
Received July 4, 2020, accepted July 26, 2020, date of publication July 31, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013300

Visual Hull Tree: A New Progressive Method
to Represent Voxel Data
TAE YOUNG JANG 1, (Member, IEEE), SEONG DAE KIM 1, (Life Senior Member, IEEE),
AND SUNG SOO HWANG 2, (Member, IEEE)
1Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2School of Computer Science and Electrical Engineering, Handong Global University, Pohang 37554, South Korea

Corresponding author: Seong Dae Kim (sdkim@kaist.ac.kr)

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant 2016R1D1A3B03934808.

ABSTRACT A visual hull is an approximation of a three-dimensional (3-D) object generated by the shape-
from-silhouettes (SfS) technique. Because a visual hull is calculated from silhouettes, a visual hull can be
represented by silhouette images, encoded by a small number of bits. However, it is challenging to represent
the concave regions of a visual hull. In this paper, we model voxel data with a set of visual hulls, thereby
handling the concave regions of voxel data. To accomplish this, silhouettes are generated from input voxel
data using virtual cameras, and a visual hull is computed by SfS using the silhouettes. To handle the concave
regions, we calculate the residuals of visual hulls, and the residuals are represented by visual hulls again.
This process is repeated until all concave regions are processed, and a hierarchical data structure, i.e., a visual
hull tree, is generated. Because the visual hull tree is constituted from a set of visual hulls, it can represent
the details of the voxel data even in the root node. Also, because a set of visual hulls can be represented by
silhouettes, a visual hull tree has a small number of bits. From the experiments, we compare our method to
the octree-based representation, and our method demonstrates good encoding performance.

INDEX TERMS Three-dimensional data, voxel representation, visual hull, hierarchical representation.

I. INTRODUCTION
To represent three-dimensional (3-D) geometry data effi-
ciently, a variety of methods have been proposed. Among
them, volumetric approaches use voxels as primitives and rep-
resent a 3-D geometry using transparent voxels and opaque
voxels. Compared to other approaches such as polygonal
meshes, volumetric approaches are intuitive and straight-
forward. Moreover, many signal processing algorithms can
be applied to voxel data by considering a voxel as a 3-D
extension of a pixel. For these reasons, recent research in
computer graphics and artificial intelligence has widely uti-
lized volumetric approaches.

The disadvantage of volumetric approaches is memory
requirements, i.e., they generally require a large amount of
memory to represent a 3-D geometry. Consequently, several
encoding methods for voxel data have been studied, and
an octree has become a popular means to represent voxel
data [1]–[3]. An octree is the 3-D extension of a quad-tree,
and it recursively subdivides a 3-D space into eight octants.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

When the geometry of a 3-D object is represented by an
octree, the shape becomes more apparent as we traverse
down the tree.

In this paper, we propose a visual hull tree to represent
voxel data. A visual hull is a geometric entity created by
the shape-from-silhouettes technique (SfS) [4]–[6]. SfS is
a 3-D geometry reconstruction method using multiple-view
silhouettes of an object, and computes a visual hull using
a small number of computations compared with other 3-D
reconstruction methods. From the above observation, we rep-
resent voxels as a set of silhouettes used for computing a
visual hull using SfS. This implies that while the majority
of previous research uses SfS as a tool for generating 3-D
contents, we instead use it as a 3-D geometry decoder. How-
ever, a visual hull cannot present the concave regions of an
object well. To address this issue, we find the concave regions
based on the differences between the 3-D geometry and its
visual hull. Then, the concave regions are again represented
by visual hulls. This process is performed repeatedly, thereby
representing voxel data as a set of visual hulls. From the above
process, visual hulls are generated hierarchically, which we
refer to as a visual hull tree, which is similar to a concavity

141850 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3787-4660
https://orcid.org/0000-0001-8077-2403
https://orcid.org/0000-0002-0863-7503
https://orcid.org/0000-0001-5161-9311


T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

tree [7]–[9]. Using this method, voxel data is represented by a
set of silhouettes that are used for generating visual hulls, and
the silhouettes can be encoded by various methods, i.e., 2-D
run lengths, a chain code, or quad-tree. However, traditional
methods only encode a single silhouette; thus, a new method
for representing multiple silhouettes is necessary to reduce
data. To address this, we represent a set of silhouettes using
the bit plane approach. The bit plane method converts sil-
houettes to gray-scale images and it can reduce the data for
representing silhouettes.

Compared to an octree, the proposed method has the fol-
lowing advantages. First, the visual hull tree can represent an
object’s details well, even if it does not descend to the leaf
node level. Second, we can decode the visual hull tree using
a similarity transformation without any post-processing.

The remainder of this paper is organized as follows.
Section II reviews studies related to our method, and we
describe our proposed visual hull tree in Section III. Exper-
imental results are presented in Section IV. Finally, we con-
clude the paper in Section V.

II. RELATED WORKS
A. OCTREE
An octree is considered to be a three-dimensional algo-
rithm of a quad-tree representation and is introduced in [1].
To generate an octree, voxel data are divided into octants
repeatedly, representing voxel data hierarchically. The octree
reduces the cost of voxel data in terms of memory space,
and there are many algorithms based on the octree repre-
sentation. For example, a modeling scheme using the octree
is proposed in [10]. Furthermore, many studies involving
rendering, encoding, and deep learning have been developed
[3], [11], [12]. To further reduce the memory space associated
with an octree, a directed acyclic graph (DAG) is used, and is
generated by merging the same pattern of nodes as those in an
octree [2].

B. VISUAL HULL
The visual hull is a 3-D entity that is generated by the
shape-from-silhouettes (SfS) technique. To generate a visual
hull, silhouettes are back-projected into 3-D space, and
the intersection of the back-projected volumes is calcu-
lated [6] (Figure 1a). It is a simple algorithm but requires
many iterations to calculate the intersection of volumes.
To improve the computation time, 3-D ray-based methods
have been proposed [4], [5]. In [5], 3-D rays are pro-
jected into the silhouettes, and the intersections of rays and
silhouettes are calculated. In this method, the intersection
points in 2-D images are also back-projected into the 3-D
space using 2-D homography. A second method [4] uses
affine rectification so that the rays are projected in paral-
lel onto 2-D images. Because the projected rays are par-
allel, it is easy to locate the intersections between rays
and silhouettes.

FIGURE 1. (a) Shape-from-silhouettes concept. (b) Concavity tree concept.

C. CONCAVITY TREE
The concavity tree is a data structure that considers concave
regions in a 2-D binary image [9] (Figure 1b). To generate a
concavity tree, concave regions(C) of an object are estimated
using a convex hull. Then, the concave regions are estimated
again from C, and a hierarchical data structure is formed
based on the concave regions. Because the convexity of an
object is characterized by a concavity tree, the tree has many
applications. For example, shape retrieval and classification
can be accomplished by observing the convexity of objects
[8], [13]. Encoding objects in 2-D binary images is another
application of the concavity tree [14].

III. VISUAL HULL TREE
The system for generating the visual hull tree is shown
in Figure 2. First, we project input voxels to the image
planes and generate silhouettes. After acquiring the silhou-
ettes, a visual hull is generated and residuals are found by
calculating the differences between a visual hull and the input
data. The residuals, then, are represented by silhouettes again.
This process is repeated until all residuals are calculated, and
then the visual hull tree is generated. Through the visual hull
tree, input voxels are modeled by a set of silhouettes and run-
lengths. Algorithm details are provided in the subsections that
follow.

FIGURE 2. (a) Overall visual hull tree generator. (b) Visual hull-based
predictor (VHBP).

A. VISUAL HULL COMPUTATION
In this section, we introduce how to generate silhouettes from
input voxel data and predict input voxel data using a visual
hull. A visual hull is a 3-D entity that is an approximation of

VOLUME 8, 2020 141851



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

a 3-D object, and the shape-from-silhouettes (SfS) technique
is utilized to compute it. The SfS back-projects the regions on
the silhouettes into 3-D space and calculates their intersec-
tions, generating a visual hull based on these intersections.
To model voxels using visual hulls, we generate silhouettes
from the voxel data. To generate silhouettes from the voxels,
we define virtual cameras around the data and project the
voxels onto 2-D image planes. A virtual camera is commonly
modeled by projective cameras that are used for modeling
real cameras. However, in terms of our method, projective
cameras not only increase the complexity in calculating a
visual hull, but also make it necessary to encode the camera
parameters. To address this, we define virtual cameras as
affine cameras. An affine camera is defined as follows.

PA =
[
M2×3 t2×1
0T1×3 1

]
=

m11 m12 m13 t1
m21 m22 m23 t2
0 0 0 1

 (1)

Because the last row of an affine camera is (0, 0, 0, 1)T ,
an image is generated through the orthogonal projection of 3-
D data. As shown in Figure 3, in the case of an affine camera,
calculations for silhouettes and a visual hull are simpler
than those when using a projective camera. In our work,
we set three affine cameras with each camera’s principal axis
set along the X-axis, Y-axis, or Z-axis; hence a visual hull
is easier to calculate. From the particular case of the affine
camera, we define the affine cameras as

PAX =

 0 0 0 0
0 1 1 0
0 0 0 1

 (2)

PAY =

 1 0 0 0
0 0 1 0
0 0 0 1

 (3)

PAZ =

 1 0 0 0
0 1 0 0
0 0 0 1

 (4)

Through the affine cameras (equations (2), (3), (4)), the sil-
houettes and a visual hull are generated by analyzing the
coordinates of the voxels. In terms of generating silhouettes,
voxels are projected into the cameras by multiplying the
camera matrices and the coordinates of the voxels, SX =
PAXV , SY = PAYV , SZ = PAZV . Here, V is a homogeneous

FIGURE 3. (a) Silhouette generation and (b) shape obtained from
silhouettes using affine cameras.

coordinate of voxels and SX , SY , and SZ are homogeneous
coordinates of pixels on silhouettes that are generated by
PAX , PAZ , and PAZ , respectively. The projection is repeated
until all voxels are projected into the affine camera’s image
planes. However, because equations (2), (3), and (4) are spe-
cial cases of affine cameras, we can compute the silhouettes
by removing specific coordinates. For instance, in terms of
equation (2), the Y and Z coordinates of a voxel become the
x and y coordinates of an image plane.

To compute a visual hull using silhouettes, we may use a
ray carving method [4], [5]. A ray carving method defines
rays in 3-D space regularly and projects them into the image
planes. Then, it calculates the intersection between the pro-
jected rays and the contours of silhouettes, and the intersec-
tion points are back-projected into 3-D space, from which a
visual hull is calculated. This algorithm is a fast method and
useful for our system. However, we can compute a visual hull
in simpler fashion than ray carving methods by using affine
cameras instead. Before computing a visual hull, regions in
silhouettes are back-projected into 3-D space as follows:

X (λ) = P†x + λC (5)

where P† is the pseudo inverse matrix of camera matrix P,
and x is the homogeneous coordinate of a pixel. C is a null
space of P, and λ is a real value. All pixels in silhouettes are
back-projected by equation (5), and 3-D space is filled with
back-projected voxels. Here, because we use simple affine
cameras, back-projected voxels are generated by filling the
space along the x-axis, y-axis, and z-axis. For instance, back-
projection of a pixel (x, y) onto SZ is simply represented by
(x, y, k), where 0 ≤ k ≤ N , and N is the voxel resolution.
After back-projecting pixels, a visual hull is calculated by
finding the intersections of the back-projected pixels in 3-D
space as follows.

V = XX (λX ) ∩ XY (λY ) ∩ XZ (λZ ) (6)

To calculate equation (6), a bit-wise AND operation is uti-
lized in 3-D space [15].

B. RESIDUAL COMPUTATION AND MEASUREMENT
Because a visual hull is only an approximation of an object,
a visual hull and an object have differences. Thus, to represent
voxels using a visual hull, it is necessary to find the residual
of a visual hull by calculating the differences between a visual
hull and the voxels. To find a residual, we use the exclusive-
OR operation applied to a visual hull and the input voxels,
thus finding the differences between them [15]. The residuals
are composed of a set of 3-D voxel blobs, and each residual is
then represented by a visual hull again. If residuals have few
numbers of voxels, it would be inefficient to represent them as
a visual hull, because many bits can be used for representing
the residuals as silhouettes. For this reason, we represent
the residuals as 3-D run-lengths if the number of voxels
in residuals is less than a specified threshold. The above
process is repeated until all residuals disappear, and a visual
hull tree that consists of silhouettes and 3-D run-lengths is

141852 VOLUME 8, 2020



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

FIGURE 4. Example of divergence of the residuals in a 2-D image. (a) Input data. (b) Visual hull of (a). (c) A residual of (a) and (b). (d) Visual hull of
(c). (e) A residual of (c) and (d). From the observation of (c) and (e), the residuals show similar shapes and are not convergent.

FIGURE 5. Example of the computation of residuals in 2-D space. (a) An
input. (b) The input (white region) and a visual hull (gray region).
(c) Residuals of the input and the visual hull. (d) Divided residuals
(sub-residuals) and (e) corresponding visual hulls (gray region).
(f) Residuals of visual hulls in (e).

generated. However, the convergence of the visual hull tree
is not guaranteed, because a visual hull usually encloses an
object. Figure 4 shows the problem of convergence in 2-D
space. In Figure 4-(c) and (e), we note that the residuals have
similar shapes repeatedly, and therefore the visual hull tree
may not be convergent. To allow convergence of the visual
hull tree, the residual is partitioned by subdividing it into
octants, which we refer to as sub-residuals. Subdividing takes
place after finding the residuals, and each divided residual is
represented by a visual hull (Figure 5). Because the subdi-
viding process reduces the size of the residuals, the visual
hull tree becomes convergent. Algorithms 1 and 2 describe
the overall generation process for visual hull trees.

C. BIT PLANE-BASED SILHOUETTES REPRESENTATION
The visual hull tree consists of silhouettes and 3-D run-
lengths. In terms of silhouettes, various methods can be uti-
lized to represent silhouettes, such as 2-D run-lengths, a chain
code, or a quad-tree. However, depending on the geometry
of the 3-D object, many silhouettes may be required. Hence,
a large amount of data may be required if traditional binary
representations are utilized for encoding silhouettes. To han-
dle this issue, we propose the bit plane-based representation,
which merges silhouettes into a gray image. As we represent

FIGURE 6. (a) Concept of bit plane decomposition. (b) Bit plane-based
silhouette representation.

Algorithm 1 Generation of a Visual Hull Tree
Input: Input Voxel Data V
Output: Visual Hull Tree VHT
VP← V
while !isempty(VP) do
nb← Get_The_Number_of_Blob(VP)
for k = 1 to nb do
vht,Vdiff ← Generate_Level_of_VHT(VP(k))
VN ← append_to(Vdiff )
VHT← append_to(vht)

end for
VP← VN

end while

silhouettes using gray images, we can utilize lossless gray-
scale image encoders, which have been studied extensively.

A bit plane of a gray-scale image is a binary image that
is composed of a set of bits corresponding to a given bit
position based on intensity values. As shown in Figure 6a,
bit plane 8 indicates the most significant bits based on their
intensity values, and bit plane 1 contains the bits with least
significant intensity values. In this manner, we consider sil-
houettes in a visual hull tree as bit planes. The simplest way
of gathering silhouettes is to consider each silhouette as a
bit plane. However, this approach generates many bit planes;
thus, it requires much data. To reduce the number of bit
planes, we gather silhouettes into a single bit plane without
loss of the information describing the silhouettes. To achieve

VOLUME 8, 2020 141853



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

FIGURE 7. Example of decoding process. (a) shows the decoding process of a concavity tree. (b) shows the decoding process of a visual
hull tree in 2-D space. Both decoding processes are similar.

Algorithm 2 Generate Level of VHT
Input: Input Voxel Data V
Output: Visual Hull TreeVHT, Difference between a visual

hull and an object VD
nv← The_Number_of_Voxel(V)
if threshold ≤ nv then
VS ← Split_by_Octant(V)
for k = 1 to size(VS ) do
S ← Generate_Silhouettes(VS (k))
VH ← Generate_Visual_Hull(S)
VD← XOR(VH,V)
VHT.sil ← append_to(S)

end for
else
VHT.run← append_to(V)

end if

this, we project blobs of silhouettes onto a single bit plane
while determining whether they are overlapped.

To decode the visual hull represented by bit plane-based
silhouettes, we establish some rules for bit plane-based rep-
resentation.

1) Each bit plane contains silhouettes present only at the
same level in a visual hull tree. If silhouettes at the
same level are represented by more than one bit plane,
the number of bit plane is recorded in memory space.

2) Each set of silhouettes on the XY, YZ, and ZX planes
is represented by the bit plane-based method. As a

Algorithm 3 Bit Plane-Based Silhouettes Representation
Input: Visual Hull Tree VHT
Output: Image I

for k = 1 to max_Level do
num_sil ← VHT(k).num_sil
for j = 1 to num_sil do
tmp_I ← VHT(k).sil(j)
for i = 1 to num_sil do
if !is_overlapped(tmp_I ,VHT(k).sil(i)) then
tmp_I ← Union(tmp_I ,VHT(k).sil(i))

end if
end for

end for
Update_Bit_Plane(I, tmp_I )

end for

consequence, there are three sets of images used to
represent silhouettes.

3) If the number of bit plane is more than 8, an additional
image is created.

The detailed process is described in algorithm 3.

D. DECODING OF VISUAL HULL TREE
In Figure 7, we describe the example of decoding process
in 2-D space. The decoding of a visual hull tree is similar
to the decoding of a concavity tree. Figure 7a shows an
example of the decoding process in a concavity tree. The
decoding process involves repeated subtraction and addition

141854 VOLUME 8, 2020



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

FIGURE 8. Relationship between the camera coordinate and the world
coordinate. From this relationship, a visual hull tree can be decoded using
similarity transformation.

of concave regions. In a similar manner to a concavity tree,
the decoding process of a visual hull tree starts from the root
node, and subtraction or addition is performed on the visual
hulls (Figure 7b).

Dt+1=

{
VHt+Dt if t is an odd number
VHt · Dt+VHt · Dt if t is an even number

(7)

Here, Dt is a decoded voxels in level t . VHt is a visual hull
in level t . To compute VHt , silhouettes in level t undergo SfS
that is introduced in subsection III-A. If level t is odd, a union
(OR operation) for addition is used; otherwise, an exclusive
OR (XOR) operation for subtraction is utilized. Specifically,
in the first level, a visual hull is generated by SfS. In the sec-
ond level, visual hulls are also generated by SfS, and an XOR
operation is performed on the decoded voxels in the first level
and the visual hull in the second level. Here, the residuals in
the second level also undergo an XOR operation. In the third
level, an OR operation is performed between the decoded
voxels in the second level and the visual hull in the third level.
Through the OR operation, the merged visual hulls become
new visual hulls because the OR operation makes any output
a 1, except for the case when the inputs are (0,0). From the
above description, the visual hulls and 3-D run-lengths in
the odd levels undergo the OR operation. In the even levels,
the XOR operation is applied to the visual hulls and 3-D run-
lengths. After reaching the final nodes, the visual hull tree is
wholly decoded, and the voxel data is generated. Algorithm 4
presents the decoding process for a visual hull tree.

E. ROTATION, TRANSLATION, AND SCALING OF VISUAL
HULL TREE
In the decoding stage of a visual hull tree, the computation
of a visual hull is essential. To compute a visual hull, we set
simple camera matrices that are mentioned in the previous
section. Specifically, we set a camera’s extrinsic matrices as
a 4 × 4 identity matrix that represents an orthogonal projec-
tion. The extrinsic matrix defines the relationship between a
camera coordinate and world coordinate, which consists of

Algorithm 4 Decoding of a Visual Hull Tree
Input: Visual Hull Tree VHT, Max Level of visual hull tree
L

Output: Decoded Voxel Data V
V← Generate_Empty_Space(Resolution)
for k = 1 to L do
S ← Get_Silhouettes(VHT,L)
R← Get_Run_Length(VHT,L)
if size(S)!=0 then

for j = 1 to size(S) do
VH ← Compute_Visual_Hull(S(j))
if mod(k ,2)==1 then

V← Union(VH ,V )
else

V← XOR(VH ,V )
end if

end for
end if
if size(R)!=0 then
for j = 1 to size(R) do
if mod(k ,2)==1 then

V← Union(R,V)
else

V← XOR(R,V)
end if

end for
end if

end for

FIGURE 9. Datasets used to evaluate the proposed method. (a) ‘Bust,’
(b) ‘Chair,’ (c) ‘Duck,’ (d) ‘Mario,’ (e) ‘VCL Man1,’ and (f) ‘VCL Man2.’

rotation, translation, and scaling (Figure 8). If the extrinsic
matrix is an identitymatrix, the camera andworld coordinates
are the same. Otherwise, the camera and world coordinates

VOLUME 8, 2020 141855



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

FIGURE 10. RD-curves based on number of levels. (a)-(f): ‘Bust,’ ‘Chair,’ ‘Duck,’ ‘Mario,’ ‘VCL Man1,’ and ‘VCL Man2.’

have a relationship under a similarity transformation. From
the above analysis, we can directly decode a similarity-
transformed object if we modify the extrinsic matrices with
suitable parameters, such as rotation angle, translation, and
scaling. Equation (8), as shown at the bottom of the page,
indicates the relationship between a camera matrix and an
extrinsic matrix RZRYRXT . In equation (8), cx and sx are
respectively the cosine and sine of θx , while SX , SY , and
SZ are scaling factors along the X -axis, Y -axis, and Z -axis,
respectively. tX , tY , and tZ are translation factors. Before
computing a visual hull, camera matrices are modified using

equation (8), and then visual hulls are computed. In terms
of residuals, only the start points and end points of run-
lengths are transformed using equation (8). Through the
above process, we can decode transformed voxels without
post-processing.

IV. SIMULATION RESULTS
In simulations, we experimented with six different voxel
data images: ‘Bust’ [16], ‘Chair’ [16], ‘Duck’ [17], ‘Mario’
[17], ‘VCL Man1’ [4], and ‘VCL Man2’ [4]. ‘Bust,’ ‘Chair,’
‘Duck,’ and ‘Mario’ are mesh data and we voxelize them

PX = PAXRZRYRXT

= PAX


cz −sz 0 0
sz cz 0 0
0 0 1 0
0 0 0 1




cy 0 sy 0
0 1 0 1
−sy 0 cy 0
0 0 0 1



1 0 0 0
0 cx −sx 0
0 sx cx 0
0 0 0 1



SX 0 0 tX
0 SY 0 tY
0 0 SZ tZ
0 0 0 1

 (8)

141856 VOLUME 8, 2020



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

in 3-D space (Figure 9). ‘VCL Man1’ and ‘VCL Man2’ are
multiple-view image data, thereby their geometry is recon-
structed using the ray carving method [4], [5] (Figure 9). We
set the resolution of all voxel data as 256× 256× 256.
To model voxel data as a visual hull tree, a parameter (the

threshold) should be set. The performance of our method
therefore varies depending on the threshold. In the exper-
iments, we set a threshold by multiplying the number of
voxels and t . Here, t is a positive number less than 1.0. In
the experiments, we varied t in the range of 0.001 to 0.01 and
constructed visual hull trees. Additionally, we compared our
method to octree. To evaluate the validity of the proposed
method, we use a geometric measure that is used for MPEG
Point Cloud Compression [18]. It proposes assessment crite-
ria regarding the quality of the geometry and colors of a point
cloud; we use only the geometric criterion for evaluations
in the experiments. The geometric criterion is defined as
follows:

d(Vo,Vdeg) = max(drms(Vo,Vdeg), drms(Vdeg,Vo)) (9)

where, Vo is the original voxel or point cloud data and Vdeg is
the degraded voxel or point cloud data. drms is defined as

drms(Vo,Vdeg) =

√√√√ 1
K

∑
vo∈Vo

‖vo − vdnn‖2 (10)

Here, K is the number of voxels in Vo. vo is an element
of Vo, and vdnn is the nearest neighborhood of vo. In our
experiments, to observe the various scales of errors, we use
the logarithm of equation (9). To handle d(Vo,Vdeg) = 0,
we add 1 to equation (9) and take its logarithm.

df = log(drms(Vo,Vdeg)+ 1) (11)

Equation (11) is calculated for each level of the visual hull
tree and octree, observing the geometric error while travers-
ing the leaf nodes of the trees.

Figure 10 presents the geometric errors regarding bits.
The silhouettes of a visual hull tree are merged into gray
images by bit plane-based representation. In this experiment,
we represent the gray images using the png file format, which
is a lossless image encoder. To find curves in Figure 10,
we decode the visual hull trees along with the level of detail,
and then equation (11) is calculated. Furthermore, the num-
bers of bits are measured cumulatively by adding the bits for
each level of the visual hull tree. To compare the proposed
method with previous methods, we evaluate octree, which
is a popular representation method for point clouds, and
DAG, which is a modified version of octree. To evaluate
the previous methods, equation (11) is also calculated using
decoded voxel data along with the level of detail, and the
numbers of bits for each level are measured in the same way
as for the visual hull tree. In Figure 10, the level of the visual
hull tree becomes shallow as the threshold approaches 0.01.
Furthermore, from observing Figure 10, the visual hull tree
converges at a lower level than the octree. Because the test
voxel data have 256×256×256 resolution, the octree always

FIGURE 11. Subjective quality of ‘bust’ represented by octree. (a)-(d)
show levels 2, 4, 6, and 8 of an octree. (e) to (h), level 1 to level 4 of a
visual hull tree. In the visual hull tree, we set the threshold to t = 0.001.

has eight levels. However, the depth of the visual hull tree
varies depending on the threshold and the shape of voxel data.

We can also observe the number of bits used to represent
a visual hull tree, octree, and DAG in Figure 10. From the
figure, the visual hull tree uses fewer bits to represent 3-D

VOLUME 8, 2020 141857



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

FIGURE 12. Subjective quality of ‘Mario’ represented by octree. (a)-(d)
show levels 2, 4, 6, and 8 of an octree. (e) to (h): level 1 to level 4 of a
visual hull tree. In the visual hull tree, we set the threshold to t = 0.001.

data compared to octree and DAG. We also present subjec-
tive quality images in Figures 11 and 12. From Figures 11
and 12, the visual hull tree not only converges quickly, but
also achieves similar geometry at all levels.

V. CONCLUSION
In this paper, we propose a new progressive representation
method, a visual hull tree, for 3-D voxel data. A visual hull is
a 3-D entity that is generated by SfS technique. SfS computes

a visual hull using silhouettes, which means that a visual hull
is represented by silhouettes that have a small amount of data.
To take advantage of it, we model voxel data as visual hulls.
Because the visual hull does not describe concave regions,
we estimate concave regions by calculating the differences
between voxel data and visual hulls. The concave regions are
also represented by visual hulls, and this process is repeated
until all concave regions are processed. Finally, the input
voxel data are represented by hierarchical visual hulls, i.e., a
visual hull tree. Although the visual hull tree does not traverse
leaf nodes, it produces voxel data similar to the input data.
Hence, the visual hull tree is useful for progressive coding.
Also, the visual hull tree is invariant for the similarity trans-
form because we can modify the cameras, which are used for
computing visual hulls. Moreover, to reduce the data of the
visual hull tree, we propose the bit plane-based silhouettes
representation. From the experimental results, the proposed
method demonstrated superior performance to the octree
algorithm.

As future work, we plan to develop lossy coding strategies
for a visual hull tree. Furthermore, we expect to apply these
strategies to visual hull trees, because the proposed method
was motivated by concavity trees.

REFERENCES
[1] C. L. Jackins and S. L. Tanimoto, ‘‘Oct-trees and their use in representing

three-dimensional objects,’’Comput. Graph. Image Process., vol. 14, no. 3,
pp. 249–270, Nov. 1980.

[2] V. Kämpe, E. Sintorn, and U. Assarsson, ‘‘High resolution sparse Voxel
dags,’’ ACM Trans. Graph., vol. 32, no. 4, p. 101, 2013.

[3] S. Laine and T. Karras, ‘‘Efficient sparse voxel octrees,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 17, no. 8, pp. 1048–1059, Aug. 2011.

[4] S. S. Hwang, H.-D. Kim, T. Y. Jang, J. Yoo, S. Kim, K. Paeng, and
S. D. Kim, ‘‘Image-based object reconstruction using run-length represen-
tation,’’ Signal Process., Image Commun., vol. 51, pp. 1–12, Feb. 2017.

[5] S. Kim, H.-D. Kim, W.-J. Kim, and S.-D. Kim, ‘‘Fast computation of a
visual hull,’’ in Proc. Asian Conf. Comput. Vis. Berlin, Germany: Springer,
2010, pp. 1–10.

[6] A. Laurentini, ‘‘The visual hull concept for silhouette-based image under-
standing,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 2,
pp. 150–162, 1994.

[7] M. Attene, M. Mortara, M. Spagnuolo, and B. Falcidieno, ‘‘Hierarchical
convex approximation of 3D shapes for fast region selection,’’ in Com-
puter Graphics Forum, vol. 27, no. 5. Hoboken, NJ, USA: Wiley, 2008,
pp. 1323–1332.

[8] O. El Badawy and M. Kamel, ‘‘Shape retrieval using concavity trees,’’
in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), vol. 3. Piscataway, NJ,
USA: IEEE, Aug. 2004, pp. 111–114.

[9] J. Sklansky, ‘‘Measuring concavity on a rectangular mosaic,’’ IEEE Trans.
Comput., vol. C-21, no. 12, pp. 1355–1364, Dec. 1972.

[10] D. Meagher, ‘‘Geometric modeling using octree encoding,’’ Comput.
Graph. Image Process., vol. 19, no. 2, pp. 129–147, Jun. 1982.

[11] R. Mekuria, K. Blom, and P. Cesar, ‘‘Design, implementation, and evalua-
tion of a point cloud codec for tele-immersive video,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 27, no. 4, pp. 828–842, Apr. 2017.

[12] G. Riegler, A. O. Ulusoy, and A. Geiger, ‘‘OctNet: Learning deep 3D
representations at high resolutions,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3577–3586.

[13] V. Cantoni, A. Ferone, A. Petrosino, and G. S. di Baja, ‘‘A supervised
approach to 3D structural classification of proteins,’’ in Proc. Int. Conf.
Image Anal. Process. Berlin, Germany: Springer, 2013, pp. 326–335.

[14] J. Bajon,M. Cattoen, and S. D. Kim, ‘‘A concavity characterizationmethod
for digital objects,’’ Signal Process., vol. 9, no. 3, pp. 151–161, Oct. 1985.

[15] W.-J. Kim, S.-D. Kim, and H. Radha, ‘‘3D binary morphological opera-
tions using run-length representation,’’ Signal Process., Image Commun.,
vol. 23, no. 6, pp. 442–450, Jul. 2008.

141858 VOLUME 8, 2020



T. Y. Jang et al.: Visual Hull Tree: A New Progressive Method to Represent Voxel Data

[16] X. Chen, A. Golovinskiy, and T. Funkhouser, ‘‘A benchmark for 3D mesh
segmentation,’’ ACM Trans. Graph., vol. 28, no. 3, p. 73, 2009.

[17] A. Nouri, C. Charrier, and O. Lézoray. (2017). Greyc 3D Col-
ored Mesh Database, Technical Report. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01441721

[18] R. Mekuria, Z. Li, C. Tulvan, and P. Chou, Evaluation Criteria for
PCC (Point Cloud Compression), ISO/IEC Standard JTC1/SC29/WG11,
Feb. 2016.

TAE YOUNG JANG (Member, IEEE) received the
B.S. degree in electrical engineering from Sejong
University, Seoul, South Korea, in 2013, and the
M.S. degree from the Korea Advanced Institute of
Science and Technology, Daejeon, South Korea,
in 2015, where he is currently pursuing the Ph.D.
degree in electrical engineering. His research inter-
ests include image-based 3D modeling, 3D data
compression, and augmented reality.

SEONG DAE KIM (Life Senior Member, IEEE)
received the B.S. degree in electronics engineer-
ing from Seoul National University, Seoul, South
Korea, in 1977, the M.S. degree in electrical engi-
neering from the Korea Advanced Institute of
Science, Seoul, in 1979, and the Dr.-Ing. degree
in electrical engineering from ENSEEIHT, INPT,
Toulouse, France, in 1983. He has been a Professor
with the Department of Electrical Engineering,
Korea Advanced Institute of Science and Tech-

nology, Daejeon, South Korea, since 1984. His research interests include
3-D reconstruction, computer vision, pattern recognition, image coding, and
image processing.

SUNG SOO HWANG (Member, IEEE) received
the B.S. degree in electrical engineering and com-
puter science from Handong Global University,
Pohang, South Korea, in 2008, and the M.S. and
Ph.D. degrees from the Korea Advanced Institute
of Science and Technology, Daejeon, South Korea,
in 2010 and 2015, respectively. His research inter-
ests include image-based 3D modeling, 3D data
compression, augmented reality, and simultaneous
localization and mapping systems.

VOLUME 8, 2020 141859


