IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 14, 2020, accepted July 10, 2020, date of publication July 31, 2020, date of current version August 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013436

Creative Culinary Recipe Generation Based
on Statistical Language Models

WILLIAN ANTONIO DOS SANTOS', (Member, IEEE), JOAO RIBEIRO BEZERRAZ2, (Member, IEEE),
LUIS FABRICIO WANDERLEY GOES 2, (Member, IEEE),
AND FLAVIA MAGALHAES FREITAS FERREIRA!

!Electrical Engineering Departament, Pontical Catholic University of Minas Gerais (PUC Minas), Belo Horizonte 30535-060, Brazil
2Computer Science Department, Pontical Catholic University of Minas Gerais (PUC Minas), Belo Horizonte 30535-060, Brazil

Corresponding authors: Willian Antonio dos Santos (willian.antonio.bh@gmail.com), Jodo Ribeiro Bezerra (joaorb64 @ gmail.com),
Luis Fabricio Wanderley Gées (Ifwgoes @pucminas.br), and Flavia Magalhées Freitas Ferreira (flaviamagfreitas @pucminas.br)

This work was supported in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) under Grant 001,
in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnolgico (CNPq), and in part by Funda¢do de Amparo a Pesquisa do
Estado de Minas Gerais (FAPEMIG).

ABSTRACT Many works have been done in an effort to create systems for automatic generation of creative
culinary recipes. Although most of them are related to the recipe ingredient lists, few works have been done
to evaluate and generate the preparation steps of culinary recipes. This work proposes the use of statistical
Language Models, as well as the perplexity metric, for the generation of culinary recipes. In this work,
we also developed a system for automatic generation of creative culinary recipes using two approaches: one
based on a genetic programming algorithm guided by the proposed language model; and the other based on
a decomposition of existing recipes and recomposition of new recipes through a genetic algorithm guided
by the proposed language model. This second approach achieved the best results. For this approach, a total
of 6 recipes were generated to evaluate, through an online survey, the influence of the Language Model
in the generation of recipes with better use of secondary ingredients, oils and seasonings, throughout the
preparation steps. In the comparison between these two groups of recipes, the respondents considered the
recipes generated using the language model as having the best quality, presenting an average evaluation
of 63.6% of the scale (i.e. between medium and good use of oils and seasonings compared to recipes from the
other group). In addition, a recipe from this approach was cooked and tasted for taste assessment, obtaining
an average evaluation of 93% of the scale.

INDEX TERMS Language models, culinary recipe, computational creativity.

I. INTRODUCTION
Computational Creativity is a relatively new field of Arti-
ficial Intelligence (AI) [1], consisting of the creation of
ideas or artifacts that are considered novel and useful within
a given context for a group of people [2], [3]. There has
been interest in applying Computational Creativity to the
generation of culinary recipes. The process of creating a
culinary recipe is two-fold: i) to define the steps that ingre-
dientes undergoe in order to prepare a dish; and ii) the list of
ingredients. However, due to its complexity, particularly in
identifying the preparation steps, much of the work involving
Computational Creativity explored mostly the creation of
ingredient combinations [1], [4], [5].

Although the preparation steps are as important as the
selection of the ingredients, there is a certain assumption that

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the flavor derives mainly from the ingredients that compose a
dish. In fact, the taste sensation is multi-sensory and depends
on the chemical composition of the selected ingredients,
besides smell and taste [6], [7]. However, some actions in
the preparation instructions have physical (e.g. to smash,
beat and freeze) or chemical (e.g. to ferment, clarify and
smoke) transformations that may affect the taste experience
of these selected ingredients. In addition, the taste sensation
can be affected by effects such as: visual, tactile, thermal and
sonorous (e.g. potato chips, crisp and pretzel) [8]. In turn,
these effects can be also altered by the preparation actions, for
example, the dish’s visual with decoration actions or changes
in the dish’s temperature with actions like cooking, boil-
ing or freezing.

In essence, the selection of ingredients even by humans is
not solely based on taste. In addition to circumstantial criteria,
such as a regional abundance of particular ingredients, they
may also be chosen for the purpose of mechanical stability of

146263

https://orcid.org/0000-0003-1801-9917
https://orcid.org/0000-0002-7639-0696

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

the dish (e.g. eggs) [6], which is only achieved due to actions
of physical transformations (e.g. to beat). Thus the value
(flavour) of a dish consists not only of the food chemistry
but also of how the actions of the preparation steps modify
the ingredients.

Due to the great competitiveness of the market, innovation
is a necessity. And creativity is considered a factor of disrup-
tive innovation. With regard to the importance and impact of
creativity in the culinary domain, we can cite the example of
The Fat Duck' restaurant, 3 Michelin-starred by the renowned
English chef Heston Blumenthal, which features innovative
dishes based on scientific research on the influence of sound
in taste perception [8]. The interest for creative and innovative
dishes in high gastronomy has existed for at least a century.
In this sense, the system of this work can contribute by
supporting the creativity of chefs and restaurants (helping and
working together) to generate creative recipes that go beyond
just the combination of ingredients.

This work proposes the use of language models in the
evaluation of structural patterns in the steps of the preparation
of culinary recipes, in order to help generate preparation steps
with a structural consistency similar to the recipes used in
the training. The main objective of the work was to develop
a system for generating complete culinary recipes (with the
actions of the preparation instructions) from a list of creative
ingredients generated through the system provided in [5].
To achieve this main objective, two approaches were taken:
(i) generation of the recipes using genetic programming and
language models, named ReProg (Recipe Programming);
(ii) generation of the recipes using a process of recipe decom-
position of a training database, clustering of these recipes
parts, and recomposition of new recipes through genetic algo-
rithm and language models, named ReComp (Recipe Com-
position). The ReProg approach is less restricted in relation
to the number of combinations of possible recipes, but the
ReComp approach is more robust in relation to the consis-
tency of the processing of each ingredient.

For the implementation of the system it was also necessary
to create a database of structured human recipes; and a NLP
parser (Natural Language Processing) was also proposed to
carry out the structuring of these recipes (i.e. responsible for
converting the natural language text of the recipe preparation
steps into a data structure that the system can consume).

This work is organized as follows: Section 2 presents
the background on Computational Creativity and statistical
language modeling. Section 3 presents the related work.
Section 4 presents the architecture of the proposed sys-
tem. Section 5 presents the details of the implementation
of both the developed model and system (in two proposed
approaches). Section 6 details the performed experiments.
Section 7 presents the experiments’ results. Section § presents
the conclusions. Section 9 proposes future work.

1The Fat Duck is considered one of the best restaurants in the world. Its
website can be accessed at: http://www.thefatduck.co.uk/

146264

Il. BACKGROUND

Computational Creativity (CC) is a field of Artificial Intel-
ligence (Al) that consists of replicating creative behavior in
computational systems [1]. There are two approaches [9]: one
focused on the creative process, in which one tries to recreate
the human process that leads to creative behavior; while the
other approach is focused on the creative artifact, in which
one tries to generate artifacts that are considered creative by
humans. The focus of this work is on the artifact. Two factors
lead a group of individuals from a specific application context
to judge an artifact as creative [2], [10]:

a) Novelty, how an artifact differs from artifacts known to
the individual.
b) Value, the utility of an artifact in the application context.

Highly creative artifacts are also associated with a third
factor [9]:

c) Surprise, (which presupposes novelty) the distance
between the actual artifact and the expectation from
individuals of a group in the application context.

Surprise is interesting for the evaluation of artifacts
because, in addition to presupposing novelty, it is used as
a guide in the exploration of unknown environments in the
field of Autonomous Agents in AI [11]. This makes it a great
meta-heuristic to explore the space of artifacts in the search
for creative artifacts, which are unknown.

A commonly used metric for suprise is the Bayesian sur-
prise, based on the difference in the level of the a posteriori
information (after observing the event) in relation to the a pri-
ori information (before the observation of the event) [12].

A. COMPUTATIONAL CREATIVITY IN CULINARY

A culinary recipe consists of a list of components (the ingre-
dients) and a sequence of steps to be applied on these com-
ponents to generate a dish. The goal of a computational
creativity system in the culinary domain is to generate a recipe
so that the resulting dish is considered creative by a group of
individuals.

The value of the ingredients list is usually calculated based
on a hypothesis called food pairing [6]. However, there is no
well-defined value metric to evaluate the preparation steps.

The API used for the generation of ingredients list of
the present work was based on the food pairing hypothesis.
It states that ingredients that share more chemical compounds
have more synergy, which translates into tastier and more
aromatic combinations [6]. In [6] this hypothesis has been
demonstrated as a very strong criterion in the West, mainly in
Northern European and North American cuisines, although
the taste sensation involves more senses than the aroma and
taste themselves. Texture, consistency, antimicrobial proper-
ties [13], nutritional value, regional abundance and cultural
that can also affect the choice of ingredients along with
flavor [6]. However, the hypothesis of food pairing is treated
as a criterion of taste preference due to the chemistry of the
ingredients, with compounds related to the aroma and taste.
Some authors distinguish between taste as a human sense

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

and flavor experience, which is multi-sensory. Ingredients
do not contain the flavors in their composition; they contain
chemical compounds that are associated by the brain as the
taste sensation [7].

B. LANGUAGE MODEL

Language Models (LM) are models of the probability distri-
bution of a sequence of words in a given language. Among the
various types of models, the Statistical Language Model is the
most generic [14]. A Statistical Language Model consists of
calculating the probability of a sequence of words based on
the estimate of their occurrence. The probability P(w) of a
sequence of T words w = w1, wa, - - - , wr is given by (1).

T
POw) = [[POvilwi, wa, -+, wi1) e
t=1

The traditional approach to the creation of such models is
the n-gram statistical model [14]. Such model consists of the
truncation of the historical context of a word in n (i.e. the
probability of a word occurring in a sequence is calculated
only with respect to n — 1 predecessor words). The proba-
bility of a word occurring in a given context is calculated
on the basis of the relation between the frequency of the
sequences containing the n words divided by the frequency
of the sequence containing the n — 1 words.

Others approaches use Artificial Neural Networks (ANN)
to predict conditional probabilities of the model (i.e. predic-
tion of the word n based on n — 1 predecessors) [15]-[17].
The simplest approach to an implementation of such model
is through a Multilayer Perceptron (MLP) feedforward net-
work, where a vector representing the sequence of the n — 1
predecessor words is presented as the input of the network
and another vector representing the word to be predicted
(nth word of the sequence) is shown as the network output.
For the calculation of the nth word probability given to the
n — 1 predecessors (presented as the input of the network),
a Softmax is performed on the network’s output. Each word
is represented by I/-fo-K vector, in which only the position
representing the word in the vocabulary is set to 1, where
K is the total number of words of the vocabulary. In order
to represent sequences of words, other approaches can be
used: the concatenation of vectors /-to-K; or a Bag-of-Words
(BOW) [17], consisting of the weighted sum of the /-to-K
vectors, where the weights are inversely proportional to the
distance in time (i.e. index ¢) of the word from the sequence
to the nth word to be predicted. Fig. 1 exemplifies a LM based
on feedforward Neural Network with BOW input for n equal
to 3 (i.e. predicting the third word based on the previous two).

In Fig. 1, x(¢) is the state of the input layer (consisting
of BOW); s(¢) is the state of the hidden layer; and y(¢) is
the result of the application of Softmax on the state of the
output layer, so that it generates the conditional probabil-
ity of the model. The vectors w;_1, w; correspond to the
1-to-K representation of the words of the text at positions
t — 1 and ¢ respectively; while the vector P(w;41|w;—_1, wt)

VOLUME 8, 2020

P(wer| Wi, wy)

BOW

Wy Wi

FIGURE 1. Example of LM (equivalent to a trigram) based on Neural
Network Feedforward through a BOW.

corresponds to the probability vector for the word at position
t + 1. The probability of w;;, given the previous words
(i.e. w;—1 and wy), is obtained by the scalar product
of the I-to-K representation of w;;; within the vector
Pwis1|wi—1, wy). It should be noted that the probability
values on the layer y(¢) are only illustrative (as with other
language models throughout the remainder of the text) and
the smoothing promoted by softmax precludes the null values
presented in this layer (this smoothing is necessary to add
robustness to unseen data in training).

Perplexity is an information theory metric that measures
how much a model is able to reduce the uncertainty of the
symbols of an information source [18]. In the context of
Language Models, perplexity consists of how much the LM is
able to reduce the uncertainty in the prediction of the words
of a text in the language for which it was trained. Roughly,
perplexity measures the average number of viable symbols
in the prediction of each word in the text, as if it reduced
the problem of prediction from the original vocabulary to an
equiprobable vocabulary of the size of the perplexity value.
Thus, the smaller the perplexity, the better the predictive
model predicts such text (i.e. the model is able to model
the language of the evaluated text with high accuracy). The
formula for calculating perplexity is given in (2) and (3) [18].

1 1
Hy(w) = Tl logz(%) (2)
PP =2 3)

where w is a test text in the language in which the model
was trained; |w|, the number of words in such text; P(w),
the probability of the text belonging to the language modeled
by the LM, which is calculated by (1) through the conditional
probabilities provided by the model; Hy,(w), the cross-entropy
of the text in relation to the model; and PP is the perplexity
of the model.

IIl. RELATED WORK

In [1], a system was proposed for the creative generation of
soups, concentrating on the list of ingredients. The genera-
tion and evaluation of recipes are based on an inspiring set

146265

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

(i.e. artifacts that are known and evaluated by humans as
containing quality) and on a metric of novelty based on a
n-gram statistical model for evaluating rare combinations of
ingredients. The recipes are generated by a genetic algorithm
and evaluated through two MLP Neural Networks, which
were trained for different levels of abstraction of the ingredi-
ents in the inspiring set, and a novelty metric calculated based
on the inspiring set.

In [19], a system for creative generation of salads was
proposed (also concentrating only on the ingredient list).
However, in this case, the evaluation consisted of a dis-
criminative classifier, which indicated the best recipe, based
on the star rating of the allrecipes.com site, for each pair
of evaluated recipes. Through this discriminative classifier,
the search algorithm could exploit the space of salads and
generate creative recipes.

In [5], a system was proposed to generate lists of ingredi-
ents for creative recipes. This system uses a genetic algorithm
to create the lists of ingredients and evaluates the creativity of
these artifacts through the RDC metric (a metric for evaluat-
ing creativity for different domains, which integrates value
and novelty). The calculation of the value was made from a
synergy graph based on the hypothesis of Food Pairing and
the Bayesian Surprise was used to calculate novelty.

The authors in [3] proposed a system for generating com-
plete creative recipes (i.e. including the steps of the prepara-
tion instructions). This system uses the following metrics in
the evaluation of creativity: the calculation of value is based
on the hypothesis of Food Pairing and the perception of taste
according to neurogastronomy; the novelty evaluation metric
is the Bayesian Surprise. The approach used to create the
preparation instructions was based on a clustering algorithm
of the total path of actions that an ingredient suffers, consid-
ering the recipes where it occurs, in which are selected the
paths of the clusters with the greatest number of occurrences
for each ingredient and the joining of these paths in a single
execution tree.

The present work uses the system available in [5] to cre-
ate the lists of ingredients. However, unlike [1], [5], [19],
the steps in the preparation instructions are also generated.
The ReProg approach, first approach of this work to the cre-
ation of recipe preparation, differs greatly from [3]. Instead
of using an algorithm to decompose and recompose the
recipes into the recipe database into a new execution plan,
this approach uses a Genetic Programming algorithm guided
by the perplexity metric on a Language Model trained with
the internal structures of recipes. Secondly, in ReComp, other
approach proposed in this work, we used the strategy of
decomposing and recomposing recipes similar to [3]. How-
ever, this strategy was implemented in a genetic algorithm
and uses the perplexity metric on a Language Model to eval-
uate the mixtures of the ingredients along the recipe actions,
in order to guide the recomposition of the recipes for better
mixtures (e.g. with the proper use of seasoning, and oils in
frying).

146266

Creative
Flavor Pairing

- l

) Recipe reative
Recipe |—>] —— N
Generator Recipe
Database

FIGURE 2. Simplified diagram of the system architecture.

IV. SYSTEM ARCHITECTURE
The generic architecture of the system for generating creative
culinary recipes proposed in this work is presented in Fig. 2.
The Recipe Database is a repository of recipes in a struc-
tured format for training the system models. The Creative
Flavor Pairing component is the API for generating creative
ingredient lists available in [5], in which lists of ingredients
are generated based on the hypothesis of Food Pairing and the
RDC metric (Regent-Dependent Creativity) [10]. The RDC
is a domain independent metric that assesses the creativity
of artifacts. This metric requires that artifacts are described
within the Regent-Dependent Model, in which artifacts fea-
tures are represented as a set of pairs between its features and
their modifiers. This dependency relationship is defined by a
pair P(regent; dependent) associated with a numeric value v.
A regent is a feature that contributes to describe an artifact,
and may be an action or attribute, while a dependent can
change the state of an attribute or connect an action to a target.
The Recipe Generator is the component responsible for
generating the sequence of actions of the preparation from
the list of ingredients and also the composition of these parts
into a complete recipe. The Recipe Generator presents two
approaches that are described in detail in Section V.

A. RECIPE DATABASE

A recipe is composed of a list of ingredients and a sequence of
actions to be applied to the ingredients. In recipes created by
humans, the list of ingredients is usually well-structured, but
the steps of the actions is arranged in a natural-language text
without structuring (i.e. the actions are arranged throughout
the text along with other words). Thus, for a computational
system, it is easier to process the list of ingredients than the
actions of the preparation instructions.

Processing the preparation instructions requires a pre-
processing step, which consists of structuring the preparation
instruction actions that are arranged in the natural language
text of the recipe. This requires a Natural Language Pro-
cessing (NLP) effort, culinary knowledge (through ontologies
of ingredients, tools, and actions) and inference rules (to
evaluate the disposition of actions temporarily and to use
ontologies to remove ambiguities, treat implicit references,
etc.). Through this preprocessing, the system can find the
dependency relationships between actions (i.e. sequences
of actions, where one action is performed on the result
of the other) and also between actions and ingredients to
finally be able to process the instructions of the preparation.

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

fry

Omix olive oil

cut @ flour
pork

FIGURE 3. Example of recipe represented as an acyclic graph.

These dependencies of the preparation instructions form an
acyclic graph [3] as that of Fig. 3.

In Fig. 3, the edges symbolize the relation of dependence
(the direction of the edge indicates the sequence of actions -
from past actions to future actions); and the nodes represent
actions and ingredients. In Fig. 3, the nodes of ingredients
were highlighted in darker color to demonstrate that the
ingredients always occur at the ends of the graph.

The next subsections present the recipe databases used in
the context of this work.

1) WIKITAAABLE

Wikitaaable® is a database of recipes created on the
semantic wiki platform to enable reasoning about culinary
knowledge [20]. The recipes in this database have three
main components: list of ingredients; text of the actions
of the preparation instructions; and a formal description of
the actions of the preparation instructions. An example of
such a formal description is shown in Fig. 4. This formal
description resembles a graph list representation that shows
the state name and information on which other states it has
an edge. Thus, this base does not require the preprocessing
of the text of the preparation instructions, since it already
has a representation of the preparation instructions as an
acyclic graph (in the form of a list of edges). All the recipes
available in the Wikitaaable dump, containing 1439 recipes,
was used.

cook :
mash:
add
beat :
place:
bake :

squash_0(squash) => squash_1(squash)
squash_1(squash) => squash_2(squash)

: milk_O(milk) squash_2(squash) => mixture_0(milk,squash)

egg_0O(egg) => egg_1(egg)
egg_l(egg) => egg_2(egg)
egg_2(egg) marshmallow_0(marshmallow) =>

mixture_1(egg,marshmallow)

FIGURE 4. Formal preparation of the “Squash fluff” recipe.

The database of Wikitaaable also has an ontology of
actions and ingredients. The ontologies of actions and ingre-
dients used in the present work were based on these two
ontologies of Wikitaaable. The following modifications were
made: in the ontology of actions two levels of more generic
classes were used; on the ingredient ontology was used the
most specific level (e.g. "Bacon" was assigned to the class
"Pork" instead of just "Meat"). The complete ontology of

2Wikitaaable is a semantic Wiki in the field of cooking. A cached
version can be accessed at: https://web.archive.org/web/20120615184112/
http://wikitaaable.loria.fr/index.php/Main_Page

VOLUME 8, 2020

class subclass action [cass subclass action

o cream | cream, reduce - gamish, rim

to change w0 soften | soften to garnish 0 cover for | brush, decorate, glaze, powder

physically 0 strain | srain to gamish by | drizzle, top

o tender | tenderize

o0 bring | bring

o decrease. 1o place | place, store, transfer, unmold

Cmperne | chill,col, freez, frost, refreeze {0 move
to change to shake | toss
temperature bake, boil, broil, brown, cook, iy, grill heat,
P [0 INCIEASE | el microwave, refry, reheat, roast saute, to wm | flip, wm
simmer, steam, thaw, toast, warm, wilt

temperature

to prepare - | work

to reconstitute | reconsttute |

10 add [add, deglaze, grease, sa, season, spray

[form
o cover | coar, cover, dust, wiap

o cuta | dice, layer, shred, slice
Y to dissolve | dissolve

to flaten | flatien

amange, il ladl, lay, pour, punch, put,seal
1O POUT | shape, spoon, sprinkle

o fold | fold
to form to gather
o prick | prick to process | process

toroll | roll to shake | shake

0 spread | spread 1o mix | beat, blend, combine, mix, scramble, s,
™| whip, whisk

1o thicken | thicken
o soak | dip, drop, marinade, marinate, soak

~[spii

opm Tm \

10 break | break, crumble

P \ T \

o cut | chop,cu mince, separte [

0 smoke | smoke |

o grate | grate

to split
to halve | divide, halve

o press | crush, grind, ground, juice, knead, mash, press

to refine | drain, sift

debone, discard, dry, peel, rub, scrape, skim,
ver

o remove
skin, uncoy

FIGURE 5. Actions ontology.

actions used in this work is presented in Fig. 5, where the
merged cells have the name of the classes, each with their set
of subclasses and the actions (which actually appear in the
recipe preparation) on the right.

B. WIKIA

As an alternative source of recipes, the online recipe database
Wikia® has also been used (500 recipes of the category of
American recipes). Due to the fact that this database does not
contain the formal description of the preparation instructions,
it was necessary to create an NLP parser, as mentioned in
Section IV-A. Such a parser is explained in detail in the next
subsection.

1) NLP PARSER
The architecture of the NLP parser is shown in Fig. 6.

Dependenc
Textual P v
Recipe Parser
References
Evaluation

FIGURE 6. Parser NLP architecture.

Formal Recipe

Recipe
Generator P

Inference
Engine

Database

NotNormalized.

The Dependency Parser consists of a parser that generates
dependency tags (e.g. direct object, subject, etc.) and Part
of Speech tags (PoS tags - some examples of these tags
are nouns, verbs, and so on) of words in natural language
phrases. In this work, we used the parser dependencies called
Parsey McParseface created from the framework of Google
SyntaxNet. An example output of the dependency parser is
shown in the text below:

3Wikia is an online repository of textual culinary recipes. It can be
accessed at: https://recipes.fandom.com/wiki/Category:American_Recipes

146267

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

Input: cook onion in oil in large skillet.
Parse:
cook VB~ROOT

+-— onion NN dobj

+-— in IN prep

\ +--— 0il NN pobj

+-— in IN prep

\ +-— skillet NN pobj

| +-—— large JJ amod

+-—. . punct

In the output of this dependency parser we have: the sentence
evaluated in the first line (preceded by “Input:”); the result of
the dependency parser after the second line (below “Parse:”).
At the end of each result line, there are 3 components: one
word; the PoS Tag; and the dependency tag. The indentation
of the result represents the hierarchy between the words (the
more left and higher, the higher in the hierarchy).

TABLE 1. Tags for action detection.

\ Dependency Tag [
“ROOT” (root of the sentence)
“partmod” (participial modifier)
“xcomp” (open clausal complement)
“dep” (generic dependent)

PoS Tag

“VB”, “VBP”, “VBZ", “VBD", “VBG”, “VBN"

parataxis e “MD” (verb conjugation and tense)

TABLE 2. Tags for ingredients and tools detection.

[Dependency Tag
“dobj” (direct object) -
“iobj” (indirect object) -
“pobj” (object of preposition) -
“conj” (conjunction, in the branch of some ingredient/tool) -

The References Evaluation step consists of analyzing some
of the tags generated by the Dependency Parser in order to
detect references to actions (ontology actions), ingredients
(from the list of recipe ingredients), and tools. Table 1 shows
the list of tags for action detection. The ingredients and tools
are detected, on the branch of each action, from the tags
in Table 2 (the distinction between ingredients or tools is
made by comparison of the detected words). In both tables,
the dependency tag is the criteria for detection, while the PoS
tag serves only as a filter (only words with those PoS tags
will be detected). The hyphen symbol (minus) denotes an
absence of a filter (i.e. any PoS tag is accepted in this case).
An example of such detections is shown below:

Input: layer lettuce , bacon , turkey and
tomato on each tortilla.
Parse:
layer NN ROOT
+-— lettuce NN dobj
| +-- , , punct
| +-— bacon NN conj
| +-- , , punct
| +-— turkey NN conj
| +-— and CC cc
| +-- tomato NN conj
+-— on IN prep

146268

| +-— tortilla NN pobj
| +-— each DT det

+-—. . punct
Detections:
Action = ‘‘layer’’
Ingredients = [‘‘lettuce’’, ‘‘bacon’’,

‘‘turkey’’, Y‘tomato’’,
‘““tortilla’’]

The Inference Engine step performs inferences based on
culinary knowledge for the construction of a timeline con-
taining the sequences of actions and their ingredients. This
timeline contains initially (denoted as -1 time) only ingre-
dients in the ingredient list (including the appropriate units
and quantities available). For each action detected by the
Reference Evaluation step, a time record (starting from 0)
is created with the action and ingredients (again with their
units and quantities available) that undergo such action. These
ingredients along the timeline represent the pathway of each
ingredient in mixtures (i.e. not always represent the isolated
ingredient). Each action generates a new time in the timeline.
And for each ingredient name (word detected in the Reference
Evaluation step) a filtering is performed on all ingredient
records present in the timeline (throughout all previous times)
to select the ingredient record for the action of the current
time. Such filtering is performed with the following criteria:

a) Similarity in the name.

b) If there are verbs in the tree branch of the ingredient,
the similarity of the name of these verbs with the names
of the actions of the timeline.

c) If there are quantities in the tree branch of the ingredi-
ent, the compatibility of these values with the unit and
quantity of the ingredients in the timeline (removal of
insufficient quantity records).

d) If there is more than one record of the ingredient in the
timeline, select only the one associated with the longest
time.

After selecting the ingredient from the timeline, a copy
of this record is made for the current action time by keep-
ing a reference to the original record and transferring the
original record amount to the copy (partial, if there is a
quantity or total reference in otherwise). If the original record
belongs to a mixture (i.e. the action of that record is being
run on more ingredients), all other ingredient records of that
time are also copied (in the same way as the selected one).
If no ingredient in the timeline is selected, it is evaluated
whether the ingredient name is listed as an ingredient class
name (eg “‘all ingredients”, “‘vegetables”, etc.), therefore all
ingredients belonging to this class are added (according to the
ontology of ingredients) and containing quantity available.

After an action is finished processing (i.e. selecting and
creating the ingredients in the timeline), the following analy-
sis should be performed:

a) If the action is an ““add”, for a time greater than 0 and
contain all the ingredients like ““dobj’” and ““iobj” or all
the ingredients as ““pobj” on a single preposition, then
all records of the ingredients from the previous time are
ingredients of this action.

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

b) If the action is different from an “add” and does not
contain any ingredient record in the timeline, then all
ingredient records from the previous time are treated
as an ingredient of this action.

TABLE 3. Example of timeline built up to time 2 (third action).

Time -1 0 1 2
Action - “cut” “fry” “slice”

(0, “potato”, @) (0, “potato”, -1) | (2, “potato”, 0)
Record | (1.0 kg, “pork”, @) - - -

(0, “orange”, &) (1, “orange”, -1)

In Table 3, it is presented a small example of a timeline
created by the stage of the inferences engine for the recipe
below, where each timeline record corresponds to an ingredi-
ent tuple containing: ingredient quantity (and unit) available;
ingredient name; time of origin of the ingredient in the time-
line (i.e. from where that ingredient was copied) or the symbol
o (indicating the ingredient list).

Ingredients:

- 2 potato

- 1 kg pork

-1 orange
Directions:

— Cut the potatoes.
- Fry.

- Slice the orange.

Finally, the Formal Recipe Generation step generates
recipe from the timeline (i.e. the ingredient list and the prepa-
ration instructions graph as a list of edges). Each time from
0 on the timeline will generate a node with the name of the
action related to that time. In turn, each ingredient record in
the timeline will form an edge between the action node of that
time and the time action of the source record (from where that
record was copied). If the ingredient record has been copied
from the ingredient list (time —1), then an ingredient node is
created with the ingredient name as the input of that edge.

C. NORMALIZATION OF THE RECIPES
In order to remove redundancies in the recipes, the addition,
substitution or removal of states from its graph in the prepara-
tion instructions was performed. These transformations were
based on [3], aimed at promoting more efficient processing
of recipes by the rest of the system. They were applied on
all recipes, regardless of the database (Wikia or Wikitaaable).
The following rules were established for the structure of the
graph of preparation:
a) It should contain only actions present in the ontology
of actions (i.e. remove missing actions in the ontology).
b) Actions should represent relevant transformations of
the ingredients (i.e. remove actions on tools or move
ingredients).
¢) There should be no synonymous actions (i.e. to replace
synonymous actions).

VOLUME 8, 2020

d) Every recipe must contain a “‘serve_recipe’ action by
joining all the related components of the graph by the
last action (in time) of each component (i.e. a single
output action).

The removals required to satisfy rules a and b involve
passing all input nodes (from the node to be removed)
to each of their output nodes (those having the node
removed as an input). The actions that were removed
because of rule b were the following: actions of the classes
“to_reconstitute”, “to_move” (except the “to_shake’ sub-
class), “to_pour”, “to_clean” and ‘“‘to_prepare’’; and also
the actions ‘“‘reserve”, “fold”, “form”, “‘drop”, “discard”
and “‘preheat” (does not belong to ontology of actions, but
also occurs frequently in recipes).

In order for the recipes to comply with rule c, the substitu-
tions shown in Table 4 were made.

TABLE 4. Replacement of synonyms in the normalization of recipes.

[Substitute Action [Original Action

“add” “attach”
“enclose”
— “chop”
“divide” “halve”
“Frost”
rost
“freeze”
“refreeze”
“Try” “refry”
“garnish” “decorate”
reheat
“heat” « 2
warm
“mash” “crush”
“blend”
“mix” “combine”
“stir”
“toss” “shake”

In the case of the ReComp approach to generate the prepa-
ration instructions (i.e. the approach based on decomposition
and recomposition of recipes), the following rule was also
observed: all actions should have arity to one (i.e. on a single
input), with the exception of “add” and ‘“mix’’, which can
have more than one input (i.e. thus, insert an “add” on the
inputs of any action that does not respect this rule). This addi-
tional rule makes it possible to control the arity of the actions
in a more rigid way (necessary in the ReComp approach), but
it promotes a lot of modification in the internal structure of
the recipe, by the addition of nodes, and for this reason, it was
only used in this approach.

Fig. 7 shows how the recipe ‘“Squash fluff”, presented
in Fig. 4, would look after its normalization.

After the normalization stage, the recipe database is ready
to be attached to the system.

V. RECIPE GENERATION

Once the database of recipes is created and a list of ingre-
dients is requested from the Creative Flavor Pairing API,
we can generate the graph of the actions of the preparation
instructions. Two approaches (i.e. two systems) have been
developed for this task.

146269

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

serve_recipe

add

marshmallow

FIGURE 7. Normalized “Squash fluff” recipe.

a) ReProg Approach, consisted of the generation of
the recipes using genetic programming and language
models.

b) ReComp Approach, uses a process of decomposition
of the database recipes, clustering of these recipe parts
and recomposition of new recipes through genetic algo-
rithm and language models (on mixtures).

The following sections describe the two approaches.

A. ReProg APPROACH
The system architecture for this approach is shown in Fig. 8.

Creative
Flavor Pairing
|

- !

Language Genetic
Modeling Programming

Statistics

Recipe
Database

reative
|——> .
Recipe

Recipe
Statistics

Recipe Generator

FIGURE 8. System architecture for ReProg Approach.

The Language Modeling is the component responsible for
creating language models (LM repository) from the Recipe
Database, while the Statistics component is responsible for
extracting recipe statistics and storing it in the Recipe Statis-
tics repository. These statistics are related to the repetition
of ingredients and actions of the preparation instructions;
as well as the arity statistics (i.e. the number of ingredients
participating in each type of preparation action). The Genetic
Programming component consists of the genetic program-
ming algorithm, responsible for generating the recipe prepa-
ration from the list of ingredients, language models and recipe
statistics.

1) LANGUAGE MODELING FOR RECIPE EVALUATION:
ACTIONS ON ITS INPUTS

Just like the order of words in a text, the order and sequence
of steps are important in a recipe. The steps of the preparation
can promote physical or chemical transformations, such that
some of these actions only make sense to be performed on
ingredients in a given state. However, unlike texts, a culinary
recipe does not contain information arranged only sequen-
tially. The steps of a preparation form a tree so that certain

146270

P(Nea | Niz ,Nia,Ny)

BOW

Recipe Structure ‘ ‘ Model Structure ‘

FIGURE 9. Architecture of the proposed Language Model being applied to
the structure of a culinary recipe.

branches can occur in parallel. In order to evaluate this paral-
lel information, a Language Model applied to culinary recipes
must evaluate information between consecutive steps and
parallel steps of the same branch. The architecture proposed
in this work is shown in Fig. 9, in which for each action
of the preparation instructions to be predicted (denoted by
N;41, which could be predicted, for example, as “sauté”” with
probability 0.2 or “fry”” with probability 0.8), the predecessor
actions are evaluated at the level below the branch (i.e. all
the “children” ingredients and actions of the action to be
predicted - denoted in Fig. 9 by N; to N;_;, which could be,
for example, “cut”, “onion” and “oil’’), as if the nth word
of the Language Model was the action to be predicted and all
the “children” of that branch were the predecessor sequence.

Once this model is trained on the database recipes,
the model will absorb and generalize certain syntactic pat-
terns present in the structure of culinary recipes (i.e. a kind of
language of the recipe execution process). Then it is possible
to use the perplexity metric as a selection criterion for recipes
that present these patterns. The more the recipes present the
syntactic patterns modeled, the lower the perplexity of the
model, compared to the perplexity of the recipes.

It should be noted that Recurrent Neural Networks (RNN)
are the state of the art for language models. The RNNs
have the greatest capacity to evaluate long sequences of
temporally arranged words (in relation to other networks),
but in our adaptation of language models for evaluating the
recipe preparation graph, there is no evaluation of very long
temporal sequences (basically just one time step - from a node
to its input). Thus, the use of RNN-based language models in
this context is not justified.

2) GENETIC PROGRAMMING FOR RECIPE GENERATION

The ingredients previously defined for the ingredient list of
the new recipe are used as a set of variables in the GP
algorithm (i.e. it defines the ingredients available for the evo-
lutionary process restricted to those generated by the Creative
Flavor Pairing API). The function set consists of all the
actions that occur on a recipe database (including the root
node of the recipe, which unifies the final parts of the recipe).

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

The GP algorithm used was the DEAP (Distributed Evo-
lutionary Algorithms in Python) framework.* Such algo-
rithm was implemented for multiobjective optimization:
to minimize the perplexity of the model in relation to the
individuals (i.e. to obtain better perplexity values); and maxi-
mize the depth of a recipe (otherwise, minimizing perplexity
would always lead to very small recipes). On the objective
of perplexity two constraints were imposed. In the event
of such restrictions, perplexity is penalized: (i) if the indi-
vidual presents repetions of some node above the maxi-
mum or below the minimum repetions found for such node
in the database; and (ii) if any of the ingredients in the initial
list are not used in the individual. The penalty function is
showed in (4).

AN+
igd = 1T
(L1
2
PP* — pp <—(”’lfg; “) o)

where PP is the original perplexity; PP*, the penalized per-
plexity; rpt, an indicator function of out-of-range repetitions
(value equals to 1 if there is a repetition above the maxi-
mum or below the minimum repetition recorded in the recipe
database and it equals to O if otherwise); /, the list of ingre-
dients used in the recipe; and L, the list of ingredients in the
list provided by the Creative Flavor Pairing (i.e. available
ingredients).

The fitness fuction of the individuals is presented in (5).
The objective space used for the fitness calculation consisted
of the Cartesian plane formed from the penalized perplexity,
PP*, and the depth of the preparation graph of the individuals.

! 1 1
fitness = — 4+ — 5)

v f
where v is the number of neighbors of the individual in the
objective space (perplexity and depth), which is calculated
through a grid (where neighbors are individuals belonging to
the same cell, including the current individual); and f is the
number of the Pareto front to which the individual belongs

(the lowest possible value is 1).

should be noted that the variable v is one of the factors
in the objective search space (i.e. it is not an objective in
itself). While the variable f is the composition of the two
objectives (i.e. the penalized perplexity and the depth of the
recipe), but a composition that respects the pareto optimality.
That is, f always presents the same value for each set of
solutions, which forms a frontier (called a pareto frontier),
from which a solution cannot be chosen as an optimal solu-
tion of the problem in relation to the others of this same
set without prioritize a specific objective. Pareto frontiers
are based on the concept of dominance. Given two distinct
points (solutions) in the objective space, it is said that one
point dominates the other if for all objectives of that point

4DEAP is a framework for implementing evolutionary algorithms. It can
be accessed at: https://github.com/DEAP/deap

VOLUME 8, 2020

Objective 2
S
a

A
—~—

Objective 1

FIGURE 10. Example of objective space to minimize two conflicting
objectives.

have equal or better values optimized in relation to the other
point (i.e. the point that dominates can be said better than
the another point, even without prioritizing any objective).
The first pareto frontier of a population of possible solu-
tions (individuals of the evolutionary algorithm) is the set of
solutions that are not dominated by any other in this entire
population. That is, for at least some objective, each of these
frontier solutions presents a more optimized value compared
to the other solutions (including in relation to other solutions
on the frontier itself). For example, in Fig. 10, points A, B
and C belong to the first pareto frontier that minimizes the
2 objectives illustrated in the image. Point B is better than
point A in the first objective and better than point C in the sec-
ond objective; while A is better than B and C in the second
objective; and C is better than A and B in the first objective.
Thus, none of the three points can be considered a better
solution than the other two without prioritizing any specific
objective. Removing all points from the first pareto frontier,
it is possible to create, by the same principle, a second pareto
frontier with the remaining points that are not dominated by
any other of this new population. Therefore, although the
fitness function is just a single equation, due to this multi-
objective nature of the variable f, this single function will
be able to optimize two objective functions (in this case,
penalized perplexity and depth of the recipe).

The selection operation used for the crossover was the
tournament of size 3. And the crossover used in the genetic
programming algorithm of the present work is based on the
following steps: after the two parent individuals have been
chosen, a copy of both is made to represent the genetic
material available for the generation of the children. Based on
this copy of the parents, a selection node is randomly selected
for each of these two trees. The only restriction for choosing
these two cutting nodes is that the root of the tree must be
disregarded (i.e. it cannot be chosen). From these two chosen
cutting nodes, the entire branch of the trees is cut. Then the
exchange of these cut branches is made between the two
copies of the parents’ trees (i.e. the branch removed from the
first tree is connected in the place where the chosen cutting
node of the second tree was and vice versa). If the resulting
trees have a depth above the pre-established maximum limit
for recipes, then the children are discarded and the process
is repeated in a similar way. However, at each unsuccessful
iteration, the new cut point of the largest branch (in depth)

146271

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

e .
./
®

/O
e
<t AN

‘ Parent1 ‘ ‘ Parent2 ‘

n

Foto!
de

‘ Offspring 2

‘ Offspring 1 ‘

FIGURE 11. Example of recombination operation for genetic
programming.

of the previous iteration is exchanged for a cut node closest
to the leaf on that same branch of the previous iteration (i.e.
the branch is exchanged for a sub-branch). The process is
repeated until cutting nodes are chosen that are capable of
generating two children with valid depth. An example of this
crossover operation is shown in Fig. 11.

The mutation does not occur individually. It was only
applied to the whole set of genes of the population of the
generated offspring. And the mutation operation consisted of
changing the content of the nodes at random (i.e. a portion of
the nodes in the entire population undergone on an exchange
of the preparation action or ingredient with which it was
associated). The only three restrictions for this operation were
the following ones: i) the “‘serve_recipe” action can only
appear at the root of the tree and cannot be changed; ii)
preparation action nodes cannot be exchanged for ingredient
nodes and vice versa; iii) and the space of possible ingredients
for mutation is restricted to the ingredients previously chosen
by the step of generating the list of ingredients.

At each iteration of the algorithm, crossovers are per-
formed in a quantity necessary to double the size of the
population and then half of the total population that appear
in the smaller nondominated fronts is chosen, eliminating
the rest. The first nondominated front of the final popu-
lation is always compared to the Hall-of-Fame (containing
individuals from previous iterations that have never been
dominated by any other), in order to update such a set. And the
final answer of the algorithm is the Hall-of-Fame of the last
iteration.

Creative
Flavor Pairing

3 i

Language Genetic Creative
——>|
Modeling Algorithm Recipe
5 N
and Clustering
Clusters
Recipe Generator

FIGURE 12. System architecture for ReComp Approach.

Recipe [
Database |

B. ReComp APPROACH

The system architecture for this approach is shown in Fig. 12.
Language Modeling is the component responsible for cre-
ating the language models for mixtures (LM repository)

146272

from the recipe database. The Decomposing and Clustering
is the component responsible for the decomposition of the
recipe preparation (subgraph decomposition) and clustering
of its parts (forming a repository of subgraph clusters). The
Genetic Algorithm component consists of the genetic algo-
rithm responsible for recomposing the graph of preparation of
the new recipe from the subgraph clusters (restricted to the list
of ingredientes provided by the Creative Flavor Pairing and
using language models to evaluate the ingredient mixtures).

1) LANGUAGE MODELING FOR RECIPE EVALUATION:
ACTIONS ON MIXTURES

A second approach that we explore in this work is to evaluate
in the recipes the mixtures of ingredients that occur along
the steps. Several actions occur on a single ingredient or a
single mixture (e.g. ““peel an apple’’). Such actions do not
promote the formation of a new mixture (only the processing
of an existing mixture or ingredient). On the other hand,
there are actions that promote the creation of new ingre-
dient mixtures (e.g. “fry an egg in oil”, “cook a chicken
with garlic”, etc). As recipes are normalized according to
Section IV-C, these actions that promote new mixtures always
contain an “add” or “mix’ in their inputs. The proposed
model for this approach is similar to that of ReProg Approach
(Section V-Al). However, this model presents the following
differences: actions to be predicted by the model (in the
layer y(¢)) are only those that promote new mixtures (ignoring
all other actions); and the BOW of the layer x(¢) should be
composed only of the ingredients of the mixture undergoing
the predicted action (i.e. any ingredients occurring within
the branch of action to be predicted - ignoring any inter-
mediate processing that the ingredient undergoes). Fig. 13
shows an example of applying this model to a recipe, where
N;41 is the action that promotes a mixture (action to be
predicted by the model - for example, “fry” with probability
of 0.3 and “cook” with probability 0.7); Iy, I1, I> are ingre-
dients achieved in the branch and form the mixture promoted
by the action N;4 (e.g. “oil”, “garlic”” and “pork’).

P(Nea| 1o 1a,12)

BOW

I~

“ o

‘ Recipe Structure ‘ ‘ Model Structure ‘

FIGURE 13. Architecture of the proposed Language Model for mixtures
being applied to the structure of a culinary recipe.

This model was also trained on the recipe database, but
the goal, in this case, was to absorb the ingredients mixing
patterns throughout the recipe. In this case, the perplexity

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

metric indicates how well adjusted the structure is in terms of
the formation of ingredient mixtures compared to these mix-
ture patterns in the recipe database. The more the evaluated
recipe contains these mixture formation patterns, the lower
the perplexity value of the model compared to the evaluated
recipe.

2) DECOMPOSITION AND RECOMPOSITION OF RECIPES
This recipe decomposition and recomposition approach is
based on [3]. The main difference is that the algorithm of
recomposition of the recipes was implemented on a genetic
algorithm and also counted on the use of language model.

In the process of recipes decomposition, they should be
broken down into pieces of recipes, which are basically
paths on the graph of the preparation that begin in the last
action of the graph (the root - which in this case is always
“serve_recipe’”) and ends in an ingredient (a leaf in the
graph). In this way, there will be a path to the sequence
of actions each ingredient undergoes throughout the recipe.
Successive repetitions of the same action along that path can
be removed. An example of this decomposition for the recipe
of Fig. 7 is shown below:

Decomposition of the ‘‘Squash fluff’’ recipe:
rr

[‘'serve_recipe’’, “‘add’’, mash’’, “‘cook’’, ‘‘squash’’]
[‘'serve_recipe’’, ‘‘add’’, ‘‘milk’’]

[‘'serve_recipe’’, ‘‘add’’, ‘‘bake’’, ‘‘add’’, ‘‘beat’’, ‘‘egg’’]
[‘‘serve_recipe’’, ‘‘add’’, ‘‘bake’’, ‘‘add’’, ‘‘marshmallow’’]

Once all the database recipes have been decomposed into
vectors, these vectors are separated into sets according to
the ingredients at the end of each vector. Thus, there will be
for each ingredient a set of all the sequences of actions that
occur on it in the recipe database. In addition, sets are also
created for classes of ingredients, for which a copy of each
ingredient vector belonging to the class is made by replacing
the ingredient name with the class name. These class sets
present the sequence of steps that ingredients of the same
class usually suffer (e.g. action sequences for ‘‘meats’).

On each of these sets, a clustering is performed through the
K-Medoids algorithm [21]. The K-Medoids algorithm works
in a way equivalent to K-Means, but instead of calculating
a centroid for each cluster, this algorithm uses the most
centralized data point (with less distance to the other points)
of the cluster to represent it, since we can not calculate a mean
coordinate of a vector of symbols [21]. The distance metric
used to cluster these sets of recipe parts is the Levenshtein dis-
tance metric, which consists of the least amount of addition,
subtraction, or substitution required to make two sequences
equal [22].

Each cluster in a set represents a sequence of actions on an
ingredient (or class of ingredients) that is repeated in several
recipes with small variations. The larger the cluster size the
more frequent the sequence of actions. In this way, the impor-
tance (i.e. the weight) of each cluster, and consequently its
sequence of actions, is measured by its size.

After clustering, each sequence vector present in the set
is associated with a tuple containing its numerical identifier
(the position of this vector in the set); the weight of its cluster

VOLUME 8, 2020

TABLE 5. Example of cluster and triples for ingredient and its class.

[Vector | Cluster | Triple (id, weight, class)]

[“serve_recipe”, “fry”, “potato”] 0 (0, 3, False)
[“serve_recipe”, “mix”, “fry”, “potato”] 0 (1, 3, False)
[“serve_recipe”, “add”, “fry”, “add”, “potato”] 0 (2, 3, False)
[“serve_recipe”, “mash”, “bake”, “potato”] 1 (3, 2, False)
[“serve_recipe”, “mash”,“slice”, “bake”, “potato”] 1 (4, 2, False)
[“serve_recipe”, “fry”, “tuber”] 0 (0, 3, True)
[“serve_recipe”, “mix”, “fry”, “tuber”] 0 (1, 3, True)
[“serve_recipe”, “add”, “fry”, “add”, “tuber”] 0 (2, 3, True)
[“serve_recipe”, “mash”, “bake”, “tuber”] 1 (3, 4, True)
[“serve_recipe”, “cool”, “slice”, “bake”, “tuber”] 1 (4, 4, True)
[“serve_recipe”, “mash”, “slice”, “bake”, “tuber”] 1 (5, 4, True)
[“serve_recipe”, “mash”, “cut”, “bake”, “tuber”] 1 (6, 4, True)

(the size of the cluster); and a boolean class indicator of the
set type, with false for ingredient sets and true for class sets.
With this triple assignment (id, weight and class indicator),
the database recipe decomposition step is finished. Table 5
shows an example of two clusters by set (i.e. in the table,
4 clusters are presented, since they are two sets) and their
triples for the “potato” ingredient and its class (the set for
“tuber” class).

The recomposition step involves the creation of new
recipes from the vectors of the clusters and the language
model (LM for mixtures). Such recomposition was performed
through a genetic algorithm (GA) with the individual mod-
eled as follows: each gene is associated with an ingredient
in the ingredient list of the new recipe (generated by the
Creative Flavor Pairing API); and the value that each gene
can assume is the triple value (id, weight, and class indicator)
of the set of recipes decomposed for that ingredient and its
class. Thus, each gene will contain a reference to a sequence
of actions of one of the ingredients. The GA of this approach
presents evaluation, selection, crossover and mutation opera-
tions. This GA is similar to the PG described in Section V-A2
in the following aspects: it was implemented using the DEAP
framework; used the fitness function presented in (5); used
the tournament of size 3 for selection operation; presented
a crossover based on population doubling and choosing the
smaller nondominated front; and the Hall-of-Fame always
contains the first nondominated front between the population
and the Hall-of-Fame of the previous iteration. However,
the crossover used in this genetic algorithm consisted of a
simpler operation compared to the GP approach. First, a copy
of the vector was made containing the genetic material of the
two chosen parents. After that, a random cut point was chosen
for these two vectors, which can be any position except the
last position (so that you can use the genetic material of both
parents). Then, to compose the child, all genes up to the cutoff
point were chosen from one parent and after the cutoff point
to the end of the vector were chosen from the other parent.
An example of this crossover operation is shown in Fig. 14.
The integer values of the content of the genes in the image is
merely illustrative to simplify visualization.

Table 6 shows an example of an individual of this genetic
algorithm (with the true content of the genes).

Note that by adding the weight of the triples of an indi-
vidual, the total weight indicates how often (and suitable)

146273

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

1
Lot [[[2 s e]|
1

| NN

ot | [[+ 1 S

FIGURE 14. Example of recombination operation for a genetic algorithm.

TABLE 6. Example of an individual of GA.

Ingredient [Genotype | Associated Vector |

“potato” (2,3, False) | [“serve_recipe”, “add”, “fry”, “add”, “potato”]
“olive oil” (0, 6, True) [“serve_recipe”, “add”, “fry”, “add”, “oil”]
“salt” (5, 6, False) | [“serve_recipe”, “add”, “salt”]

the preparations of the ingredients of this individual are
(i.e. the total weight can be treated as a quality criterion).
On the other hand, triples with the active class indication
should be penalized because the most suitable preparation for
a class of ingredients is not always the best preparation for a
particular ingredient of this class. Another detail that we can
realize is that not necessarily the resultant preparation graph
of an individual will respect the fifth rule of normalization,
about arity, defined in Section IV-C (e.g. if there was no
“add” after “fry” in the first two ingredients of the Table 6,
then the “fry” action presents arity 2 - and only the “add”
and “mix” actions can have arity greater than 1). In order
to quantify the quality of the preparation according to the
criterion of arity, it is performed a count of the actions that
do not follow this fifth rule and it is divided by the quan-
tity of actions in the recipe preparation (i.e. the lower this
average arity error, the better the quality of the recipe). Thus,
the evaluation of individuals in the genetic algorithm uses a
multi-objective criterion:

a) The first objective was to maximize the sum of the total
weight of the individuals (if any triple of a gene is of a
class of ingredients, the weight of triple falls to 10% of
its value - for example, the total weight of the individual
in Table 6 is 9.6).

b) The second objective was to minimize the error of
arity and the perplexity of the language model (LM for
mixtures).

This second objective can only be evaluated through the
composition of the recipe using the gene vectors, from which
we obtain the graph of the recipe preparation. The algorithm
used for this composition was based on the algorithm of
determinization of the finite automaton (with an adaptation
in the sense and content of the edges). Such an algorithm has
the following steps:

a) Creation of a graph containing the sequence of
actions joined only in the last action, the root action
“serve_recipe”’ (depth 0).

146274

b) Unification of nodes with equal content that has an
edge with a common node (edge destination node),
eliminating the redundant edges.

¢) Evaluation of the union of the nodes in breadth (i.e. the
need to join all nodes of the same depth before leaping
to achieve greater depth).

Fig. 15 shows the steps of this composition algorithm to
generate the method of preparation of the recipe encoded in
the genes of the individual described in Table 6. The sequence
of steps of the composition algorithm goes from the figure (a)
through to (d), one figure per depth.

b)

serve_recipe serve_recipe serve_recipe serve_recipe

id

add add add add

fry fry fry fry

salt salt i salt | salt

add add add add |

oliVe oil pofato olive oil pofato oliv€ oil pofato olivé oil potato

FIGURE 15. Example of recipe composition.

The final result of this approach, which is the recipe with
preparation, is obtained from this algorithm of composition
applied to each individual of the final Hall-of-Fame of the
genetic algorithm.

C. EVALUATION OF NOVELTY FOR CULINARY RECIPES

In order to evaluate the novelty of the preparation instructions
of the culinary recipes, it was used the graph dissimilarity
metric based on the Kernel of simple paths. A simple path
is any sequence, without repetition, of consecutive nodes
in the graph structure. It is worth to mention that all the
paths p must have one endpoint in the last action of the recipe
(i.e. “serve_recipe’’) and the other endpoint in any other state
(at any depth, including the ingredients). Example of some
simple paths of the graph of Fig. 15 (only those beginning
with the “serve_recipe” node) are: [““serve_recipe”’, “add”];
[“serve_recipe™, “add”, ‘“‘salt”]; [*“‘serve_recipe”, “‘add”,
“fry”’, “add”’]. Note that this simple path shows repetition
of “add” content, however are from different nodes (i.e. the
structure node should not repeat); etc. The idea behind the
Kernel of simple paths technique is to create a transformation
function ¢, that can indicate the existence (returning value
1) or non-existence (returning value 0) of a simple path p in
a given graph [23]. Thus, in this new domain it is possible to
calculate the similarity between the graphs by (6) [23], and
the dissimilarity by (7):

>_vp min($p(G), ¢p(H))

6
S gy Max@p(G), fpH) ©)
dis(G,H) = 1.0 — sim(G, H) (7)

sim(G,H) =

where G and H are two graphs; sim(G, H) is the similarity

value between G and H and dis(G, H) is their dissimilarity.
This distance metric (the dissimilarity) can then be used to

evaluate the novelty of a recipe in relation to the database.

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

VI. EXPERIMENTAL SETUP

In this section the experimental setup is presented, with the
criteria, objectives, expected results and configuration of the
evaluations. The details of parameterization and training of
LMs and Evolutionary Algorithms involved in such exper-
iments are also shown. In Section VII the results of these
experiments are presented.

A. EVALUATION OBJECTIVES AND CRITERIA

The experiments carried out in the present work have the
following objectives: (i) to evaluate if the two architectures
of LMs proposed for the ReProg and ReComp approaches
were able to absorb knowledge of the human recipe database
that would allow perplexity to be a good metric of qual-
ity for evaluation of recipes; and (ii) assessing whether the
system as a whole (i.e. not just the LM, as in the previous
item), for the ReProg and ReComp approaches, was able to
generate quality recipes by human assessment. Performing
experiments for objective (i) is necessary because there are
no work in literature that uses LMs applied to recipes, whose
structure differs greatly from that of the one in texts addressed
by them. The experiment (ii) is necessary to demonstrate,
through human evaluation, that the LM quality metric reflects
in quality recipes. The recipe quality criteria that LMs are
expected to learn varied between the two approaches, ReProg
and ReComp, and will be presented below.

The ReProg approach is less restricted in terms of pos-
sible combinations of the recipe preparation graph, but this
greater space of combinations allows the creation of nonvi-
able recipes. Thus, one of the recipe quality criteria evaluated
in the experiments is the consistency of the preparation,
which is understood as the absence of sequences of incom-
patible actions. That is, an incompatibility of an action with
respect to some other action that precedes it or with some
ingredient that undergoes this action. These incompatibilities
may be due to physical impossibilities (e.g. cutting liquid is
an action impossible to perform) or different conditions from
which the action is defined, so that the action can not be
performed or has no effect on the preparation (e.g. frying is
an action defined only in the presence of oils).

The ReComp approach presents greater consistency in
recipe preparation at the cost of a reduction in the space of
combinations. Thus, it makes no sense to assess whether a
recipe is viable. This approach is similar to [3], however an
LM was added with the function of promoting better mixtures
of ingredients throughout the steps (e.g. the proper use of
seasonings throughout the preparation). That is, the recipe
quality criterion proposed in this model relates to the mixtures
of ingredients throughout the steps, which are understood as
the points where the step sequence of two ingredients are
combined, which may occur in some action in the middle
of the recipe or only in its last action (i.e. “‘serve_recipe”).
Quality mixtures for this LM are those that resemble the
ones which occur in the database of human recipes, among
which we chose to evaluate: the mixture of seasonings to the

VOLUME 8, 2020

ingredients that need seasoning; and the mixture of oil to the
ingredients in actions requiring it (e.g. cooking processes by
immersing ingredients in oil). It is possible that there are other
mixtures, as well as these two, in which one ingredient has a
secondary role (i.e. one ingredient has the function of mixing
with another to perform an auxiliary function).

Two other quality criteria for recipes are evaluated in the
experiments: taste perception, which consists of human eval-
uation of the ingredients and preparation in the recipe text
regarding the past experiences of flavor (i.e. based on recipes
that people know, evaluate the ingredient and preparation
mode of a new recipe); and taste itself, which involved human
evaluation by tasting the recipe performed (i.e. taste assess-
ment of a dish).

Having presented the objectives and defined the evaluation
criteria, the details of the evaluations are presented below.

B. PARAMETRIZATION AND TRAINING
OF THE APPROACHES
1) RECIPE DATABASE USED IN EXPERIMENTS

The database of human recipes used in the experiments were
described in Section IV-A. Table 7 shows the number of
recipes used from each recipe source.

TABLE 7. Database size for each recipe source.

[Recipe source | Size |

Wikitaaable 14309 recipes (all recipes)
Wikia 500 recipes (category of American recipes)

All recipes (i.e. the 1939 recipes contained in the resulting
database) were normalized as explained in Section I'V-C.

2) PARAMETERIZATION OF RECIPE DECOMPOSITION

In the ReComp approach, the number of clusters used to
divide the sets of ingredients, as explained in Section V-B2,
was 3 (i.e. the K in the K-Medoids algorithm equals 3). In this
way, each ingredient has a set with 3 divisions, each division
being a typical preparation, raised by the K-Medoids algo-
rithm, that this ingredient suffers in database human recipes.
The same was done for the class of ingredients, each class of
ingredient (e.g. ““vegetables™ for the lettuce, cabbage and etc.
ingredients) was divided into 3 clusters.

3) LANGUAGE MODELS TRAINING
The language models of the two approaches, ReProg and
ReComp, were trained through K-fold cross-validation,
which consists in dividing the data into K equal parts (one for
testing and the remaining K — 1 for training) and generating
K models (where the test portion is chosen, among these K,
different for each model). Table 8 presents the parameters of
this training for the LM of both approaches.

Thus, 8 LMs were created for each approach. However,
in the experiments that involved the evaluation of the system,
only the LM with the lowest perplexity value of the test

146275

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

TABLE 8. Training parameters of LMs.

[Parameter [Value |
K (number of partitions in K-fold) | 8 (parts)
MLP input layer -

MLP hidden layer 200 neurons
MLP output layer 91 neurons
MLP training iterations 1500

portion in the cross-validation was chosen to compose the
system.

4) PARAMETRIZATION OF EVOLUTIONARY ALGORITHMS
For both the PG of the ReProg approach and the AG of the
ReComp approach, the parameterization of the evolutionary
algorithm was presented in Table 9.

TABLE 9. Parameters of evolutionary algorithms.

[Parameter [Value]
Population 200
Maximum iterations 200
Mutation rate 10%
Density of the neighborhood calculation grid | 0.2 x 0.2

Where the density value of the grid of the neighbor-
hood calculation indicates the dimensions of each grid cell
in the objective space, where each objective is normalized
between 0 and 1.

In addition to these parameters, the AG of the ReComp
approach should penalize the weight of the triples derived
from the sets of classes of ingredients during the process of
recomposing recipes. This penalty should reduce to 10% the
value of the weight in these triples for the calculation of the
first objective of the GA.

C. EXPERIMENTAL DESIGN
In this section we present the types of analyses performed in
the experiments and a brief description of such experiments.
The experiments were divided into two types of analisis:
objective analysis (denoted by the prefix “OA’), which seeks
to evaluate the performance of a binary classifier based on the
perplexity metric (i.e. low perplexity indicating good quality
and high indicating poor quality) in assessing recipes from
an artificial base annotated according to the quality criteria
defined in Section VI-A; and subjective analysis experiments
(denoted by the prefix “SA’), which consisted of human
evaluations, in the quality criteria defined in Section VI-A,
of recipes generated by the system. Table 10 shows the
experiments chosen to perform these two types of analyses.
Where, in the “Name” column, names were assigned to the
evaluation experiments; “‘to evaluate” indicates which part
of the system, and from which approach, the evaluation was
performed, according to the evaluation objectives reported in
Section VI-A; “LM used” indicates which language models,
those reported in Section VI-B3, were used in the evaluation

146276

TABLE 10. Summary description of the experiments.

[Name [ToEvaluate | LMUsed | Description |

OA_cut LM of ReProg AllLM Classifier for recipes with cutting
(in K-fold) actions on solids or liquids.

OA_reduce LM of ReProg AllLM Classifier for recipes with reduc-
(in K-fold) tion action on solids or liquids.

OA_cool LM of ReProg AllLM Classifier for recipes with chilling
(in K-fold) actions on hot or cold ingredients.

OA_fry LM of ReProg AllLM Classifier for recipes with frying
(in K-fold) actions in the presence or absence

of oils.

OA_oil LM of ReComp AllLM Classifier for mixtures of ingredi-

(in K-fold) ents with or without oils in the

frying actions.
Classifier for mixtures of ingredi-

OA_seasoning | LM of ReComp AllLM

(in K-fold) ents with or without seasonings in
frying actions.
SA_feasible ReProg The best LM | Survey to evaluate system recipes
(in K-fold) in the feasible and taste percep-
tion criteria.
SA_mixture ReComp The best LM | Survey to evaluate system recipes
(in K-fold) in the mixture quality and taste
perception criteria.
SA_dish ReComp The best LM | Tasting of a recipe generated by
(in K-fold) the system.

(if more than one, the experiment involves an evaluation for
each LM); “Description” explains briefly the evaluation.

The objective evaluation experiments (“OA”), imple-
mented using classifiers, aimed to evaluate only the LMs
alone (i.e. without the rest of the system). The subjective
evaluation experiments (“SA”), through surveys or tasting,
had as purpose the evaluation of the system as a whole.
Figures 16 and 17 present the flowcharts of these two types
of evaluation performed.

ROC curve to evaluate the
quality of recipe separation €nd
through the classifier.

Creation of the database of|
structured recipes.

’ Start

Classification of artificial

database recipes through
LMs between good and
bad.

Language Models Trainin Creatonicfidatabassich
Bua 8 structured artificial recipes.

FIGURE 16. Flowchart for objective evaluations (both approaches).

(Su
~ReProg | calculation of statistics in v
— structured recipes.)

- Generation of recipes by
the system.
L

J

FIGURE 17. Flowchart for subjective evaluations (both approaches).

In the following sections, these experiments are presented
in more detail.

1) EXPERIMENTS FOR THE ReProg APPROACH
For the LMs architecture of the ReProg approach, explained

in Section V-Al, 4 objective evaluations, named as
OA_cut, OA_reduce, OA_cool and OA_fry, were performed.

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

These 4 evaluations involved using the 8 LM cross-validation,
explained in Section VI-B3, as binary recipe classifiers.
These classifiers are based on the perplexity metric, so that
high perplexities indicate low quality and low perplexity indi-
cates high quality of the recipes. The 4 evaluations consisted
of the creation of 4 artificial recipe databases, with recipes
selected based on the consistency of the preparation defined
in Section VI-A, and evaluation of the classifiers’ ability to
separate these recipes correctly (i.e. that the perplexity of the
8 LMs presented high values for nonviable recipes and low
values for viable recipes). The classifiers are evaluated by
using the Receiver Operating Characteristic (ROC) curve,
which consists of asserting the relationship between false
positives and true positives when sliding the class separation
threshold. The expected result for the ROC curve is high
values of true positives and low values of false positives along
the whole curve, generating an Area Under the Curve (AUC)
above (.5 and close to 1. It is important to note that the final
result of the experiment is the average ROC curve from all
the LMs used (i.e. each ROC curve presented in the results
section is the composition of the ROC curves of the various
models).

Due to the fact that there were no works in the sense
of evaluating inconsistencies in the preparation of recipes,
even in the culinary literature, four intuitive inconsisten-
cies were chosen, which derive from physical impossibil-
ities or from the culinary definition of actions. The four
inconsistencies, and their respective artificial databases, are
detailed as follows:

a) OA_cut - The artificial database of this experiment is
based on the physical impossibility of cutting action
on liquid ingredients. This artificial database consisted
of 50 small recipes composed of 6 cutting actions (cut,
chop, dice, mince, slice and shred) on 25 liquid ingre-
dients, noted as low-quality recipes, and those same
cutting actions over 25 solid ingredients, noted as high
quality recipes. Example of sequence of actions of
these small recipes: [‘“‘serve_recipe”, “cut”, “milk’],
[“serve_recipe”, “chop”, “onion’’] and etc.

Not all the recipes created for the artificial database
OA_cut are used for the evaluation of the classifiers
via the ROC curve. In order to make the analysis inde-
pendent of cuting actions specificities (e.g. cut shape),
only the least perplexing (better quality) recipes were
used for the evaluation. For example, the recipe of the
sequences of steps [“‘serve_recipe”, “chop”, “onion”]
was used in the evaluation of the classifiers, while the
remaining recipes for ‘“onion” (e.g. [“‘serve_recipe”,
cut”, “onion’’], [“serve_recipe”, ‘“dice”, ‘“‘onion’],
and so on) were not used.

b) OA_reduces - the artificial database of this experiment
is based on the definition of the reduction action, which
is the heating of liquid ingredients with the intent of
increasing its density (and consequently the concentra-
tion of some ingredients). The reduce action is most
useful on liquid ingredients. This artificial database

13

VOLUME 8, 2020

c)

d)

consisted of 50 small recipes composed of the action
reducing the same 50 ingredients of the OA_cut
database, but the annotations were reversed (i.e. the
recipes with liquid ingredients were noted as higher
quality, while the recipes of solid ingredients were noted
as of lower quality).

OA_cool - The artificial database of this experiment is
based on the definition of cool action, which is the cool-
ing of hot ingredients or mixtures. Thus, the cool action
is useless on frozen ingredients. This artificial database
included all combinations (about 600) of recipes with
2 cooling actions, ‘“cool” and “chill”’, applied to the
same 50 ingredients of the OA_cut database, but hav-
ing these ingredients suffered before 2 freezing actions
(“frost” and “freeze” - recipes low quality) or 4 heating
actions (“‘cook”, “heat”, “bake” and “boil” - recipes
high quality). Example of sequence of actions of these
recipes: [“‘serve_recipe”, ““‘cool”, “bake”, “‘salmon’],
[“serve_recipe”, “chill”, “frost”, “orange_juice”].
As in the OA_cut database, not all the recipes from this
artificial database were used in the classifier evaluation.
In order for the evaluation to be independent of the speci-
ficities of the actions (cooling, freezing and heating),
two recipes were chosen for each ingredient, one anno-
tated as viable and the other noted as nonviable, with
the lowest perplexity values found. For example, recipes
for the sequences of actions [‘“‘serve_recipe”, “‘cool”,
“cook”, ‘“‘chicken_broth’’], annotated as viable, and
[“serve_recipe”, “chill”, “freeze”, “‘chicken_broth™],
annotated as nonviable, were used in the evalua-
tion of the classifiers; while the remaining recipes
for “‘chicken_broth” (e.g. [*“‘serve_recipe”, ‘“‘cool”,
“heat”, ‘“‘chicken_broth], [“serve_recipe”, ‘“‘chill”,
“cook™, ““chicken_broth™], [*“serve_recipe”, ‘“‘cool”,
“freeze’, ““chicken_broth’’] and etc.) were not used.
OA_fry - The artificial database of this experiment is
based on the definition of the fry action, which con-
sists of the process of cooking ingredients on some oil.
The database of artificial recipes included 5 low quality
recipes consisting of the fry action on 5 oils (i.e. only
the oils as an ingredient); and all combinations of fry
action recipes on 12 ingredients alone (recipes also noted
as low quality) and fry action on these 12 ingredients
with 5 oils (recipes noted as high quality). Example of
recipes: “fry”” on “pork” and “olive oil”.

As in the OA_cut database, not all the recipes from this
artificial database were used in the classifier evaluation.
For the evaluation to be independent of the specific oil
used in the fry process, only for the recipes contain-
ing ingredients with oils, recipes were chosen the with
the lowest values of perplexity found (better quality)
for each ingredient. For example, the “fry”’ recipe for
“bacon” and “‘0il”” was used to evaluate the classifiers,
while the remaining recipes for “bacon” and some other
oil (e.g. “fry” on “bacon” and ‘“‘canola 0il”) were not
used.

146277

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

The recipes generated by the (complete) system were also
evaluated. However, this evaluation was subjective (i.e. by
a human assessment) conducted through a survey, named
SA_feasible.> The LM used in the system that generated the
recipes of this survey was the model with the best perplexity
of the test in the cross-validation presented in Section VI-B3.

TABLE 11. Size of the recipes generated for the SA_feasible experiment.

[Recipe Size | Number of Ingredients | Maximum Depth |

Small 4 5
Medium 6 6
Large 8t09 8

The choice of the recipes to compose the SA_feasible
evaluation survey was as follows: 18 recipes were chosen,
9 of the database of human recipes and the other 9 generated
by the system. Each of these groups of 9 recipes was divided
into 3 parts, containing 3 small, medium and large recipes.
These recipe sizes are described in Table 11. For each of
these recipe sizes, the system was run 3 times for 5 different
ingredient lists and the 3 recipes that appeared to be the
most viable among all generated were chosen. It should be
noted that the number of recipes generated by the system for
each execution is not very large (i.e. Hall-of-Fame is small
compared to the PG population), being of the order of the
maximum depth chosen for the recipes (in this case, as seen
in Table 11, was 5, 6 and 8 - that is, at most 8 recipes).
Thus, although it involved 3 runs of the system, the number of
recipes generated was small compared to the space of possible
preparation combinations (which even in the smallest case
is exponential - for example, soup space with 4 ingredients
suffering a single action per ingredient, out of 90 possible
actions, is in the order of 90* combinations).

serve_recipe
bake

cook
chicken meat

mix

chop O
potato beet
marjoran

FIGURE 18. A recipe created by the ReProg approach (in graph form).

After choosing 9 human recipes and 9 recipes generated by
the system, a textual description was made for the preparation
graph in order to write the 18 recipes in natural language.
Figures 18 and 19 exemplify these two versions, graph and
textual, of a these recipes. Some questions in this survey
were based on [24], but the questions related to SA_feasible
assessment were as follows:

a) Is the recipe presented feasible?
b) With respect to the flavor, is the recipe tasty?

SThis survey is in Portuguese and can be accessed at:

https://goo.gl/forms/nSI9HzVqo8meymWv2

146278

Ingredients:

) }% -
S &) ;

Potato Beet Marjoram Chicken Meat
Preparation:
- Chop the Marjoram.
- Mix the chopped Marjoram, Potato and Beet.
- Put the mixture to cook.
- After cooking, add the the Chicken Meat to the
mixture.
- Bake the mixture.
- Serve the dish.

ou BwNE

FIGURE 19. A recipe created by the ReProg approach (in textual form).

2) EXPERIMENTS FOR THE ReComp APPROACH
For the LMs architecture of the ReComp approach, explained
in Section V-B1, two objective evaluations, named as OA_oil
and OA_seasoning, were performed. As in Section VI-CI,
these 2 evaluations involved using the 8 LM of cross-
validation as binary classifiers of recipes based on perplex-
ity metrics. The ROC curve was calculated to evaluate the
performance of these classifiers. The criterion used to note
the recipes from the artificial databases of these 2 evaluations
was the criterion of mixture quality of ingredients throughout
the preparation defined in Section VI-A (i.e. recipes noted as
having high mixture quality or low mixture quality).

The two artificial databases created to evaluate the classi-
fiers were detailed as follows:

a) OA_oil - The artificial database of this experiment is

based on the secondary role of the oil ingredient in frying
of other ingredients (i.e. mixtures of oil and other ingre-
dients promoted by fry action). Thus, the oil mixtures
with other ingredients in frying consists of mixtures
of good quality, while the mixtures of ingredients that
contains no oil in frying consists of mixtures of poor
quality. The artificial database has 192 small recipes
consisting of the fry action on 2 ingredients, the first
one being one of 12 ingredients and the second one may
be one of the other 11 remaining ingredients, for bad
mixture quality recipes, or one of 5 oils, for good mixture
quality recipes. Example recipes: “fry” on “onion” and
“pepper”’ (poor mixture quality); and “fry’” on “onion”
and “vegetable_oil” (good mixture quality).
Not all the recipes from this artificial database were
used in the classifier evaluation. For the evaluation to
be independent of the second ingredient of the mixture,
it added some other ingredient or specific oil, for each
ingredient in the first position of the mixture two recipes
were chosen, one noted as good mixture quality and
the other noted as poor mixture quality, with the lowest
perplexity values found. For example, the “fry”’ on the
mixture of “pork’ and “oil”” (good mixture quality) and
the “fry”” on the mixture of “pork” and “potato’ (poor
mixture quality) were selected, while all recipes with
“fry”” on the “pork” mixture with any other ingredient
were not used.

b) OA_seasoning - The artificial database of this experi-
ment is based on the secondary role of seasoning ingre-
dients in frying of other ingredients (i.e. mixtures of

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

seasonings and other ingredients, which bring season-
ing, promoted by fry action). Like the OA_oil experi-
ment, mixtures with these secondary ingredients, in this
case seasonings, frying with other ingredients consist
of good quality mixtures, whereas the absence of these
secondary ingredients consists of poor quality mixtures.
The artificial database has 117 small recipes composed
by the fry action on 2 ingredients, the first one being
one of the 9 ingredients and the second can be one
of the other 8 remaining ingredients (for bad mixture
quality recipes) or one of 5 seasonings (for good mixture
quality recipes). Example of recipes: “fry”” on “beef”
and “salmon” (poor mixture quality); and “fry” on
“beef” and “garlic”’ (good mixture quality).

As with OA_oil, not all artificial database recipes were
used in classifier evaluation. In order to avoid specifici-
ties of the second ingredient of the mixture, two recipes
were chosen for each ingredient in the first position of
the mixture, one noted as good mixture quality and the
other one noted as poor mixture quality, with the lowest
perplexity values found. For example, the “fry” on the
“egg” and “salt” (good mixture quality) and the “fry”
on the “egg” and “‘bacon” (poor mixture quality) were
selected, while all recipes with “fry” on the “‘egg” with
any other ingredient were not used.

In this approach we also evaluated the recipes generated
by the system. Two evaluations were done by humans, one
was performed through one survey and the other through
tasting of a recipe executed, these experiments were named as
SA_mixture® and SA_dish respectively. The model used in the
system that generated the recipes for these evaluations was
the model with the best perplexity of the test in the cross-
validation presented in Section VI-B3.

The choice of recipe to compose the SA_mixture evaluation
survey was as follows: there were 6 recipes generated by
the system, divided into 3 pairs. Each pair contains recipes,
denoted by A and B in the survey, which have the same list
of ingredients, but with different preparation steps. Recipe
A was generated by the system proposed in this approach,
including LM, while the recipe B was generated by the system
proposed in this approach, but without the use of an LM. That
is, in this second recipe we used a completely similar system
to the one proposed in [3], without the aid of a LM to guide
the GA toward recipes with better mixtures of ingredients.

After choosing the 6 recipes generated by the system,
a textual description was made for the preparation graph in
order to write them in natural language. The questions present
in the survey were as follows:

a) Which recipe (A or B) uses seasoning and oils that better
match the ingredients?
b) With respect to the flavor, is the recipe tasty?

A recipe for this approach, using LM, was chosen to

be executed in the SA_dish experiment because in the

OThis survey is in Portuguese and can be accessed at:

https://goo.gl/forms/51srK3pib6Qxgu612

VOLUME 8, 2020

comparison of the results of SA_feasible and SA_mixture sur-
veys, which will be shown in Section VII, this configuration
of the system was the one that presented the most promising
results of taste perception. The choice of only this approach
is due to the higher cost of this experiment. The choice of
the recipe to be executed was as follows: 4 lists of creative
ingredients were generated with 6 to 7 common ingredients
found in Brazil. The system run for each of these 4 lists of
ingredients and the recipe with the lowest arity error was
selected by ingredient list. Among the 4 selected recipes,
we chose the recipe with the preparation graph apparently
more consistent and with better mixture quality of the ingredi-
ents. The textual description of this recipe is shown in Fig. 20.

Ingredients:

Cream Cheese Saffron
Preparation:

01 - Soften the Cream Cheese (in the microwave for a few seconds).
02 - Beat the Cream Cheese

03 - Add Egg to Cream Cheese.

04 - Beat the Cream Cheese mixture.

05 - Add Salt to Cream Cheese mixture.

06 - Bake the Cream Cheese mixture.

07 - Fry the Chicken.

08 - Grind the Saffron.

09 - Garnish the dish with Saffron and Mint.

10 - Serve the Cream Cheese and the Chicken decorated.

FIGURE 20. Recipe generated by the system that was cooked (in textual
form).

The SA_dish evaluation consisted of executing the recipe
of Fig. 20 and presenting it for a small group of volunteers to
taste. After eating the dish, each volunteer indicated whether
the dish is tasty from a note on the following numerical
scale: 1 means very bad, could not finish eating; 2, bad; 3,
more or less; 4, good; and 5 means very good, would even
repeat.

VII. RESULTS
A. RESULTS FOR THE ReProg APPROACH
The results for the objective analysis through classifiers
explained in Section VI-C, are presented in Fig. 21, where the
graphs from (a) to (d) are relative to the OA_cut, OA_reduce,
OA_cool and OA_fry experiments, respectively; AUC (Area
Under Curve) summarizes the efficiency of the classifier
(1.00 is the ideal value); and “std. dev.” means the region
which comprises up to a standard deviation of the mean curve
(i.e. the value of the standard deviation along the mean curve).
For all 4 experiments in Fig. 21, an AUC greater than
0.83 was obtained, which is considered a good value (well
above 0.50). The model (and the perplexity metric) were
able to separate the viable recipes from the nonviable ones,
so that there were several thresholds capable of bringing
most of the true positives (cases where the threshold and

146279

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

A) OA_cut

10

B) OA_reduce

10

B — Mean ROC (AUC = 0.83 + 0.01)
00 £ 1 5td. dev, 0o L

— Mean ROC (AUC = 0.87 + 0.02)
1 5td. dev.

o8 1o

04 06
False Positve Rate

— Mean ROC (AUC = 0.84 + 0.05)

02
— Mean ROC (AUC = 0.99 + 0.00)
+15td. dev, 0o} b =15td. dev.

00 02 04 06 o8 10 00 0z
False Positve Rate

o5 0 o
False Postve Rate

FIGURE 21. ROC curves for the classifiers of the ReProg approach.

label hit) without bringing many false positives. Particularly,
the classifier of experiment OA_cool was practically perfect,
obtaining an AUC of 0.99. One of the factors that may have
led to this inconsistency to be better classified is the fact that
it happens between actions, which occurs more frequently
than ingredients in the database (in addition to the vocabulary
of actions being smaller than that of ingredients, each recipe
presents, in general, more actions than ingredients), and thus
the amount of training data is more robust. Another detail that
we can see in the experiments of Fig. 21 is that the mean
deviation in the OA_fry experiment was the highest of these
4 experiments, with a value of 0.05. This was mainly due
to two reasons: i) some recipes presuppose the use of oil
for the “fry” action, leaving this ingredient often implicit;
and ii) some recipes treat the action of preheating the oil
for frying as a different “fry”’ action, such as “heat” action,
which makes the language model does not treat oil as a
direct ingredient of frying in these recipes. Since these two
problems depend on the origin of the recipes, they may
vary throughout the folds of the cross-validation, generating
models with adverse quality between the folds that explain
this greater variation.

Regarding the second type of analysis, the experiment
SA_feasible, a total of 36 respondents completed the survey.
The relative amount of positive evaluations regarding fea-
sibility for each group of recipe size, which were defined
in Table 11, is shown in Fig. 22. We can see that both groups
of recipes generated by the system and those generated by
humans had satisfactory values, being considered feasible by
at least 78% of the evaluations. Overall, human evaluations
had slightly better results (5% to 6%), with the exception
of the medium-sized (6-ingredient) recipes group. The aver-
age evaluation for taste perception, where 0% means bad
taste and 100% means good taste is presented in Fig. 23
for each group of recipe sizes. The human-generated recipes
had satisfactory values, presenting an evaluation of at least
57% (between medium and good taste). Larger-sized human
recipes achieved the best result, with an average of 82% (close
to good taste), at least 22% above the other sizes. For the small

146280

== Human Recipes
EEm System Recipes
100%

93% 93%

85% 87%
82%
80% 78%
40%
20%
0%

Recipe Size 4 Recipe Size 6 Recipe Size 89

Evaluations
3
8

FIGURE 22. Result of evaluating the recipes as feasible (ReProg
approach).

100% 3 Human Recipes
B System Recipes

82%

80%
% 37%

Recipe Size 6 Recipe Size 8-9

Average Taste Perception

Recipe Size 4.

FIGURE 23. Result of evaluating the recipes as tasty (SA_feasible -
ReProg approach).

and medium-sized human recipes, the result were very close,
only 3% difference. Thus, there seems to be a tendency to
better evaluate the taste perception of larger recipes, possibly
because people consider these recipes more complete. The
same behavior seems to occur, to a lesser extent, between
large and medium-sized recipes generated by the system.
Larger-sized recipes had an average evaluation score of 37%
(medium to bad taste), while medium-sized recipes had a 23%
(also medium to bad taste) result, 14% below the larger size.
On the other hand, the smallest recipes got a better result than
both, with an average evaluation of 49% (with a medium taste
perception). This is due to the fact that the search space for the
generation of preparation steps is smaller for the recipes with
fewer ingredients, making the algorithm reach better recipes
(with respect to preparation steps) faster than in the recipes
with more ingredients. This second factor conflicts with the
predilection factor for larger recipes sizes.

Another important detail is that these 9 system-generated
recipes (the recipes of experiment SA_feasible) presented a
dissimilarity more than 75% in relation to any recipe in the
database, which means that the recipes are also novel.

B. RESULTS FOR THE ReComp APPROACH

The results for the first type of analysis in this approach
are presented in Fig. 24 (the ROC curves of the model as a
classifier). For the classifier of OA_oil an AUC of 0.97 was
obtained, that is, the classifier was almost perfect. As for
OA_seasoning, an AUC (.77 was obtained, which is a good
performance. For this second classifier there was a deviation
from the high average of 0.07, probably due to the fact
that the number of seasonings (salt, herbs, spices and even

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

A) OA_oil

10

B) OA_seasoning
10

— Mean ROC (AUC = 0.7 L 0.07)
0| b° = 15td. dev.
o

00 0z 04 06 08 0 00 0z 04 06 8
False Posiive Rate False Positive Rate

FIGURE 24. ROC curves for the classifiers of the ReComp approach.

some oil infusions) is higher than that of frying oils. In this
way, the model for each fold of the cross-validate would
have greater difficulty in generalizing the seasonings than the
oils, leading to adverse (specialized) performances for each
section of the training database.

Comparing the OA_oil with the OA_fry, presented in
the previous section, we can see an improvement in the
performance of the classifier and reduction of the mean
deviation. Between these two classifiers, the recipes were
almost all the same (with the exception of nonviable recipes
with only one oil as an ingredient) the Language Mod-
els were of different architecture. The language model of
OA_oil is able to treat oil as an ingredient of frying even
though it is not a direct ingredient of the frying action,
which reinforces the previously reported problem for the
largest deviation of the mean in OA_fry. Thus, the ReComp
approach model is more robust than the ReProg approach
in these cases. However, the AUC of the ReProg approach
presented better overall results, with a minimum value
found of 0.83 compared to 0.77 of ReComp. However, both
approaches still obtained quite satisfactory results, which
demonstrates that Language Models were able to learn, based
on human recipes, how to separate good quality recipes
from those of poor quality (in the criteria adopted for the
experiments).

As can be seen in Section VI-C, the second type of anal-
ysis performed for this approach relied on two experiments:
SA_mixture and SA_dish. The SA_mixture experiment, which
consisted of a survey, was completed by a total of 31 respon-
dents. The average evaluation for the quality of the use of oils
and seasonings between the two versions (generated by the
system with and without language models) of each recipe is
presented in Fig. 25, where 0% means that the quality of the
recipe is bad and 100% means that the quality is good on this
criterion. In general, the versions of the recipes generated by
the system with language model had the best results, having
an evaluation of at least 52% and obtaining for the three
recipes an average of 63.7%. The recipes generated by the
version of the system without language models presented an
average quality score of 36.3%. As can be seen, the quality
assessment between the two groups of recipes is complemen-
tary (i.e. the sum gives 100%), this being because respondents
were asked to benchmark the quality of one group over the
other. These results demonstrate that the language model can
assist the system in generating recipes with better mixtures
of the ingredients along the preparation steps (in this case,

VOLUME 8, 2020

— System Recipes with LM
- System Recipes without LM

M

Recipe Pair 1 Recipe Pair 2 Recipe Pair 3

2 @
8 28 8
2) =

Average Mixture Quality

N
8
=

FIGURE 25. Result of evaluating the recipes as mixture quality (ReComp
approach).

100% [m==] System Recipes with LM
- System Recipes without LM

84%
) |—I |_.
0%

2 8
= =

=
8
=

Average Taste Perception

Recipe Pair 1 Recipe Pair 2

Recipe Pair 3

FIGURE 26. Result of evaluating the recipes as tasty (SA_mixture -
ReComp approach).

FIGURE 27. Dish for taste evaluation by volunteers.

mixtures containing oils and seasonings). The average taste
perception for these same recipes are shown in Fig. 26.
In recipes pairs 1 and 3, for both systems, the result obtained
was between medium and good, while for the recipe pair 2 it
was between medium and bad. But, in general, the recipes
of the system with language model obtained a better average
taste perception, with an average value for the three recipes
of 64.3%, between medium and good.

The SA_dish, which consists of tasting a recipe generated
by the system with language model, had the participation
of 18 volunteers. The amounts selected for the ingredients
were: 3 egg whites; salt to taste; 1 leaf of mint per serving;
3 chicken tenderloin; 150 grams of cream cheese; and a pinch
of saffron (just to color the cream cheese mixture). The time
to bake the cream cheese mix was 50 minutes at 200 degrees
celsius. The chicken was fried until golden. The dish was like
that of Fig. 27.

146281

IEEE Access

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

The average score obtained in the evaluation of the vol-
unteers was 4.72 out of 5, between good and very good
(93% of the taste rating scale used in this experiment). This
result demonstrates that the proposed system not only gen-
erates recipes with a good taste perception (results from the
experiment SA_mixture), but also was able to generate a tasty
creative recipe.

The 7 recipes generated by the system with this approach
(the recipes of experiment SA_mixture and SA_dish) had a
dissimilarity greater than 70% in relation to any recipe of the
database. This demonstrates that this approach was also able
to generate the preparation instructions with novelty.

VIIl. CONCLUSION

The objective evaluations, using classifiers based on language
models, have demonstrated the quality of such models in eval-
uating nonviable recipes and bad mixtures of ingredients in
the preparation steps (e.g. bad use of seasonings), with AUC
values above 0.83 and AUC of at least 0.77, respectively.

In the evaluation by online survey, an average evaluation of
the recipes as feasible of 85.6% and an evaluation of the good
use of oils and seasonings with an average of 63.6% (between
medium and good) were obtained. These results demonstrate
that language models and perplexity metrics can guide the
recipe generation algorithm toward recipes with more con-
sistent preparation steps, in the case of a less restricted gen-
eration approach (ReProg Approach), Language Models also
guide the algorithms for yielding recipes with better mixtures
of ingredients throughout the preparation steps, in the case
of the approach with the consistency of the preparation more
guaranteed (ReComp Approach). Regarding the taste percep-
tion of the generated recipes, only an intermediate result for
small recipes was obtained in the ReProg Approach, with an
average taste perception around 49% of the scale, while for
the ReComp Approach the results were better. In the ReComp
Approach, the average evaluation of taste perception was
around 64.3% of the scale, between medium and good, and
the average taste of a cooked recipe was 93% of the scale,
close to good taste.

In addition, recipes generated from both approaches pre-
sented a dissimilarity for any database recipe by at least 70%,
even for the ReComp Approach, which were based on a direct
decomposition of the database recipes.

In general, the ReComp approach presented the best results
and it was possible to achieve the goal of creating a system
capable of generating complete creative recipes (i.e. with a
creative ingredient list, a sequence of consistent preparation
steps and a good use of oils and seasoning in the preparation).

IX. FUTURE WORK

As a future work, we propose to improve the database of
recipes by adding more recipes than the 1939 used in the
present work and improving the quality of the NLP Parser
(e.g. by adding specialized ingredient inference strategies for
every possible action in the ontology of actions). For the
architecture of the language model, one could try to overcome

146282

the problem of exponential growth of the information con-
sidered in the prediction of the actions of the preparation
graph for a number of time steps greater than 1, so as to
make it possible to use an architecture based on recurrent
neural networks (e.g. LSTM). A solution in this sense could
be the creation of a criterion of importance for the actions
of the preparation in order to reduce the size of the branch
considered in the prediction of the model. Another possibility
would be to evaluate other types of models (e.g. Bayesian
models) to evaluate the preparation steps of the recipes and
mixtures of the ingredients throughout these steps. In the
API used to generate the list of ingredients, it will be useful
to make changes so that the user can choose ingredients
according to their category (e.g. meats, vegetables, seasoning
and etc) and kitchen templates (e.g. Italian, French and etc).

ACKNOWLEDGMENT
The authors would like to thank CAPES, PUC Minas, CNPq,
and FAPEMIG for the financial support.

REFERENCES

[1] R. G. Morris, S. H. Burton, P. Bodily, and D. Ventura, “Soup over bean of
pure joy: Culinary ruminations of an artificial chef,” in Proc. ICCC, 2012,
pp. 119-125.

[2] R. K. Sawyer, Explaining Creativity : The Science of Human Innovation.

London, U.K.: Oxford Univ. Press, 2011.

F. Pinel, L. R. Varshney, and D. Bhattacharjya, “A culinary computational

creativity system,” in Computational Creativity Research: Towards Cre-

ative Machines. Paris, France: Springer, 2015, pp. 327-346.

K. Grace and M. L. Maher, “Surprise-triggered reformulation of design

goals,” in Proc. AAAI, 2016, pp. 3726-3732.

[5S] A. Amorim, L. F. W. Gées, A. R. D. Silva, and C. Franga, “Creative
flavor pairing: Using RDC metric to generate and assess ingredients com-
binations,” in Proc. Lighth Int. Conf. Comput. Creativity, ICCC, Atlanta,
Georgia, 2017, pp. 1-8.

[6] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabdsi, “Flavor net-
work and the principles of food pairing,” Sci. Rep., vol. 1, no. 1, p. 196,
Dec. 2011.

[7]1 G. M. Shepherd, Neurogastronomy: How Brain Creates Flavor Why it
Matters. New York, NY, USA: Columbia Univ. Press, 2011.

[8] M. Zampini and C. Spence, “The role of auditory cues in modulating the

perceived crispness and staleness of potato chips,” J. Sensory Stud., vol. 19,

no. 5, pp. 347-363, Oct. 2004.

K. Grace, M. L. Maher, D. Fisher, and K. Brady, ‘‘Data-intensive evaluation

of design creativity using novelty, value, and surprise,” Int. J. Design

Creativity Innov., vol. 3, nos. 3-4, pp. 125-147, Oct. 2015.

[10] C. Franga, L. F. W. Gées, A. Amorim, R. Rocha, and A. R. D. Silva,
“Regent-dependent creativity: A domain independent metric for the
assessment of creative artifacts,” in Proc. 7th Int. Conf. Comput. Creativity,
2016, pp. 68-75.

[11] L. Macedo and A. Cardoso, “The exploration of unknown environments
populated with entities by a surprise—curiosity-based agent,” Cognit. Syst.
Res., vol. 19, pp. 62-87, Sep. 2012.

[12] P. Baldi and L. Itti, “Of bits and wows: A Bayesian theory of surprise
with applications to attention,” Neural Netw., vol. 23, no. 5, pp. 649-666,
Jun. 2010.

[13] J. Billing and P. W. Sherman, ‘“‘Antimicrobial functions of spices: Why
some like it hot,” Quart. Rev. Biol., vol. 73, no. 1, pp. 3-49, Mar. 1998.

[14] G. A. Fink, Markov Models for Pattern Recognition : From Theory to
Applications. London, U.K.: Springer, 2014.

[15] E. Arisoy and M. Saraclar, “Multi-stream long short-term memory neural
network language model,” in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc., 2015, pp. 1413-1417.

[16] R. Masumura, T. Asami, T. Oba, H. Masataki, S. Sakauchi, and A. Ito,
“Latent words recurrent neural network language models,” in Proc. 16th
Annu. Conf. Int. Speech Commun. Assoc., 2015, pp. 2380-2384.

3

[l

[4

[l

9

—

VOLUME 8, 2020

W. A. dos Santos et al.: Creative Culinary Recipe Generation Based on Statistical Language Models

IEEE Access

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. Irie, R. Schliiter, and H. Ney, “Bag-of-words input for long history
representation in neural network-based language models for speech recog-
nition,” in Proc. 16th Annu. Conf. Int. Speech Commun. Assoc., 2015,
pp- 1-5.

X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken Language Pro-
cessing : A Guide to Theory, Algorithm, and System Development, vol. 95.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

E. Cromwell, J. Galeota-Sprung, and R. Ramanujan, “Computational cre-
ativity in the culinary arts,” in Proc. FLAIRS Conf., 2015, pp. 38-42.

A. Cordier, J. Lieber, P. Molli, E. Nauer, H. Skaf-Molli, and Y. Toussaint,
“Wiki-Taaable: A semantic wiki as a blackboard for a textual case-based
reasoning system,” in Proc. 4th Workshop Semantic Wikis (SemWiki). 6th
Eur. Semantic Web Conf., Heraklion, 2009, pp. 88-101.

R. T. Ng and J. Han, “CLARANS: A method for clustering objects for
spatial data mining,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 5,
pp. 1003-1016, Sep. 2002.

J. B. Kruskal, “An overview of sequence comparison: Time warps, string
edits, and macromolecules,” SIAM Rev., vol. 25, no. 2, pp. 201-237,
Apr. 1983.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels
for chemical informatics,” Neural Netw., vol. 18, no. 8, pp. 1093-1110,
Oct. 2005.

L.M.R.D. Souza and L. F. W. Gées, “‘Evaluation of the human perception
of creativity on the combinations generated by the creative food pair-
ing system,” Dept. Inf. Syst., Pontificia Universidade Catdlica de Minas
Gerais, Belo Horizonte, Brazil, Tech. Rep., 2017.

WILLIAN ANTONIO DOS SANTOS (Member,
IEEE) was born in Belo Horizonte, Minas Gerais,
Brazil, in 1988. He received the B.S. degree in
computer science and the M.S. degree in elec-
trical engineering from the Pontifical Catholic
University of Minas Gerais (PUC Minas), Belo
Horizonte, in 2018. His current research interests
include automatic speech recognition and compu-
tational creativity.

VOLUME 8, 2020

JOAO RIBEIRO BEZERRA (Member, IEEE) was
born in Belo Horizonte, Minas Gerais, Brazil,
in 1994. He received the B.S. degree in computer
science from the Pontifical Catholic University
of Minas Gerais (PUC Minas), Belo Horizonte,
in 2018. His research interests include artificial
intelligence and applications in natural language
processing.

LUiS FABRICIO WANDERLEY GOES (Mem-
ber, IEEE) received the Ph.D. degree in computer
science from the University of Edinburgh, UK.,
in 2012. His main research interests include paral-
lel programming and computational creativity.

FLAVIA MAGALHAES FREITAS FERREIRA
received the Ph.D. degree in electrical engineer-
ing from the Pontifical Catholic University of
Rio de Janeiro, Brazil, in 2004. Her research
interests include image, video and voice process-
ing, digital processing in hardware, and scientific
visualization.

146283

