake
detection and location; Ross et al. [22] trained two CNN
models to pick the first seismic arrival and get the first
motion, respectively; and Zhu et al. [23] and Chen et al. [24]
creatively treat the phase picking as a classification problem
and enhance the P-wave picking after a rough classification
using a CNN. In addition to CNN, RNN (recurrent neural
network) is also used in P-wave arrival picking attempts, such
as Mousavi et al. [25] combined a CNN and an RNN to detect
earthquake signals and achieved high-detection accuracy with
a low rate of false positives, and Zhou et al. [26] developed
a hybrid algorithm using both convolutional and recurrent
neural networks to pick phases from archived continuous
waveforms. Moreover, in the latest research, Qu et al. [27]
compared the usability of machine learning and deep learn-
ing in the seismic P-wave arrival picking and analyzed the
applicability of the two approaches.

Most of the abovementioned picking algorithms were
applied in seismic monitoring based on a local-window strat-
egy [28]. The local window strategy is to pick the P-wave
arrival within a limited time window, and the length of the
local window affects the accuracy and availability of the
adopted approach. For example, Zhang et al. [29] developed
an automatic P-wave arrival picking algorithm based on the
wavelet transform and AIC picker, and the modified AIC
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picker is applied at the given local window. This example is
not unique. Ross et al. [22] applied a CNN to P-wave arrival
picking problems using a large amount of training data, and
these training data are waveform segments. Each waveform
segment is a local window containing only 400 samples
points. Therefore, we propose a targeted detection approach
of the local window based on faster R-CNN (regions with
convolutional neural networks) to enhance the performance
of existing picking algorithms by quickly detecting the local
window of P-wave arrival in continuous waveforms or longer
time windows.

Il. MATERIALS AND METHODS

A. DATA

We chose the records of 7,014 earthquakes recorded by the
NCEDC (Northern California Earthquake Data Center, 2014)
from January 1, 2016 to June 1, 2016 at 34 EGS stations [30].
The data are a mixture of DPE, DPN, and DPZ channels.
These seismic records are associated with manually deter-
mined P-wave picks. These records are converted into pic-
tures during the application of the method proposed in this
article, and the results obtained in the form of pictures are
converted back into waveforms for arrival picking. This data
processing as shown in Fig. 1. The original waveform data
will be plotted and saved as a picture of uniform size. For
experimental purposes, these pictures will be processed using
some marking software so that they carry a ground truth of the
local window.

B. FASTER R-CNN

Faster R-CNN (regions with convolutional neural networks)
was proposed via Ross Girshick in 2015 [31], [32]. Based on
traditional object detection methods, faster R-CNN integrates
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FIGURE 3. The architecture of VGG16 (Visual Geometry Group Network 16).

feature extraction, proposal extraction, bounding box regres-
sion (rectangle refine), and classification into one network,
which makes the overall performance greatly improved, espe-
cially in the detection speed. Faster R-CNN is composed of
two modules. The first module is a deep fully convolutional
network that proposes regions, and the second module is
the Fast R-CNN detector that uses the proposed regions.
More detail, faster R-CNN can be considered to be com-
posed of four parts, namely convolutional layers, RPN (region
proposal networks) [33], Roi pooling, and classification.
Fig. 2 shows the architecture diagram of faster R-CNN.
Unlike machine learning, deep learning does not need
to give features before training but automatically extracts
features from the input data by the convolutional operation.
Therefore, in faster R-CNN, the first step is feature maps
extraction from input via the convolutional layers. The feature
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map extraction network used in this article is VGG16 (Visual
Geometry Group Network 16), a deep learning network con-
sisting of 13 convolutional layers and 3 fully-connected lay-
ers (as shown in Fig. 3). However, we will not use the entire
VGG16 architecture, and we choose the last ReLU (Rectified
Linear Unit) output before entering the fully connected layer
as the feature map. In fact, any kind of convolutional neural
network and any node in its structure can be used as a feature
map. The feature maps are shared for subsequent RPN layers
and fully connected layers. The RPN is used to generate
region proposals. This network uses the softmax layer to
determine whether anchors are positive or negative and then
uses bounding box regression to modify anchors to obtain
accurate proposals. Fig. 4 shows the specific structure of
the RPN. It can be seen that the RPN is divided into two
independent steps. Among them, one step classifies anchors

141735
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FIGURE 4. Data flow and architecture of RPN (Region Proposal Networks).

into positive and negative classifications, and the other one
calculates the bounding box regression offset to obtain an
accurate proposal. After this processing, the feature maps
converted into scoring anchors (proposals) of different sizes.
The obtained feature maps and proposals are sent to the Roi
pooling layer, and the proposal feature maps are extracted
through the comprehensive information of the Roi pooling
layer. As the input of the fully connected layer, the proposal
feature maps are classified and evaluated to determine the
location of the local window.

C. P-WAVE ARRIVAL PICKING ALGORITHM

To evaluate the effect of targeted detection the local window
via faster-RCNN on the accuracy of P-wave arrival picking,
we have selected some reliable and the state of the art algo-
rithms for testing. These algorithms include STAFD/LTAFD
(short-term kurtosis to long-term kurtosis ratio) proposed
by Li et al., wavelet-transform-based approach proposed
by Zhang et al., PphasePicker algorithm proposed by Erol
Kalkan, and deep learning method proposed by Ross et al.
In this section, we give a brief introduction to these methods.

1) STAFD/LTAFD

STA/LTA method is a very typical P-wave arrival picking
method, and many existing methods are modified based on
it. Saragiotis et al. [34] found that if a signal contains a
non-Gaussian wave, it can be effectively identified by using
kurtosis. However, the kurtosis picker is overly reliant on the
length of the waveform window. Therefore, Zhang et al. [35]
proposed an STAFD/LTAFD fractal dimension algorithm that
integrates the advantages of STA/LTA and kurtosis picker.
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The STAFD and LTAFD windows preceding the mth time
index are computed as follows:

% CF(@)/ns

i=m—ns+1

S CF()/nl

i=m—nl+1

STAFD(m)/LTAFD(m) =

€]

where CF is the characteristic function, and it is given as
CF(k) = d(k)* + [d(k) — d(k — D] @)

here, d(k) is the fractal dimension at point k, and k is the
ordinal of the data point that starts from the second point as
an integer.

2) WAVELET-TRANSFORM-BASED APPROACH

Like STA/LTA, AIC picker is a typical algorithm, but it
is also not perfect [36]. The AIC picker is very limited
by the SNR (signal-to-noise ratio). When the SNR is rela-
tively small, the effect of arrival picking is weak. Therefore,
Zhang et al. [29] proposed a modified AIC picker combined
with wavelet transform. A single seismic record is trans-
formed into multi-scale wavelet coefficients by the wavelet
transform. Thus, AIC picker can work on wavelet coeffi-
cients of different scales. The process and results of the
P-wave arrival picking based on the wavelet-transform-based
approach are shown in Fig. 5.

3) PPHASEPICKER ALGORITHM

Kalkan [37] proposed a new approach for picking P-wave
arrival time without requiring detection interval or thresh-
old settings. The PphasePicker algorithm transforms the
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FIGURE 5. Wavelet-transform-based AIC picker.

record into a response domain of a single-degree-of-freedom
(SDOF) oscillator with viscous damping and then tracks
the rate of change of dissipated damping energy to pick
P-wave arrival. The algorithm is described step-by-step in the
following:

a. Determine the maximum and minimum amplitudes, ymax
and ynin, of the power of damping energy, which will corre-
spond to lower and upper state levels.

b. Calculate the amplitude range yr of the power of damp-
ing energy using yr = Ymax — Ymin-

c. For the specified number of histogram bins (M), deter-
mine the bin width Ay as the ratio of the amplitude range to
the number of bins; Ay is found by dividing yr by M.

d. Sort the data values into the histogram bins.

e. Identify the lowest-indexed histogram bin (ijoy) and the
highest-indexed histogram bin (ih;gn) with nonzero counts.

f. Divide the histogram into two sub-histograms. The
indexes of the lower histogram bins are ijoy < § < 1/2 X
(ihigh — flow)» and the indexes of the upper histogram bins are
flow + 1/2 X (ihigh — flow) < I < lhigh-

g. The low-state level, which is the mode of the largest
bin within the lower histogram, corresponds to the P-wave
arrival, and its onset is determined as the last zero-crossing
on the filtered seismogram before the P-wave arrival.

4) DEEP LEARNING METHOD

The components of seismic signals are complex, and it is
often difficult to adapt to the needs of arrival picking of vari-
ous signals using mathematical calculation methods, which is
why most existing algorithms are currently semi-automated.
However, with the development of artificial intelligence tech-
nology, deep learning methods have provided a new idea
for the arrival picking of seismic records. Ross ef al. [22]
proposed an intelligent P-wave arrival picking method based
on the convolutional neural network. This Picker is a con-
volutional neural network (as shown in Fig. 6) built for
P-wave arrival picking and uses waveforms directly as input.
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Therefore, a local window must be determined before using
this method; otherwise, it will take longer calculation time
and poor picking results.

lll. EXPERIMENTS AND RESULTS

To verify the effectiveness of the proposed method,
we designed two experiments. One is based on synthetic data,
and another is based on field data. In these two experiments,
it was demonstrated that the local window detection via
faster-RCNN could enhance the ability of the P-wave arrival
picking.

A. SYNTHETIC EXPERIMENTS

The beauty of synthetic experiments is that we have the
ground-truth solution, and thus, the comparison is more intu-
itive. We simulated a series of seismic records using the
Ricker wavelet and forward modeling of P-wave arrival.
There is a difference between them by adding gaussian ran-
dom noise. A synthetic seismic record shown in Fig. 7.
The synthetic seismic dataset is simulated from a six layers
velocity model with the random sources and 50 receivers,
as shown in Fig. 8. The 50 traces correspond to the recorded
data of 50 evenly spaced recorders, shown in Fig. 9.

We moved the source’s distance between 1 m and 3000 m,
take a value every 15 m. Move the source’s depth between
1000 m and 1500 m, and also take a value every 15 m. Thus,
there will be a total of 10400 sources and 520000 traces. Some
of these synthetic records are used to train faster R-CNN,
and others are used to verify the effectiveness of the method
proposed in this article. Two steps are taken for the proposed
method to enhance P-wave arrival picking. We trained the
faster R-CNN to find the local window. The local window is a
very short time window containing the P-wave arrival, and the
example is shown as Fig.10(a) (and Fig.10(b) is the ground
truth of synthetic seismic records). After training faster
R-CNN, we use the trained model to find the local window
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FIGURE 7. The example of a synthetic seismic record. Each synthetic seismic record is
generated based on the first arrival time and different SNR based on the Ricker wavelet.

of the synthetic records and perform P-wave arrival picking
in the local window.

We compare the picking results with 20,000 synthetic
records, and a detailed example is a record inspired by the
source in (2500, 1400). Four P-wave arrival picking algo-
rithms presented in section 2.3 are worked on the entire record
and local window at the same time. Moreover, to numerically
evaluate the performance, we use the arrival picking error
metric, which is defined as follows:

Error =T, —T; 3)

where T), is the arrival picking by algorithm, 7} is the ground
truth. Moreover, we defined a metric to describe the enhance-
ment of P-wave arrival picking by using the method proposed
in this article. The enhancement metric is defined as:

N|Err0r|<=g - M|Error|<=g

EM = 4

N\Ermr\ <=¢

141738

where ¢ is the target accuracy, here ¢ = 0.05s; M|gor|<=¢
is the count of the absolute error metric less than e, and
the error metric is calculated on the complete waveforms;
N|Error|<=¢ 1s the count of the absolute error metric less
than &, and the error metric is calculated on the local win-
dows detected by faster-RCNN. Fig. 11 and Table 1 show
the picking results between non-local-window picking and
local-window picking, and all of them based on 20,000 syn-
thetic records. For the wavelet-transform-based approach,
M \Error|<=0.05 = 32, NiErrorj<=0.05 = 20000, and EM =
99.8%. For the PphasePicker algorithm, M\gyorj<=0.05 =
1039, NiEror|<=005 = 20000, and EM = 94.8%. For
the STAFD/LTAFD algorithm, M|g;0rj<=0.05 = 319,
N\Error|<=0.05 = 20000, and EM = 98.4%. And for the deep
learning method, M|gor|<=0.05 = 2655, N\Eror|<=0.05 =
20000, and EM = 86.7%. It can be seen from Fig. 11 that
no matter which picking algorithm is used, the error metric
of the picking results based on the local window is reduced
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FIGURE 10. The results of finding local windows by faster-RCNN and the ground truth of synthetic records. The blue
rectangles in (a) are the local windows recognized by faster-RCNN. The red circles in (b) are the ground truth of
synthetic P-wave arrival.

by an order of magnitude. Moreover, the EM of each picking In order to more intuitively show the enhanced effect of
method is greater than 0. This means that the method pro- using faster-RCNN to detect the local window for seismic
posed in this article has the enhancement effect for P-wave P-wave arrival picking, we performed P-wave arrival picking
arrival picking. on a synthetic record shown in Fig. 10 and compared the
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FIGURE 11. The picking results between non-local-window picking and local-window picking. (a1) the non-local-window
picking results of the wavelet-transform-based approach. (a2) the local-window picking results of the
wavelet-transform-based approach and the local window is detected by faster-RCNN. (b1) the non-local-window picking
results of the PphasePicker algorithm. (b2) the local-window picking results of the PphasePicker algorithm and the local
window is detected by faster-RCNN. (c1) the non-local-window picking results of the STAFD/LTAFD algorithm. (c2) the
local-window picking results of the STAFD/LTAFD algorithm and the local window is detected by faster-RCNN. (d1) the
non-local-window picking results of CNN picker. (d2) the local-window picking results of CNN picker and the local window is

detected by faster-RCNN.

results. As shown in Fig.12, there are four groups of compara-
tive experimental results. Firstly, P-wave arrival picked on the
complete waveform using various picking methods, the red
triangles in Fig.12(a), Fig.12(b), Fig.12(c), and Fig.12(d)

141740

are the P-wave arrival picking results of different traces.
In Fig.12(a), the maximum error is 0.4693 s, the smallest error
1s 0.0004 s, the mean error is 0.0534 s, and there are 17 traces
with an error of less than 0.03s. In Fig.12(b), the maximum
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error is 0.1983 s, the smallest error is 0.0007 s, the mean
error is 0.0367 s, and there are 25 traces with an error of
less than 0.03s. In Fig.12(c), the maximum error is 0.1256 s,
the smallest error is 0.0012 s, the mean error is 0.0559 s,
and there are only 20 traces with an error of less than 0.03s.
In Fig.12(d), the maximum error is 0.4748 s, the smallest
error is 0.0099 s, the mean error is 0.1885 s, and there are
4 traces with an error of less than 0.03s. In this experiment,
it can be found that when various methods are used to pick
the P-wave arrival on a long time series, a significant error
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often occurs, which is very unfavorable for analysis of the
focal mechanism. Secondly, we use the trained faster-RCNN
to detect the local window containing the subject of the signal
in the waveform and picking the P-wave arrival in the local
window. The red points in Fig.12(e), Fig.12(f), Fig.12(g), and
Fig.12(h) are the P-wave arrival picking results in the local
window of different traces. In Fig.12(e), the maximum error
is 0.0103 s, the smallest error is 0.0003 s, the mean error
is 0.0056 s, and there are 50 traces with an error of less
than 0.03 s. In Fig.12(f), the maximum error is 0.0345 s, the
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TABLE 1. The synthetic picking results between non-local-window picking and local-window picking.

complete local EM = |Error|<=¢ - |Error|<=¢
Method waveform window Errorieee
MErmr|<=0.05 MErrorK:0.0S
Wavelet-transform-based approach 32 20000 99.8%
PphasePicker algorithm 1039 20000 94.8%
STAFD/LTAFD algorithm 319 20000 98.4%
Deep learning method 2655 20000 86.7%
smallest error is 0.0147 s, the mean error is 0.0249 s, and there we choose ¢ = 0.1 s as the target accuracy. As shown

are 36 traces with an error of less than 0.03 s. In Fig.12(g),
the maximum error is 0.0343 s, the smallest error is 0.0003 s,
the mean error is 0.0163 s, and there are 46 traces with an
error of less than 0.03 s. In Fig.12(h), the maximum error
is 0.0327 s, the smallest error is 0.0128 s, the mean error
is 0.0231 s, and there are 42 traces with an error of less
than 0.03s. The experimental results show that even though
there are still differences in the accuracy of the P-wave pick-
ing results, the picking accuracy of all methods is greatly
enhanced. Finally, through the analysis and comparison of
each method, it can be found that the P-wave picking method
based on deep learning has a better effect. If we need to get
better picking results, we must increase the amount of data
for training. In general, through synthesis experiments, it can
be found that it is feasible to use faster-RCNN to detect local
windows to enhance the P-wave picking accuracy.

B. FIELD SEISMIC DATA
We also test the approach proposed in this article with a real
field seismic dataset. The field seismic dataset we used was
recorded by the NCEDC.

Similar to the synthetic example, three steps are taken to
carry out the proposed enhanced picking method in field
seismic data. Firstly, we divide the data into a training set
(5,894 waveforms) and test set (1,030 waveforms), and the
P-wave arrival is picked on the complete waveform in test
sets. Based on the prepared data set, we started to train
faster-RCNN. We set the training process that will end
in 40 Epochs; the size of the mini-batch is 5. Furthermore,
the Sgdm (Stochastic gradient descent momentum) optimizer
is used for the training process, and the initial learning rate
is 0.001; and the entire training process requires 168 min-
utes and 18 seconds on one NVIDIA RTX 2080 GPU.
Secondly, we train the faster-RCNN with the training set
and the calibrated local window, and detect the local window
of the records in the test set. Finally, the P-wave arrival is
picked on the local window of each record in test sets, and
compared with the results of the first step. Fig. 13 shows
the picking results between non-local-window picking and
local-window picking, and both based on 1030 field seismic
records. Similarly, we use EM (equation 5) to evaluate
the enhancement of the method proposed in this arti-
cle, and due to the sampling rate is 500 Hz, therefore,
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in Fig.13 and Table 2, for wavelet-transform-based approach,
MlErmr|<:0.l = 713, N\Ermrl<:0.1 = 864, and EM =
17.5%. For PphasePicker algorithm, M|grror<=01 = 506,
N\Error|<=0.1 = 811, and EM = 37.6%. For STAFD/LTAFD
algorithm, M\g,orj<=01 = 80, N|Ermor|<=01 = 213, and
EM = 62.4%. And for deep learning method, M |gor|<=0.1 =
25, NiErrorj<=0.1 = 47, and EM = 46.8%. It can be seen
from Fig. 13 that no matter which picking algorithm is used,
the error of the picking results based on the local window is
all converge to 0 s.

Moreover, Fig.14 shows a field seismic event that occurred
at 23: 3: 35 on March 31, 2016. This event contained a total
of 102 waveforms, but because some waveforms were not
seismic waveforms (or the signal-to-noise ratio was too low),
we deleted them, and eventually 84 waveforms participated in
the experiment. As shown in Fig.14, there are four groups of
comparative experimental results. The red circles are P-wave
arrival picking results on the complete waveform by differ-
ent picking methods: (a) wavelet-transform-based approach,
(b) PphasePicker algorithm, (c) STAFD/LTAFD algorithm,
and (d) Deep learning method. The red rectangles are
P-wave arrival picking results on the local window by differ-
ent picking methods: (a) wavelet-transform-based approach,
(b) PphasePicker algorithm, (¢) STAFD/LTAFD algorithm,
and (d) Deep learning method. Moreover, the detailed results
of comparative experiments are shown in table 1. It can
be seen that the picking results using the enhanced P-wave
picking method proposed in this article is better than the
original picking method.

IV. DISCUSSION

Based on the above experimental results, it can be found that
picking P-wave arrival in a short time window (local win-
dow) greatly enhanced the accuracy of the picking algorithm.
Therefore, based on this conclusion, we explored the relation-
ship between the length of the time window and the picking
accuracy. Each waveform in the test set was intercepted to
change the time window length of the waveform. The number
of sampling points of the new waveform was 1000, 2000,
3000, 4000, 5000, 6000, and 7000, respectively. Although the
waveform length was reduced, the main components of the
seismic signal were still included. The P-wave arrival of each
waveform in different lengths of the time window is picked,
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FIGURE 13. The field seismic data picking results between non-local-window picking and local-window
picking. (a) the non-local-window picking results of the wavelet-transform-based approach. (b) the
local-window picking results of the wavelet-transform-based approach and the local window is detected by
faster-RCNN. (c) the non-local-window picking results of the PphasePicker algorithm. (d) the local-window
picking results of the PphasePicker algorithm and the local window is detected by faster-RCNN. (e) the
non-local-window picking results of the STAFD/LTAFD algorithm. (f) the local-window picking results of the
STAFD/LTAFD algorithm and the local window is detected by faster-RCNN. (g) the non-local-window picking
results of CNN picker. (h) the local-window picking results of CNN picker and the local window is detected by

faster-RCNN.

and SE (Sum of Error) is introduced for evaluation [20]. The
calculation method of SE is:

H
E=) () — 5k 5)
h=1
where, I,,(h) denotes the picked arrival time of the A-th record
in the dataset, I;(h) denotes the corresponding actual arrival
time of the A-th record in the dataset, H denotes the number
of records in the dataset, here H = 1030.
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As shown in Fig.15, a clear rule is that when the
waveform size decreases, even without any preprocessing
(such as filtering), the accuracy of P-wave arrival piking is
gradually improved. The principle of this phenomenon is
also easy to explain. When the waveform length is short,
the interference information is significantly reduced, the pro-
portion of main components increased, and the effect of
the P-wave arrival picking is enhanced. However, in the
actual operation process, it is difficult to determine such
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FIGURE 14. The comparative experimental results of P-wave arrival picking of one field seismic event. The red circles are
P-wave arrival picking results on the complete waveform by different picking methods: (a) wavelet-transform-based
approach, (b) PphasePicker algorithm, (c) STAFD/LTAFD algorithm, and (d) Deep learning method. The red rectangles are
P-wave arrival picking results on the local window by different picking methods: (a) wavelet-transform-based approach,
(b) PphasePicker algorithm, (c) STAFD/LTAFD algorithm, and (d) Deep learning method.

TABLE 2. The field picking results between non-local-window picking and local-window picking.

complete local EM = Nerrotece =M gnoicee
Method waveform window rrorf<ce
MError|<:0. 1 MErrurK:O. 1
Wavelet-transform-based approach 713 864 17.5%
PphasePicker algorithm 506 811 37.6%
STAFD/LTAFD algorithm 80 213 62.4%
Deep learning method 25 47 46.8%
a local window that contains both the main components picture and use faster-RCNN to detect the local window
of the signal and a small scale. Therefore, the method can effectively solve this problem, thereby enhancing the

proposed in this artilce to convert the waveform into a accuracy of P-wave arrival picking. However, to implement
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TABLE 3. The comparative experimental results of P-wave arrival picking of one field seismic event.

Picking on the complete waveform

Picking by targeted detecting the local

window using faster-RCNN
Count of Count
Picking the trace of the
. Maximu Mean Minimu . . Mean Minimu trace
algorithm with an Maximum .
m error/(s m error/(s m with an
error of error/(s)
error/(s) ) error/(s) ) error/(s) error of
less than
0.1s less than
) 0.1s
Wavelet-
transform- 5 3, 1670 0 38 0.380 0.051 0 74
based
approach
PphasePicke ¢ o 2304 0002 8 0.186 0034 0 73
r algorithm
STAFD/LTA
FD 9.878 1.345 0.016 3 0.992 0.4577  0.012 16
algorithm
Deep
learning 3.649 2.383 0.347 0 1.076 0.639 0.010 7
method
4500 However, these automatic algorithms are not always accurate
—=— wavelet-transform-based aapproach and may even yield results that are far from the truth. The
4000 1 |—e— PphaserPicker algorithm i . . .. R ..
A STAFD/LTAID algorithm R main ways to improve the precision of P-wave arrival picking
35009 | v Deep learning method L include optimizing the picking algorithms and preprocessing
30001 A the waveform. Therefore, this article proposes a method to
- v enhance the accuracy of P-wave arrival picking by detecting
2500 1 / . .
= S/ local window from the waveform through deep learning.
20001 ’ 4 . . This deep learning method is based on faster-RCNN, a reli-
1500 - s . able object detection algorithm. The idea of this method is to
— = convert the seismic waveform recorded by the station into a
M & * s ——a picture and train the faster-RCNN model with the calibrated
5001 : ° ¢ local window. The trained faster-RCNN can be used to detect
gl E———m E— the local window of those new seismic records and picking

T T T T T T T
1000 2000 3000 4000 5000 6000 7000
The length of waveform (sampling points)

FIGURE 15. The relation between the P-wave picking precision and the
length of the waveform.

this method requires a sizeable marked dataset, and the
actual application effect also changes with the size of the
dataset.

For future research, the time-frequency spectra could be
utilized to enhance the anti-noise ability the arrival picking
further. Besides, the neighbor traces can also be used to
constrain the local window selection and the final picked
arrivals [38].

V. CONCLUSION

P-wave arrival picking is an essential step in seismic
source location and focal mechanism calculation. There are
many automatic algorithms for picking the P-wave arrivals.
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P-wave arrival in the local window. The local window is a
short waveform that intercepts the main components of the
original waveform.

In order to verify the effectiveness of the method pro-
posed in this article, we selected four kinds of automatic
P-wave arrival picking algorithms (wavelet-transform-based
approach, PphasePicker algorithm, STAFD/LTAFD algo-
rithm, and deep learning method) to conduct experiments in
synthetic seismic records and field seismic records, respec-
tively. The synthetic experimental results show that the
method proposed in this article can improve the picking
capacity of the four methods by 99.8%, 94.8%, 98.4%, and
86.7%, respectively. And the field experimental results show
that the method proposed in this article can improve the pick-
ing capacity of the four methods by 17.5%, 37.6%, 62.4%,
and 46.8%, respectively. Therefore, no matter which algo-
rithm is used, the picking error in the local window is reduced
clearly. At the same time, the experiment of exploring the cor-
relation between the waveform size and the picking accuracy
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also shows that the method of detecting the local window to
enhance the P-wave arrival picking accuracy is feasible.
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