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ABSTRACT The application of the Internet of Things in agricultural development usually occurs via a
monitoring network that consists of a large number of sensor nodes, thus gradually transforming agriculture
from a human-oriented and single-machine-centric production model to an information- and software-centric
production model. Due to the large area coverage of agriculture and the variety of production objects, if all
farmland perception information is gathered into the cloud server, the server will exert greater pressure on the
network, which reduces the speed of response to event processing. This problem may be perfectly solved by
the recent emergence of Edge computing, which can share the load of the cloud server and reduce the delay.
Edge computing has prospects in agricultural applications, such as pest identification, safety traceability of
agricultural products, unmanned agricultural machinery, agricultural technology promotion, and intelligent
management. The application of the Agricultural Internet of Things integrates artificial intelligence, the Inter-
net of Things, and blockchain and Virtual/Augmented Reality technologies. This paper primarily reviews
the application of Edge computing in the Agricultural Internet of Things and investigates the combination
of Edge computing and Artificial Intelligence, blockchain and Virtual/Augmented reality technology. The
challenges of Edge computing task allocation, data processing, privacy protection and security, and service
stability in agriculture are reviewed. The future development direction of Edge computing in the Agricultural
Internet of Things is predicted.

INDEX TERMS The Agricultural Internet of Things, artificial intelligence, blockchain, edge computing,

smart agriculture, virtual/augmented reality.

I. INTRODUCTION

Agriculture is the foundation of human survival and plays
a fundamental role. It is vital to the stability and the devel-
opment of society. However, with the emergence of three
factors that restrict agricultural development: (i) population
aging and migration (also known as urbanization) have led to
a gradual decline of rural labor; (ii) industrial buildings and
residential buildings are gradually eroding agricultural land,
resulting in a reduction in agricultural land [1]; (iii) increased
climate change will also continue to change crop growth con-
ditions such as temperature, precipitation and soil moisture
in unpredictable ways [2]. The challenges that agriculture
faces are increasingly severe. In order to meet the challenges,
people must be seize the opportunity of the third revolution in
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the information technology industry, for example, Internet of
Things (IoT), big data, artificial intelligence et al.. They can
bring fundamental changes to agriculture. The Agricultural
Internet of Things (Agricultural IoT) not only solves the
problems of increasing food demand, environmental pollu-
tion caused by excessive use of pesticides and fertilizers, and
the safety of agricultural products [3], but also reduces labor
costs [4], greatly promoting the continuous development of
agriculture in the direction of high quality and high output.
However, the widespread use of the Agricultural IoT has led
to the explosive growth of sensors and the increasing number
of data. The large amount of data increases the load on the
cloud server, which reduces the response speed.

The emergence of the Edge computing models can solve
the problem of cloud server load. The classical Edge com-
puting models include: the Cloudlet introduced by Satya-
narayanan solves the latency problem of accessing the cloud
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by using computing resources available in the local network;
the Fog computing introduced by Cisco enables applications
to run directly on the edge of the network through billions
of smart connected devices; the Mobile Edge computing
introduced by the European Telecommunications Standards
Institute (ETSI) allows mobile users to utilize computing
services from base stations. Through the emergence of three
classical Edge computing models, we can find a new trend:
some calculations that take place in the cloud are gradually
moving to the edge [5]. Similarly, the data generated by the
Agricultural IoT is also increasing, resulting in increased load
on the cloud server. In order to share the offload of the cloud
server, the computation that occurs in the cloud is offloaded
to the edge segment for execution. In addition, the real-time
requirements of some applications of the Agricultural Inter-
net of Things are high. The edge server is close to the data
source, so it provides intelligent services nearby and shortens
the response time. Although the Edge computing is favorable
for agricultural development, but Edge computing applied to
agriculture has little literature, so we combine with a lot of
related literature and present a review of the application of
Edge computing in the Agricultural IoT, which inspires more
people to develop the Agricultural IoT under Edge computing
in the future.

This paper reviews the concept and research status of
the Edge computing and Agricultural IoT. In addition,
we describe in detail the research status of Edge comput-
ing in the application of pest identification and crop clas-
sification, agricultural product safety traceability, unmanned
agricultural machinery, agricultural product promotion, etc.,
which mainly involves artificial intelligence, blockchain and
virtual/augmented reality technology. In the end, the litera-
ture also mentions the challenges and opportunities of the
combination of Edge computing and Agricultural IoT, and
provides direction for the development of Edge computing
and Agricultural IoT.

The organizational structure of this paper is as follows.
In Section II, it mainly introduces the concept of Edge
computing and Agricultural IoT in detail; the necessity of
combining Edge computing with the Agricultural IoT is dis-
cussed in Section II; then in Section III, the application of
Agricultural IoT combined with Edge computing is reviewed;
in Section IV, Edge computing combined Agricultural IoT
meets the challenges; finally, the paper is concluded and a
vision of their future is described in Section V.

Il. BACKGROUND

This section mainly introduces the concept, structure, and
research status of Edge computing and Agricultural IoT. The
aim of this section is to provide the reader with a solid
foundation of the research subject.

A. EDGE CPMPUTING

1) DEFINITION AND DEVELOPMENT OF EDGE COMPUTING
With the rapid development of the IoT, billions of smart
devices are installed each year. It is estimated that more than
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70 billion smart devices will be installed by 2020. The access
of a large number of devices has led to an increase in the
amount of data to be processed. We face the challenge of
processing and analyzing those data, especially if it needs to
be processed in real time. Simply using a cloud server is not
able to provide real-time response while handling such a large
data set. Edge computing is proposed for solving the problem
of data explosion and network delay. The research fields of
Edge computing include Fog computing [6], Cloudlet [7, 8]
and Mobile Edge computing (MEC) [9, 10]. Although Edge
computing has been proposed for a long time, there is no
uniform and strict definition. Satyanarayanan [11] defines it
as, “Edge computing is a new computing model that deploys
computing and storage resources (such as Cloudlets, fog
nodes) to networks closer to mobile devices or sensors.”
Its system architecture is shown in Fig. 1, which is divided
into three layers: terminal device, edge node and cloud cen-
ter. As we all know, 5G is becoming more and more pop-
ular, and edge computing is one of the core technologies
in the 5G era, but its architecture is open and can also be
deployed and applied to 4G LTE networks. Operators will
smoothly evolve on the existing network structure, and finally
achieve full coverage of the computing power of low-level
network nodes, and continue to improve edge computing
capabilities.

From the development trend since 2010, the attention of
Edge computing continues to rise, as shown in Fig. 2 (Some
data quoted from [12]). Especially since 2016, the attention
of Edge computing has increased rapidly. Shi et al. derived
five typical scenarios for the application of Edge comput-
ing: cloud offload, video analytics, collaborative edge, smart
home, smart city [13]. Sun et al. proposed a real-time fault
detection algorithm based on Edge computing and cloud
computing for the video monitoring system, which effectively
improved the average repair time [14]. In [15], in order to
meet the demand of smart home, a system based on Edge
computing was designed to predict the demand for house-
hold electricity. The system can provide better quality of
service and enhance the scalability of the system. In [16],
Higashino et al. proposed a large-scale spatio-temporal infor-
mation collection mechanism based on Edge computing and
IoT to mitigate disasters and build a safe and intelligent
city.
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Scholar.

2) THE HIERARCHY OF EDGE COMPUTING

The Edge Computing Consortium (ECC) defines four areas
for Edge computing: equipment domain (Perception and con-
trol layer), network domain (Connection and network layer),
data domain (Storage and service layer), application domain
(Business and intelligence layer). As shown in Fig. 3: these
four layers are the computing objects of Edge computing.

Equipment domain: in the equipment domain, Edge com-
puting can directly process the perceived information. For
example, intelligent identification can be directly deployed in
video collection and audio collection. Network domain: in the
network domain, the automatic conversion of each network
protocol is realized, and the data format is standardized.
At the same time, the Edge computing in the network domain
can conduct intelligent management of the “converged net-
work”, reduce the redundancy of the network, ensure the
security of the network, and further participate in the opti-
mization of the network. Data domain: Edge computing in
the data domain makes data management smarter and more
flexible. First, Edge computing can analyze the integrity and
consistency of the data, and conduct data collation to delete
redundant and wrong data in the system. Secondly, Edge com-
puting can maintain efficient coordination with cloud com-
puting and share cloud computing tasks. Application domain:
Edge computing in the application domain provides localized
business logic and application intelligence. It enables applica-
tions to be flexible and fast- responding. Edge computing can
provide localized application services independently, when it
loses contact with the cloud.

Edge computing is deployed in the above four domains,
where it is closer to the user and application scenarios.
It enables the device to have intelligent sensing capabilities
and it can be equipped with adaptive connection strategies
and more optimized deployment strategies. It can solve data
heterogeneity and related network synchronization problems
in the system, and provide local business logic and applica-
tion intelligence.

Edge computing is an open and distributed platform that
provides network, computing, and storage services at the
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FIGURE 3. The hierarchical deployment structure for Edge computing.

edge of the network, close to the data end. It meets the
demands of intelligent, real-time business, data optimization,
and security aspects of agricultural digital transformation.
In addition, there are two kinds of edge servers mentioned
in this paper: remote edge computing servers located on the
edge of wireless network; local edge computing device.

B. AGRICULTURAL INTERNET OF THINGS
1) DEFINITION AND DEVELOPMENT OF AGRICULTURAL loT
Since the IoT technology is proposed in 1999, it has gradually
penetrated into various fields [17], [18]. Agriculture is the
focus of attention of people all over the world, and it is natu-
rally also involved. With regard to the concept of Agricultural
IoT, different researchers have given different interpretations
from different perspectives. For example, Li et al. [19] believe
that the Agricultural IoT usually refers to the use of relevant
sensing devices to perceive information on environmental
factors in plants, agricultural production tools, etc., and an
informational network for real-time monitoring of agricul-
tural production processes, positioning and management of
agricultural production objects based on pre-defined proto-
cols for data transmission. The characteristics of Agricultural
IoT are relatively clear, mainly in the aspect comprehensive
perception, intelligent processing and timely feedback of
agriculture from planting to sales [20]. The emergence of
cloud computing and its extended Edge computing models
such as fog computing and Mobile Edge computing have
made the Agricultural IoT a milestone. It has completely
transformed the management and operation of the farm [21].
The Agricultural IoT has made great progress in recent
years. Xing et al. designed a greenhouse information intel-
ligent monitoring system based on ZigBee wireless sensing
technology [22]. Diego et al. designed agrometeorological
monitoring station based on Bluetooth technology, and the
data was sent to the computer through the wireless Blue-
tooth module [23]. In order to realize the collection, man-
agement, visualization and upload of real-time information
in paddy fields, Zhang et al. proposed a paddy field infor-
mation monitoring system based on Solar-Powered Panel and
GPRS technology [24]. However, both ZigBee and GPRS are
short-range wireless technologies and have high operating
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FIGURE 4. The agricultural loT architecture (AloT in the picture represents the Agricultural loT).

costs. Therefore, a wide area network monitoring system
combining NB-IoT and LoRa is designed in [25]. By studying
the development of farmland monitoring systems, we find
that the development of Agricultural IoT is not only reflected
in the rapid growth of the types and quantities of agricultural
sensors, but also in combination with emerging technologies.

2) ARCHITECTURE OF AGRICULTURAL loT

At the beginning of development, Agricultural IoT mainly
focused on the application of the single entity, which leads
to the scalability, scalability and interoperability of the entire
system gradually fail to meet the growing demand of the
agricultural production. Later, the new hierarchical structure
model of Agricultural IoT was proposed, based on the spe-
cific needs of agricultural production and marketing, com-
bined with the principles of safety, reusability and expansion
of IoT systems and practical experience. As shown in Fig. 4,
the model is divided into five layers from top to bottom,
including the sensing layer, the transport layer, the application
layer, etc. The communication protocols and data are trans-
mitted between the layers using different communication
protocols.

The sensing layer of the Agricultural IoT consists of var-
ious sensor uses Wi-Fi, GPRS, and ZigBee technologies to
transmit data, and transmits the collected data to the access
layer of the Agricultural IoT system structure; the access
layer is mainly composed of hardware gateways and built-in
software middleware. The middleware can effectively shield
the complexity of the underlying heterogeneous sensing net-
work and provide a unified abstract management interface to
provide a foundation for the rapid establishment of Agricul-
tural TIoT business applications; the network layer transmits
data to the upper layer through Internet Protocol, mobile
communication network protocols; the Agricultural IoT data
sharing layer is equivalent to a huge data pool, which realizes
the integrated sharing of various types of monitoring data.
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The layer mainly uses transmission protocols such as TCP
and UDP; the application layer obtains data from the data
sharing layer through protocols such as HTTP, FTP and
other protocols and constructs a corresponding Agricultural
IoT system. Compared with the traditional three-layer and
four-layer IoT architecture, the functions of each layer in
the five-layer Agricultural IoT architecture are clearer and
more independent, which is beneficial to the network load
balancing between servers at different levels, and can reduce
the communication burden of the enterprise network.

C. THE NECESSITY OF COMBINING EDGE COMPUTING
WITH AGRICULTURAL IoT

Based on the combination of IoT and cloud, the Agricultural
IoT system has simple device access and rapid system setup.
However, due to the centralized processing of data by the
cloud computing model, it is difficult to solve the following
problems when the device and data are exploding. (1) Exces-
sive resource cost: the sensors continuously collect various
sensor data, and the data is usually stable or rarely changed.
Uploading all the data to the cloud for processing will con-
sume a lot of network resources and cloud resources. (2) Real-
time performance is difficult to guarantee: data processing
and decision-making are all in the cloud, and the processing
is not timely. (3) Excessive reliance on the network: when the
network is unstable, it cannot process data and control devices
in time. (4) Data security and privacy protection: all sensor
data and control data need to be transmitted through the net-
work, and there are risks such as information eavesdropping,
tampering, fraud and illegal operation of equipment.

These problems will increase the cost of Agricultural IoT
systems (network flow, storage, and computational costs),
reduce stability and availability of system, and make it diffi-
cult to automate production control, especially in large-scale,
factory-planted, and aquaculture. In addition, non-standard
and self-resource limitations of sensors and control devices
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(including computing, storage capabilities, etc.) bring obsta-
cles to device access and linkage control. Therefore, it is
necessary to study and solve the above problems to develop
smart agriculture and promote precision agriculture.

Edge computing provides intelligent services at the edge of
the networks which are close to thing or data source, enabling
each edge of the IoT to have data collection, analysis, comput-
ing, and intelligent processing capabilities to process data, fil-
ter data, and analyze data nearby. In addition, local decision-
making and processing can meet key requirements of network
capabilities and resource constraints, security and privacy
challenges. Therefore, we introduce Edge computing into
the Agricultural IoT system to improve the standardization,
stability, and availability of the agricultural IoT system.

Ill. RESEARCH STATUS OF EDGE COMPUTING IN
AGRICULTURAL loT

This section introduces the concepts of Artificial Intelligence
(AID), blockchain and Virtual Reality /Augmented Reality and
their research status in agriculture. The most important con-
cept is to summarize the research status of Edge computing
and Agricultural IoT application technology.

A. RESEARCH ON ARTIFICIAL INTELLIGENCE IN
AGRICULTURE BASED ON EDGE COMPUTING

Since the breakthrough in deep learning in 2001, AI has
entered a new era and is gradually infiltrating the modern
agricultural field and injecting new vitality and a new impe-
tus into the development of modern agriculture. In addition,
the rapid development of mobile computing technology and
the IoT has generated billions of bytes of data at the edge of
the network. Driven by this trend, AI must be pushed to the
edge of the network to fully release the potential of edge big
data. This situation caused the emergence of Edge computing,
which is an emerging paradigm that pushes computing tasks
and services from the core of the network to the edge of the
network. Al computing is becoming increasingly complex,
and an increasing amount of data is needed. As a result, edge
intelligence (EI) is generated as an interdisciplinary subject
of Al and Edge computing [26]. Edge intelligence leverages
the available data and resources of end devices, edge nodes,
and cloud centers to optimize the total training and reasoning
performance of the deep learning model. In 2-5 years later,
the Edge computing technologies and machine learning will
be in the mainstream [27]. Al has a place in Agricultural IoT
application technology and is primarily employed in video
analysis, unmanned agricultural machinery, pest identifica-
tion, and plant species identification. Therefore, the research
of edge intelligence is one of the most important components
of future research topics.

1) ARTIFICIAL INTELLIGENCE

Al is a branch of computer science. Research in this area
includes robotics, language recognition, image recognition,
natural language processing, and expert systems. The Al
mentioned in this paper primarily involves image processing;
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its main applications in agriculture are pest and disease iden-
tification, crop species identification, and unmanned agricul-
tural machinery.

Since Yann LeCun published Gradient-based learning
applied to document recognition in 1998 [28], deep learning
has been developed for more than 20 years. Represented
by the well-known Convolutional Neural Network (CNN),
deep learning has achieved leapfrog development in recent
years due to the following four classic CNNs: AlexNet [29],
VGG [30], GoogleNet [31] and ResNet [32]. Zhang et al.
improved the GoogleNet model structure and Cifar10 model
structure and applied an improved model to training of
corn leaf pest identification, which improved the optimal
recognition accuracy by 0.4% and 1.7% respectively [33].
Too et al. [34] directly tuned the VGG16, Inception-V4,
ResNet, and DenseNet networks and applied them to train and
test insect images from 14 plants in the PlantVillage image
set. They compared the experimental results by using differ-
ent iterations and attained the optimal recognition accuracy
of 99.75%. Goh et al. constructed an optimal Convolutional
Neural Network to complete the classification task based on
plant mutants and improve the classification success rate [35].
Research on the accuracy of pest and disease identification
is very mature but few studies examine the running time
of the model. In this paper, the author proposes the idea
of using Edge computing to reduce the running time of the
model.

According to the introduction of [26], the author sum-
marizes the framework of edge intelligence, which includes
the edge-based mode, device-based mode, edge-device mode,
and edge-cloud mode, as shown in Fig. 5. In Fig. 5(a),
the terminal devices receive the data and send data to the
edge server. DNN model reasoning is performed on the edge
server, and the forecast results are returned to the device.
As shown in Fig. 5(b), the edge server sends the DNN model
to the mobile device and locally performs model reasoning.
As shown in Fig. 5(c), the device divides the DNN model
into multiple parts. The device executes the DNN model to
a specific layer and sends the intermediate data to the edge
server. The edge server will execute the remaining layers,
and the predicted result is sent to the mobile device. The
device in Fig. 5(d) is responsible for input data collection,
and the DNN model is executed in cooperation with the cloud
through the edge. Due to the development of deep learning,
the commonly employed models of DNN (such as AlexNet
and GoogleNet) have reached millions of neurons. All neu-
rons are concentrated in mobile devices or edge servers; thus,
the hardware requirements are very high. Their concentration
in the cloud server will cause delays; thus, use of the edge-
cloud mode is common.

2) RESEARCH STATUS OF EDGE INTELLIGENCE

In this section, we review the relevant literature on the com-
bination of Al and Edge computing techniques. The role of
edge nodes in Al is summarized in Table 1.
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TABLE 1. Overview of the role of edge computing in artificial intelligence.

Role References  Approach Summary
[37], [38] Fine-grained Relieved changes to
partitioning procedure  the program
[39] DNN programs are Cost is reduced by
Execution mapped  to edge more than 20 times
of part of servers and  data
the program centers
[40] Layer-level Reduced
compression communication
costs
[41] Partition video tasks Shorted  execution
time by 90%
[42] Transferred the trained Increased efficiency
model to the edge
server
Pretreatment  [43] Compressed based on Shorted  response
parameter time and reduced
obsolescence communication
costs
[44] Built network Improved fault
retraining on the edge tolerance
server
Caching of [45], [46] Added a cache model Reduced latency
model to the edge device

a: EXECUTION OF PART OF THE PROGRAM

To solve the problems of insufficient processing capability
and limited resources of terminal equipment, the industry
introduced computational offloading in Mobile Edge Com-
puting [36]. In the application of plant diseases and pests
identification, the role of the edge server is to execute part
of the program, which uses computing offload technology.
At the same time we also need to consider the division
of CNN or DNN procedures. MAUI is a system, which
enables fine-grained energy-aware offload of mobile code to
the infrastructure [37]. It maximizes the potential for energy
savings through fine-grained code while minimizing changes
to applications. It allows part of the program to be executed
locally on the smart phone and others to be run remotely
in the infrastructure. Second, MAUI provides a method for
each application. But MAUI needs to perform an analysis step
for each individual application, while performing DNN par-
titioning requires prediction. The Neurosurgeon lightweight
scheduler proposed by Kang et al., makes decisions based
on the DNN topology without any real-time analysis [38]. It
selects the best partition point, optimizes end-to-end latency,
and performs DNN division between mobile and cloud. The
new computing paradigm reduces the computation required
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by the data center, thus shortening the query service time
and improving the query throughput. The deep network layer
is partitioned to respectively run on mobile devices and
the cloud. Compared to [38], the deep network is further
divided into cloud, fog computing devices and users’ mobile
devices. Decommissioning procedures takes up some time,
but their overall time is much shorter than the time they spend
executing in the cloud center or terminal alone. Teerapit-
tayanon et al. [39] for adapting to the cloud-edge-terminal
distributed hierarchy, proposed a distributed depth neural
network (DDNNs) based on distributed hierarchy. DNN is
divided into various parts by Cloud Exit, Edge Exit and Local
Exit, and then it is mapped into a distributed computing
hierarchy. The structure takes advantage of the geographical
diversity of sensors, which not only reduces communication
costs but also improves the accuracy of target recognition.
DeepX [40] divides the entire DNN or CNN into multiple
parts and executes them on each local device. Its advantage
is that it uses runtime layer compression (RLC), which no
longer focuses on the training phase of deep learning and
the compression of the entire model, but provides the mem-
ory consumed in the reasoning phase and the hierarchical
compression of the computation runtime. Meanwhile, deep
architecture decomposition (DAD) can effectively identify
the units of the depth model quickly, decompose them, and
allocate the blocks to local and remote processors. But DeepX
cannot operate Recurrent Neural Networks (RNN) at present.
The deep network layer is partitioned to respectively run
on mobile devices and the cloud. Sun et al. [41] proposed
mVideo to make full use of resources on collaborative edges
and cloud nodes. The video stream processing platform is
provided with a mechanism to partition video analysis tasks
according to the available resources of mobile edge nodes.
At the edge node, a lightweight DNN model is used to prepro-
cess the video data, and the results are uploaded to the cloud
node for further analysis. Its advantage is that the collected
video data covers a large area and reduces communication
costs. Overall, the execution time is reduced by 90%.

b: PRETREATMENT

The role of the edge server in the application of farm
intelligent monitoring systems and unmanned agricultural
machines is pre-processing. In the large-scale video stream
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analysis, the edge preprocessing is used to make a preliminary
judgment of the object, so as to reduce the communication
time and the load in the cloud center. The architecture of
edge-enhanced video analysis system proposed by M.Ali is
composed of camera terminal, edge node, cloudlet and cloud
center [42]. The CNN model is trained and the generated
model is saved in the cloud. The saved model is then trans-
ferred and distributed on cloudlets and cloud resources for
object inference. In this paper, edge resources are used for
the basic processing stage, which improves efficiency. But
the authors did not experiment with the extensibility of the
architecture. Edge preprocessing also includes compressing
deep neural networks on edge devices. Model compression
was introduced to overcome the difficulty of large computa-
tion and large memory consumption in the terminal of the
model. In 2015, Han’s Deep compression model compres-
sion method was reviewed [43]. Cropping, weight sharing,
quantization, and coding were applied to model compres-
sion and good results are achieved. Hardy er al. proposed a
novel algorithm for updating and compressing models on the
server [44]. It is flexible to perform distributed deep learning
on edge devices through adaptive compression. In addition,
the edge node also plays the role of a supervisor, which
contains a test data set to calculate the accuracy of the central
model. Finally, we found that compressing images in a system
that sends images from edge nodes to cloud nodes can reduce
communication bandwidth. But the introduction of compres-
sion technology also increases the computational overhead
of compression and decompression. In general, transmitting
smaller images may result in better performance overall, but
higher compression rates may negatively affect prediction
accuracy. Chandakkar et al. [45] proposed to update or train
DNNSs on edge devices to provide personalized services. How
to deploy updates / training on mobile devices is our chal-
lenge. Moreover, simply from the experiment of updating the
DNN, it is a hot research topic to study the catastrophic for-
getting after construction in the next few years to maximize
the data performance.

¢: EDGE CACHING

Drolia et al. [46] were inspired by the web cache and pro-
posed to add a cache module to the edge device. The advan-
tage of caching on the edge server is that the images obtained
by the terminals in the same area of the edge device service
often have similarities. By caching the characteristics of these
objects, these queries do not need to be submitted to the cloud,
which can greatly reduce the delay of users. The challenge
is that when the distribution of the query graph changes
drastically, the Distribution Estimator in the edge device
cannot quickly respond to the change. Later, they proposed
Precog [47], which has the same application scenario, and it
caches the models from the edge in the terminal device. This
is a technology of edge and terminal device collaboration.
When an object feature point query is missing on the terminal
device, the image of the query is uploaded to the edge, and
Markov Estimator in the edge records the query and sends the
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updated object probability distribution to the terminal device
along with the query result. Precog has the same strengths and
weaknesses as Cacher.

In general, the program division is aimed at specific neural
networks. Two or more edge servers can be used, and the
combination of splitting and preprocessing and edge caching
can make use of the specific structure of NN, thus providing
more opportunities for optimization.

B. APPLICATION OF EDGE COMPUTING IN TRACEABILITY
OF AGRICULTURAL PRODUCTS

An increasing number of people are eating organic agricul-
tural products. However, due to the lack of common credit
certificates in the market, people are not assured of the
purchase of organic agricultural products. Therefore, tracing
agricultural products is especially important. Wang et al. [48]
and Zhang et al. [49] use an RFID-based meat traceability
system, which traces from the customer to the manufacturer.
It connects to the ONS server of the RFID system via the
Internet and obtains the PML server of the IP address for each
product-related point to obtain detailed information about
product circulation; Lahbabi et al. proposed a traceability
system that can share product certification information in real
time [50]. Yun et al. described the research progress of key
technologies in agricultural product traceability systems [51].
Azram et al. proposed a food document traceability model
that is based on a software product line [52]. In the above
centralized supply chain traceability system, members of the
supply chain rely on an information provider to store, trans-
mit, and share all information.

The centralized system approach poses problems because
it is a monopoly, asymmetric and opaque information system
approach. This can lead to trust issues among players in
the supply chain, including fraud, manipulation and tamper-
ing [53]. The blockchain, which is the underlying technology
of digital currency, securely records transaction information
for all currencies in a decentralized distributed ledger. The
decentralization of the blockchain and the high transparency
ensure that the traceability of stored data cannot be tam-
pered with [54]. Many new distributed applications have
been implemented based on blockchain technology. Many
of these applications focus on the automation and digitiza-
tion of financial sector processes. Automating processes can
save money and increase transparency. Therefore, blockchain
technology can potentially make a significant contribution to
the efficiency and competitiveness of world agriculture.

1) BLOCKCHAIN

In 2008, Satoshi Nakamoto proposed the concept of
blockchain. Blockchain refers to the technical solution of
collectively maintaining a reliable ledger via decentraliza-
tion and distrust [55]-[57]. The infrastructure model of
blockchain technology include a data layer, network layer,
consensus layer, incentive layer, contract layer and applica-
tion layer.
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FIGURE 6. Structure diagram of food safety traceability system based on
blockchain.

The centralized management of agricultural products and
the tampering of data are solved by blockchain technology.
Lucena et al. [58] proposed a method for measuring the
grain quality using blockchains and smart contracts. They
proposed an implementation of a practical case that increased
the value of genetically modified (GM) exports of Brazilian
grain exporters by 15%. To study how to promote value trans-
fer by converting African farmers’ assets, such as livestock,
farmland and agricultural products, into small-scale agricul-
ture, Chinaka [59] and Schneider [60] proposed a product
traceability system that is based on a prototype blockchain to
improve the transparency and automation of the agricultural
sector. Holmberg and Aquist [61] investigated a solution that
is based on blockchain traceability in the dairy industry.
These studies apply the concept of blockchain to product
traceability but lack a framework of blockchain application.
The structure diagram of a blockchain-based food safety
traceability system proposed by Wang et al. [62] and Li and
Wang [63] is shown in Fig 6. Based on this description,
we determine that the application of blockchain in Agricul-
tural IoT is increasing.

2) THE RESEARCH STATUS

Although the blockchain solves the problem in which data
is easily falsified, the scalability of the blockchain is small
and the memory is insufficient. The problem was solved by
the combination of blockchain and edge computing tech-
nology. In table 2 an overview of the combination of edge
computing and blockchain applications. Liu et al. proposed
new electric vehicles cloud and edge (EVCE) as a typical
application scenario of the Internet of Things, which also
involves the transmission and transaction of information and
energy [64]. At the same time, using the blockchain to con-
nect the strong and weak electricity can provide EVCE with
transparency and traceability security guarantees. Xu et al.
proposed a product traceability system that is based on
blockchain and Edge computing technology [65]. The role
of the blockchain is to prevent malicious tampering by third
parties. The edge server performs a difficult hash calcula-
tion with the blockchain node and returns the result to the
blockchain node for verification. If the blockchain node does
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TABLE 2. Overview of the combination of edge computing and
applications of blockchain.

Reference Description

[64] Implemented data processing and analysis during
collaborative operations

[65] Performed more complex hash calculations

[66] Edge computing is applied in the edge nodes of the
blockchain

[70], [71] Managed local networks, packaged data formats, and

provided computing power

not have sufficient internal storage space, it can offload the
entire blockchain to the edge server and store only relatively
new blocks (referred to as storage offload) in the internal
storage. The disadvantage is to consider the computing power
of the edge nodes. In this regard, Stanciu proposed that the
deployment of computing on the edge nodes requires smaller
Dockers containers. The three-layer edge model was men-
tioned in [66]. It consists of physical devices and processes,
edge nodes and cloud services. The blockchain is deployed on
the top layer to ensure transaction security and to be properly
verified. Edge computing solves the inconvenience caused by
blockchain computing applications due to limited computing
power and available energy consumption of Agricultural IoT
terminal equipment. But the paper does not take into account
the problem of the efficiency of identity verification and the
vulnerability of the connection between the edge node and the
terminal. In [67], a distributed trusted authentication system
combining edge computing and blockchain is proposed. The
system is composed of three parts: physical network layer,
blockchain edge layer and blockchain network layer. Edge
computing is applied in the edge nodes of the blockchain
to provide name resolution and edge identity authentication
services based on smart contracts. In addition, the edge com-
puting cache strategy is proposed to improve the hit rate and
reduce the delay.

However, as the application of blockchain technology
becomes more mature, the increase in data has caused inven-
tory inflation [68]. The problem of insufficient storage arises
when the blockchain is only applied to the digital currency,
to which the application scenario of the blockchain is not lim-
ited. For example, in [54], transaction information involves
files, videos, and audio, which generates higher require-
ments for blockchain storage capabilities. However, the high
demand for storage of blockchain data is not conducive to
the development of blockchain. By combining IPFS [69] and
blockchain, a decentralized identity management solution is
proposed. According to [70] and [71], the working principle
of the agricultural product traceability system, which is based
on blockchain technology and combines Edge Computing
and the IPFS mechanism, is shown in Fig. 7: Edge Computing
is used to manage local networks, package data formats, and
provide computing power. Data is transmitted from the intelli-
gent terminal to the edge node through the edge gateway, and
files with large memory, such as photos and videos, are stored
via the IPFS mechanism. The content hash value returned
after the storage is transmitted to the edge node through the
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FIGURE 7. Agricultural product traceability architecture based on edge
calculation, blockchain and IPFS.

cloud server. The value is packaged in the JSON format with
the previous data, and the packaged data is stored in the
blockchain in the form of a transaction. Once the transaction
is completed, the data stored in the blockchain cannot be
tampered with, and the data is queried in real time based on
the hash value after the transaction. In the security traceability
architecture of blockchain products based on edge comput-
ing, edge nodes only play the role of data processing. The
security of data transmission and the efficiency of identity
authentication are not considered. All in all, by building a
decentralized system, blockchain can provide infrastructure
support for the IoT and help solve the ubiquitous security
issues in the IoT. At the same time, the IoT provides a large
number of landing scenarios for the blockchain.

C. STUDY ON THE COMBINATION OF VR/AR AND EDGE
COMPUTING IN AGRICULTURE

Virtual Reality and Augmented Reality have been the focus
of the industry’s attention since 2016. Users have higher and
higher requirements for real-time performance. Scholars have
found that the actual physical or network distance between
the client and the cloud is too large to limit the response
speed of VR / AR. At the same time, the growth rate of
bandwidth resources in the cloud lags far behind the growth
rate of data, which ultimately leads to cloud computing being
unable to meet the higher VR / AR computing requirements
of bandwidth. The idea is to combine edge computing with
VR/AR.

Compared with former cloud computing, Edge computing
can better support AR/VR computing scenarios: (1) Cisco
noted that global devices will generate 600ZB data in 2020 in
the Global Cloud Index [72], 90% of which is temporary data
similar to AR/VR scenarios. A large amount of temporary
data can be stored at the edge nodes to alleviate the pressure
on the cloud bandwidth. (2) High delay, strong jitter and low
data transmission rate caused by the unstable links and routes
in the complex network environment affect the responsive-
ness of cloud services [73]. The edge-side is closer to the

141756

user-side in both geographical distance and network distance,
which ensures lower latency and reduces network jitter, which
renders edge calculation more useful and responsiveness
stronger [11]. (3) The images involved in AR computing, such
as face data, belong to the user’s private data. These data is
stored at the edge, which reduces the possibility of privacy
leakage.

1) VIRTUAL/AUGMENTED REALITY TECHNOLOGY

VR and AR are immersive interactive environments that
are based on computing information [74]. VR emphasizes
the immersion of the virtual world, which emphasizes that
people can interact with objects in the virtual world in a
natural way. While AR emphasizes the ability to incorpo-
rate computer-generated virtual information into real-world
scenarios and does not isolate the connection between the
observer and the real world [75]. VR and AR differ by
the device. The VR device is a closed-type head-mounted
display, which is cumbersome and inconvenient. AR equip-
ment is divided into three types: head-mounted, hand-held
and space-projected by Bimber and Raskar according to the
application scenario [76], which is relatively light.

Recently, the application research of VR/AR technol-
ogy in agriculture has emerged. According to the study of
Cupial [77], AR has many applications in agriculture and
will become an important technology in the Agricultural
IoT in the future. Fernandez et al. [78] developed a tractor
assist system that is based on wearable AR technology. When
a tractor is working in the field, the parts that have been
treated in the field are displayed in the field of view of
the driver’s AR glasses. Vidal et al. reviewed the current
status of AR and proposed its new applications in weed
science [79]. It includes software for image identification for
species identification and quantification of weeds, and selec-
tion of herbicides based on weed density. Nigam et al. [80]
proposed a primitive augmented reality system. They use
augmented reality technology to help farmers identify insects
and successfully utilize integrated pest management. Gener-
ally, farmers are not trained in entomology, and they tend
to destroy the insects they find in the field. In fact, not all
insects should be eliminated because the prosperity of fields
and ecosystems depends on their existence. The authors of the
paper proposed an innovative augmented reality application
that they intend to help farmers identify insects and use inte-
grated pest management. The system made recommendations
for farmers to use pesticides reasonably and reduce pollution.

Another interesting augmented reality application for
greenhouses shown in Neto and Doke [81]. This applica-
tion uses a network of humidity and temperature sensors to
sense conditions to develop staphylococcus fungi in tomatoes
and warn farmers through their mobile devices. In addition,
Liu et al. noted the use of AR technology to simulate the
growth of plants and livestock, to visualize information and
help users manage different agricultural jobs [82]. Janna
and Timo [83] proposed the use of drones and AR technol-
ogy to accurately control the fertilization rate in agriculture.
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TABLE 3. The role of edge servers in VR/AR.

Function  Reference  Techniques Merits Demerits
[87] Data is  Improved hit It has not be
cached on the rate by 10% verified in edge
user terminal server
[88] Collected Reduced VR devices are
user communication difficult to
requirements costs connect  with
for VR edge
content with
UAV
Caching [89] Offloaded Relieved data  There was
in edge computing center load impact on the
tasks to edge fine-grained
servers performance of
communication
expense
[90] Predicted and  Shorted waiting Result in wrong
cached  the time prediction
next  video when the object
frame on the dramatically
edge server changed
[91] Performed Enhanced the Made
AR portability — of computing
computing AR devices performance of
tasks and edge server to
stored 3D be considered
models at the
edge server
Performi  [92] Animation is Reduced Lead to
ng some compressed rendering costs anamorphic
VR/AR and streamed, animation
tasks and sent to
the local edge
server for
rendering

A drone is responsible for collecting soil information, and
the AR technology guides the user to the generated sample
points. In applications in agriculture, a mix of AR and VR
technologies are utilized where virtual and actual environ-
ments are smoothly combined [84]. Premsankar et al. [85]
experimentally demonstrated that cloud deployments have
higher latency than edges. Edge computing was introduced.
Although various studies have investigated edge caching and
computing, their use for AR/VR applications has been given
minimal attention [86].

2) RESEARCH STATUS

In this section, we learned that the role of edge computing in
AR/VR is mainly to store in edge and execute some VR/AR
tasks at the edge. In table 3, we summarize the role of edge
servers in VR/AR.

In fact, the role of edge computing in VR/AR is mainly
edge caching. In edge caching, caching strategies can be
divided into proactive and reactive. In proactive caching,
the content to be requested is predicted and brought to the
cache. In reactive caching, the content obtained is cached
and is updated according to user needs. S.Park et al. came
up with the idea of caching on the client side [87]. The
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FIGURE 8. Structural diagram of the combination of edge calculation and
VR/AR in agriculture.

priority cache mentioned in the paper can be used in the edge
cache. M. Chen et al. studied edge caching in VR networks
to reduce backhaul traffic and meet real-time requirements
of VR users [88]. In their proposal, a unmanned aerial vehi-
cles (UAVs) is used to collect the VR content requested by the
user and transmit it to the small base station and the retrograde
cache. Deep learning algorithms is implemented to find the
best caching strategy. In J. Chakareski’s research, the authors
used edge computing to overcome the computing limitations
of VR devices by enabling users to offload computing tasks
to edge servers [89]. The author’s goal is to use the Lya-
punov stochastic optimization model to minimize calcula-
tion and transmission power consumption, but it is affected
by co-channel interference, reliability and delay constraints.
M. S. Elbamby et al. proposed an proactive caching and
computing scheme to meet the high reliability and low latency
requirements of VR users [90]. In the paper, information
about user actions and game actions is used to pre-calculate
and cache the next video frame to minimize latency while
multi-connectivity is applied to ensure reliability. Although it
is aimed at the application of VR games, it is also applicable
the planting of plants in the online VR of the Agricultural
IoT. To briefly summarize, the architecture diagram of the
edge server playing a role of caching in VR/AR is shown
in Figure 8.

Edge computing can also perform some parts VR/AR
tasks. Yan and Qiao [91] proposed a method for solv-
ing the delay and bandwidth for Web AR that primar-
ily deployed the edge server between the clients, assumes
AR computing tasks and storage of 3D models, which
is closer to the user end and satisfies the user’s require-
ments for real-time performance. First, the cloud node ini-
tiates full AR service access. After receiving a user request,
it selects the most appropriate edge computing node and redi-
rects the request based on the IP address. Then, according to
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the calculation task division, an independent AR engine and
3D model database are used to identify the target image. The
architecture overcomes the difficulties of poor portability of
AR devices, poor pure front-end performance, and high cloud
computing costs. In addition, Hou er al. [92] proposed ren-
dering on edge servers in order to provide a more lightweight
wireless VR / AR experience. The paper lists the advantages
and disadvantages of rendering on cloud servers, remote edge
servers, and local edge servers: The advantage of cloud server
rendering is that it allows users to experience VR / AR when
moving or anywhere, but the bandwidth cost is high, and it is
easy to cause network delay due to congestion; Remote edge
server rendering can also achieve mobility, but its mobility
depends on the movement of the mobile device, and there
is a delay; Local edge server rendering does not provide
mobility or provides very limited mobility but no latency.
We can choose the server for rendering according to our
needs. Finally, we found that edge computing reduced the
response time of VR / AR, shared the computing power of
VR / AR terminals and made VR / AR more widely used in
agriculture.

IV. CHALLENGES

A. DATA PROCESSING

A large amount of data is generated in the agricultural IoT,
so edge computing meets challenges related to data process-
ing. In terms of data generation, edge nodes need to have
storage plans, which determine whether the data is structured,
semi-structured, or unstructured. So the IT team should know
how much data and what type of data the edge node will have
on the farm in the short or long term. In terms of data storage
time, in some cases, the collected data is retained for a long
time. However, in some cases, only a part of the data need to
be retained or stored for a short period of time. For example,
in the image recognition of pests and diseases under edge
computing, when edge nodes execute part of the program,
the original data can be discarded and only the feature data
can be saved. In terms of data transfer, not all collected data
must be moved to another platform. In some cases, only a
portion of the data needs to be moved, or only data that has
been aggregated, cleaned, or transformed in some other way,
and may not even need to be moved. Much depends on the
processing and analysis after data collection.

B. TASK ASSIGNMENT

In the paper, the Agricultural IoT is mainly end-edge-cloud
collaboration that is the terminal, edge nodes and cloud center
work together. So assignment of task is directly related to
the execution and efficiency of the tasks. Partitioning in the
edge environment needs to decompose the application into
multiple components according to various state information,
such as resources, energy consumption and response delay of
the edge node. While the semantics of the original application
is preserved, the program components are placed on different
edge nodes. The Neurosurgeon proposed by Kang et al. [38]
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refers to the use of Fine-grained Computation Partitioning
to partition the DNN model, which is executed at the edge
or the cloud. How to design and implement the application
partitioning technology in the Edge computing environment
enables the proper distribution of application components
among multiple heterogeneous edge nodes. Thus, the high
performance and reliability of the application is obtained in
the Edge computing environment. Some scholars are solving
the problem of task allocation. For example, Using Lyapunov
optimization theory to design a resource allocation algorithm
based on a single slot. The problem of task offloading and
resource allocation are transformed into three sub-problems
of user local computing resource allocation, power and loan
resource allocation, and edge server resource allocation.

C. PRIVACY PROTECTION AND SECURITY

Computing closed to the data source is an effective way to
protect privacy and data security. However, in the environ-
ment of Edge computing, privacy protection and security face
the following challenges: (1) farmers’ awareness of privacy
and security is weak. The survey shows that wireless con-
nection uses default passwords, which indicates that many
users do not protect their personal privacy. In this case, people
can easily use a webcam, temperature and humidity sensors
and other equipment to spy on a farm’s confidential plant-
ing and breeding data. Farmers’ awareness for privacy and
security should be strengthened, and they are encouraged to
change their passwords. (2) higher requirements exist for the
physical security of edge equipment. Edge devices do not
operate in fixed places, such as cloud computing centers.
Most of these devices are open to the outside world in an
uncontrolled environment and data on edge devices is more
valuable than data on IoT terminals; they are more vulnerable.
The access control system is added to the edge. In principle,
this access control system should be suitable for multi-entity
access control between different trust domains. At the same
time, various factors such as geographic location and resource
ownership should also be considered. (3) effective tools for
data privacy and security are lacking. Although many data
security methods are available, they are not fully applica-
ble to Edge computing architectures. The network edge is
more vulnerable to hacking in a highly dynamic environment.
(4) distributed management is more difficult. Each endpoint
has a specific vulnerability and should be protected differ-
ently. How to manage vast infrastructure is one of the chal-
lenges that we face.

D. SERVICE STABILITY

The farms occupy a vast area, so they are all in the wilder-
ness and the signal is poor. Service stability is especially
important. Any kind of reliable system has four character-
istics: distinguishability, scalability, isolation and reliability.
Distinguishability: the rapid development of the IoT has
caused the deployment of multiple services at the network
edge. However, these services have different priorities. Key
services need to be executed before common services are
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executed. For example, failure judgment and failure alarm of
an unmanned harvester have priority over straight driving.
Scalability: when certain equipment is worn out, the first
problem to be solved is whether the newly purchased equip-
ment can continue the service execution of the original
system. We can design a flexible and extended service man-
agement layer to solve this problem. Isolation: in a distributed
system, shared resources can be managed by different syn-
chronization mechanisms, such as locks or tokens. In the edge
system, this problem is more complicated. In the automatic
watering system, if the program does not respond, the user
can still water. Issues of isolation can be solved by deploy-
ing or uninstall the framework and adding access control.
Reliability: when the edge device fails, the Edge computing
system can inform the user which component is in trouble.
Cao et al. discovered that the data transmission accuracy of
edge equipment is lower in the case of low power and other
unreliable conditions [93]. Thus, saving energy is a way to
improve reliability.

V. CONCLUSION AND PROSPECTS
Edge computing, as an emerging network architecture, has
realized localized services and improved user experience.
Edge computing is extensively employed in the retail, finan-
cial, and agricultural fields. In this study, we comprehen-
sively discuss the concepts related to Edge computing and
Agricultural IoT. We have transformed the research status
of Edge computing applications in the agricultural field into
the research status of Edge computing combined with Al,
blockchain, and VR/AR. For Al, Edge computing can per-
form data preprocessing and share the computing of the cloud
server and storage models. For blockchain technology, Edge
computing solves the problems caused by a lack of com-
puting power and available energy consumption for terminal
devices to the blockchain. The data stored in the edge server
can ensure the reliability and security of the data by using
blockchain technology. For VR/AR, Edge computing primar-
ily reduces the response time. Some programs on the terminal
can be offloaded to the edge server, which makes VR/AR
devices lighter; thus, the scope of use is expanded. We identi-
fied and discussed four open research challenges. This study
provides information for future researchers to learn about
the application of Edge computing in the agricultural field
and advances the research to resolve the unaddressed issues.
As the two important supports of the digital transformation
of the industry, Edge computing and cloud computing will
jointly promote the Agricultural IoT to create greater value in
the aspects of network, business, application and intelligence.
Most of the current research on edge computing is applied
in fields such as smart cities and smart homes. Few scholars
have studied the application of edge computing in agriculture.
In the next step, we will focus on the difference between the
program running under the edge computing and the cloud
center, and study the program specifically applicable to the
edge computing architecture to ensure the integrity, robust-
ness and accuracy of the program under the edge computing
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environment. In the future, edge computing will have a broad
market in the agricultural field. According to IDC forecasts,
50% of the Internet of Things with more than 50 billion
terminals will face network bandwidth limitations, and 40%
of data will need to be analyzed, processed and cached at the
edge of the network. The size of the edge computing market
will exceed trillions, and it will become an emerging market
that is evenly matched with cloud computing. The vast market
space of edge computing will bring unlimited imagination
and new opportunities to agriculture.
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