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ABSTRACT Synchronous Data Flow (SDF) is a graphical computation model used for analyzing digital
signal processing and real time multimedia applications. In general, these applications have two primary
performance metrics – throughput and latency. Latency is important in multimedia processing applications
such as video-conferencing, Internet telephony and games since latency surpassing a specific limit results
in poor quality of service (QoS). Past work had focused on computing the latency of SDF graphs on
homogeneous multiprocessor platforms. In this paper, we present an approach to compute the latency of a
static schedule for a given unfolding factor with an optimal throughput for an SDF graph on a heterogeneous
multiprocessor platform using timed automata. We use timed automata as a semantic model to represent
the system model, which includes a synchronous data flow graph and an execution platform. We use the
UPPAAL model-checker to specify the resulting network of timed automata and compute the latency.

INDEX TERMS Synchronous dataflow, throughput, latency, timed automata, UPPAAL.

I. INTRODUCTION
Real-time systems usually have throughput and latency con-
straints. System designers need to verify whether the system
meets these constraints. SDF [11] is a graphical computation
model used for analyzing digital signal processing and real
time multimedia applications. These applications are often
implemented on multiprocessor platforms, under real time
and resource constraints [15], [16]. An important problem is
to predict the timing behavior of such applications. In general,
these applications have two primary performance metrics –
throughput and latency. Throughput is the rate at which the
system can process inputs. Latency is the duration between
receiving a certain input sample and producing the processed
sample.

The throughput analysis of Homogeneous SDF (HSDF)
graph has been studied in [6], [10]. The throughput analysis
of SDF graphs is carried out by transforming an SDF graph
to an equivalent Homogeneous SDF (HSDF) graph [11], [13],
which leads to a large increase in the size of the graph. In [8]
the throughput of SDF graphs is measured by exploring the
state-space. The maximal throughput is achieved by firing
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every actor as soon as it is enabled (known as self-timed
execution). This approach works directly on an SDF graph,
avoiding the conversion to an HSDF graph. For homogeneous
multiprocessor platforms self-timed execution [8] gives max-
imal throughput but it is not true for heterogeneous multipro-
cessor platforms [17]. The paper [17] presents a method to
find the maximal throughput on a heterogeneous multipro-
cessor platform for a given unfolding factor f .

Latency is important inmultimedia processing applications
such as video-conferencing, Internet telephony and games
since latency surpassing a specific limit results in poor quality
of service (QoS). The paper [9] proposed an algorithm that
gives the minimum achievable latency between the execu-
tions of any two actors in the SDF graph on a homogeneous
multiprocessor platform. It also proposed a heuristic that
optimizes the latency under a given throughput. The algo-
rithm presented in the paper [9] can not be used to compute
the minimum latency for an SDF graph on heterogeneous
multiprocessor platform as explained in section II-B.

Ahmad et al. [1], Zhu et al. [17] and Fakih et al. [7]
have previously used timed automata (TA) [2] to model
the timing behavior of SDF graphs. The paper [1]
finds the maximal throughput for an SDF graph. The
paper [17] presents a method for scheduling SDF graphs
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on heterogeneous multiprocessor platforms. The schedules
are either throughput-optimal with best energy consumption
or energy consumption-optimal with the best throughput for
a given unfolding factor. The paper [7] finds the timing
bounds of multiple (hard real-time) SDF-based applications
mapped into a multicore platform. There is no existing work
that presents a technique to compute the latency of an SDF
graph using timed automata, especially for heterogeneous
multiprocessor platforms.

In this paper, we propose an approach to compute the
latency of a static schedule for a given unfolding factor with
an optimal throughput for an SDF graph on a heterogeneous
multiprocessor platform using timed automata. This approach
can be used to explore the trade-off between throughput and
latency by changing the unfolding factor. This approach can
also be used to find the minimum achievable latency between
the executions of any two actors in the SDF graph on a
homogeneous multiprocessor platform.

II. SYNCHRONOUS DATA FLOW GRAPHS (SDFGs)
In DSP and multimedia applications, there are sets of tasks
to be executed periodically in a certain order. These tasks
consume and produce fixed amounts of data in each exe-
cution. An SDFG [11] is a natural model for describing
this class of applications. An SDFG is a directed, connected
graph consisting of nodes and edges. Nodes model tasks are
called actors and edges model data flow among actors are
called channels. The execution of an actor is defined in terms
of firing. The data items communicated between actors are
called tokens. An actor is enabled for firing when enough
tokens are available on all of its inputs. When an actor fires
it consumes some pre-specified number of tokens from every
input channel and produces a pre-specified number of tokens
on every output channel.

LetN+ be the set of positive natural numbers,N the natural
numbers.
Definition 1 (SDFG): An SDFG is a tuple G = (A,D,C0)

where:

• A is finite set of actors,
• D is finite set of channels D ⊆ A2 × N+2,
• C0: D → N is a function where C0(e) is the number of
initial tokens on channel e in D.

For an SDFG (A,D,C0), a channel d = (s, t, p, c) denotes
the data dependency of actor t on actor s, where p and c are the
production and consumption rates of tokens of s and t respec-
tively. When actor s fires it produces p tokens on channel d
and when actor t fires it consumes c tokens from channel d .
For a channel d = (s, t, p, c) in D, the consumption rate of
d is defined by CR(d) = c and the production rate of d is
defined by PR(d) = p. An SDFG where all the production
and consumption rates are one is called HSDF.
Definition 2 (Channel State): A channel state of an SDFG

(A,D,C0) is a mapping C : D 7→ N that associates with each
channel the number of tokens present in that channel at that
state. C0 represents the initial channel state of the SDFG.

For every actor a ∈ A of an SDFG (A,D,C0), we denote
its set of input (output) channels by InC(a) (OutC(a)) where:

InC(a) =
{
(a′, a, p, c) ∈ D | a′ ∈ A ∧ p, c ∈ N+

}
OutC(a) =

{
(a, a′, p, c) ∈ D | a′ ∈ A ∧ p, c ∈ N+

}
Definition 3 (Enabled Actor): An actor a ∈ A of an SDFG

(A,D,C0) is called enabled in a channel state Ci if Ci(d) ≥ qi
for each channel d = (a′, a, pi, qi) in Inc(a).
Definition 4 (Actor Firing): If an actor a ∈ A of an

SDFG (A,D,C0) is enabled in channel state Ci and it fires,
the resulting channel state Ci+1 is defined by Ci+1(e) =
C(e) − c for each input channel e = (s, a, p, c) in InC(a),
Ci+1(e) = C(e) + p for each output channel e = (a, t, p, c)
in OutC(a), and Ci+1(e) = C(e) for all remaining channels.
The channel state transition is denoted as Ci

ai
−→ Ci+1.

Definition 5 (Execution): An execution σ of an SDFG
(A,D,C0) is an infinite sequence of channel states
C0,C1, · · · starting from the initial state C0, such that ∀i ≥
0, Ci

ai
−→ Ci+1.

An SDFG (A,D,C0) has a deadlock if and only if it has
an execution that leads to a channel state Ci where ∀a ∈ A,
∃d ∈ InC(a) such that Ci(d) � CR(d).
Definition 6 (Repetition Vector): A repetition vector of an

SDFG (A,D,C0) is a function γ : A → N+ such that for
every channel (s, t, p, c) ∈ D, the following conditions holds

p · γ (s) = c · γ (t)
A repetition vector γ is called non-trivial if ∀a ∈

A, γ (a) > 0. An SDFG is consistent if it has a non-trivial
repetition vector. A repetition vector indicates the number
of times each of the actors of the SDFG must fire so that
there is no change in the token distribution. An iteration
is a set of firings such that for each ai ∈ A, the set con-
tains γ (ai) firing of ai. In the rest of the paper, we assume
that SDFGs are strongly connected, consistent and deadlock
free.
Example 1: Fig. 1(a) shows an SDFG G1, consisting of

three actors, labeled by their names. The numbers at either
end of the channel connecting u and v indicate that, when
u fires it produces two tokens on this channel whereas
when v fires it consumes one token from this channel. Ini-
tially channels may contain some tokens, denoted by black
dots. The repetition vector of the SDFG G1 is 〈(u, 1), (v, 2),
(w, 2)〉.

For performance analysis an SDFG is extendedwith timing
information. Let an execution platform P be a set of proces-
sors. In an execution platform P, a function E : A × P→ N
associates with each actor a ∈ A, the amount of time it needs
to fire on processor p ∈ P. If processors are identical in
P then the execution platform P is called a homogeneous
multiprocessor platform, else it is called a heterogeneous
multiprocessor platform.
Definition 7 (System Model): A system model includes

an SDFG G and its execution platform P, denoted by
M = (G,P).
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FIGURE 1. The system model M1 and its schedule (a) The SDFG G1; (b) the execution platform P1 and execution time of actors in G1 on different
processor; (c) the Self-timed execution schedule; (d) a periodic schedule; (e) a periodic schedule with unfolding factor 2; (f) Latency Graph G1L(u,w)

.

A. THROUGHPUT
Definition 8 (Throughput): The throughput of an SDFGG

is the long run average of iterations per unit time, i.e.,

Throughput(G) = lim
t→∞

ite(t)
t

where ite(t) is the number of iterations in time t.
Given a system model M = (G,P), the self-timed execu-

tion provides the maximal throughput for an SDFG G on a
homogeneous multiprocessor platform [13]. In a self-timed
execution all actors fire as soon as they are enabled. For every
consistent and strongly connected SDFG, the state-space
of a self timed execution consists of a finite sequence of
states, called the transient phase followed by a sequence of
states which is repeated infinitely often, called the periodic
phase [8]. On a heterogeneous multiprocessor platform the
self-timed execution does not provide the maximal through-
put [17]. Scheduling f iterations as one schedule cycle may
increase the throughput. This schedule is called the unfolding-
schedule [12] and f is called the unfolding factor.
Example 2 ([17]): Fig. 1 shows a system model M1 =

(G1,P1), where G1 is an SDFG shown in Fig. 1(a) and P1,
shown in Fig. 1(b), is a heterogeneous multiprocessor plat-
form with two processors. Fig. 1(c) illustrates the self-timed
execution of G1 on the platform P1. For this self-timed sched-
ule the throughput of G1 is 1/8. Another periodic schedule
of G1 shown in Fig. 1(d). Here the throughput of G1 is 1/6,
which is more than the throughput of the self-timed execution.
Fig. 1(e) is a periodic schedule of G1 with unfolding factor 2.
This schedule provides the throughput 2/11, which is more
than that of the schedule shown in Fig. 1(d).

B. LATENCY
Latency is the time between initiating an action and receiving
the response. In an SDFG the actions are firing of actors and
the responses are consumption of produced tokens by some
other actors. To define latency of an SDFG we need to define
the notions of corresponding firing [9].

Definition 9 (Corresponding Firing [9]): For a path a1,
a2, · · · , ak from actor a1 to ak of an SDFG (A,D,C0) the
j1-th firing of a1 corresponds to the ji-th firing of ai for
1 < i ≤ k if for each 1 < l < i, the jl-th firing of al is
its first firing that consumes at least one token produced by
the jl−1-th firing of al−1. The firing of ak corresponding to
the j1-th firing of a1 is denoted by cf (a1, j1, ak ).
In an HSDF there is a one-to-one correspondence between

the firing of some source actor and some destination since
the firing rates are one. In an SDFG, the firing rates of actors
are different therefore a one-to-one correspondence does not
exist between actors. In order to define the latency for an
SDFG, [9] introduces the latency graph of an SDFG. The
latency graph is an SDFG with an explicit source actor added
to the source of latency analysis and a destination actor added
to the intended destination.
Definition 10 (Latency Graph [9]): The latency graph for

actors a, b of an SDFG G is GL(a,b) = (AL ,DL ,C0L)
where

• AL = A ∪ {src, dst} and {src, dst} ∩ A = ∅,
• DL = D ∪ {(src, a, γ (a), 1), (b, dst, 1, γ (b))},
• C0L = C0 ∪ {((src, a, γ (a), 1), 0), ((b, dst, 1, γ (b), 0)},
The src and dst actors fire exactly once in every iteration

of the graph and take zero time to execute, and hence the
timing behavior of the graph does not change. Fig. 1(f) shows
the latency graph for actors u and w of the SDFG shown
in Fig. 1(a).

Let Fσa,k denote the finishing time of the kth firing of actor
a ∈ A in execution σ . The set FE contains all feasible
executions.
Definition 11 (Latency [9]): Let GL(a,b) = (AL ,DL ,C0L)

be the latency graph. For an execution σ the time delay
between the k-th firing of src and its corresponding fir-
ing of dst is called the k-th latency of a and b, denoted
as Lσk (a, b),

Lσk (a, b) = Fσdst,cf (src,k,dst) − F
σ
src,k
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The latency of actors a and b in execution σ , Lσ (a, b), is the
maximum k-th latency of a and b for all firings of a:

Lσ (a, b) = max
k∈N+

Lσk (a, b)

The minimum latency of actors a and b, Lmin(a, b), is the
minimum over all feasible executions in FE:

Lmin(a, b) = min
σ∈FE

Lσ (a, b)

Proposition 1 ([9]): On a homogeneous multiprocessor
platform for every latency graph GL(a,b), there is a δ ∈ N,
such that ∀k ∈ N+, cf (src, k, dst) = k + δ.

Proposition 1 states that there is a one-to-one correspon-
dence between src and dst firings for a latency graph on
a homogeneous multiprocessor platform. On a heteroge-
neous multiprocessor platform a one-to-one correspondence
between src and dst firings for a latency graph may not
exist. Consider the execution shown in Fig. 1(e) of latency
graph G1L(u,w) shown in Fig. 1(f) on the platform P1 shown
in Fig. 1(b). For this execution the dst firing at time 8 corre-
sponds to src firings at time 0 and time 4.
The paper [9] proposed an algorithm that gives the mini-

mum achievable latency between the executions of any two
actors in an SDFG on a homogeneous multiprocessor plat-
form. The algorithm consists of 4 phases:

1) Except src execute actors firings until src is the only
enabled actor.

2) Fire src once.
3) Execute without unnecessary delays all actors firings

required for enabling the dst actor.
4) Fire dst once.

Fig. 2(d) shows a minimum latency execution of the
latency graph shown in Fig. 2(a) on the platform P2 shown
in Fig. 2(b). The latency between actors a and b for this
execution is 10 which is the total delay between actors src
and dst . Fig. 2(c) shows another execution of the latency
graph G2L(a,b) on the platform P2. The latency between actors
a and b for this execution is 8 which is less than the latency
computed by the algorithm presented in paper [9]. Hence the
algorithm presented in [9] cannot be used to compute the
minimum achievable latency between two actors in an SDFG
on a heterogeneous multiprocessor platform.

We can find the firing of dst corresponding to a firing of
src for a latency graph using a scheme for numbering tokens
as follows:

• Whenever src fires, assign a successive number to all
the tokens produced by it starting from one. All initial
tokens are numbered zero.

• An intermediate actor consumes the tokens in FIFO
manner and produces tokens with the number which is
the maximum of all the token numbers consumed by it
from all its incoming edges.

• When dst consumes the token numbered i for the first
time this indicates that this firing of dst corresponds to
the i-th firing of src.

• In some cases, dst may receive token numbered i fol-
lowed by token numbered i + k for some k > 0.
In such a case, we consider dst to have received all the
intermediate tokens numbered i+1, · · · , i+k−1 at the
same time as the token numbered i+ k .

In this paper, we are interested in finding the latency of a
static schedule for a given unfolding factor with an optimal
throughput for an SDFG on a heterogeneous multiprocessor
platform. Since these schedules are periodic, we will find the
firing of dst corresponding to all the firings of src in the first
schedule cycle of f iterations.

III. TIMED AUTOMATA
Alur and Dill proposed timed automata as a model to rep-
resent the behavior of time-critical systems [2]. A timed
automaton is a finite automaton extended with real-valued
variables called clocks. All the clocks progress synchronously
with time. Clocks may only be inspected, and reset to zero.
After resetting the clocks, they start increasing their values
implicitly as time progresses, i.e., the value of the clock
denotes the time that has been elapsed since its last reset.
Conditions on the clock values (clock constraints) are used as
enabling conditions (guards) of transitions. Clock constraints
are also used to limit the amount of time to be spent in a
location.
Definition 12 (Clock Constraints): The clock constraints

over the set Clk of clocks denoted CC(Clk), is defined by the
grammar:

g ::= x FG c | x − y FG c | g ∧ g | true

where x, y ∈ Clk, c ∈ N and FG∈ {<,≤,=,≥, >}
Definition 13 (Timed Automata): A timed automaton is a

tuple TA = (L,Act,Clk,T , l0, Inv) where:
• L is a finite set of locations;
• l0 ∈ L is the initial location;
• Act is finite set of actions;
• Clk is finite set of clocks.
• T ⊆ L × CC(Clk)× 2Clk × L is a transition relation.
• Inv : L → CC(Clk) is an invariant-assignment function.
The location invariant Inv(l) specifies how long the timed

automaton may stay in that location, i.e., location l should be
left before the invariant I (l) becomes invalid.
We represent the timed automaton by a graph where ver-

tices represent the locations and edges are labeled with tuple
(g, α, r) where g is a guard, α is an action, r ⊆ Clk is set
of clocks. The interpretation of l

g,α,r
−−−→ l ′ is that the timed

automaton can move from location l to l ′ when guard g holds.
While moving from location l to l ′, any clocks in r will be
reset to zero and action α is performed.
Definition 14 (Clock Valuation): A clock valuation η for

the set Clk is a function η : Clk → R+, which assign a time
value to each clock, i.e., for x ∈ Clk its current value is η(x).
Let η0(x) = 0 for all x in Clk. We write η ∈ g to mean that
clock values denoted by η satisfy the guard g.
The set of all clock valuation over Clk is denoted by

Eval(Clk). For positive real d , η+d is defined by (η+d)(x) =
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FIGURE 2. The system model M2 and its schedule (a) the Latency Graph G2L(a,b)
; (b) the execution platform P2 and execution time of actors in G2L(a,b)

on different processor and the execution time of src and dst are 0; (c) a periodic schedule with unfolding factor 1; (d) A minimum latency execution
of G2L(a,b)

.

η(x) + d . For r ⊆ Clk , let [r 7→ 0]η denote the clock
assignment that maps all clocks in r to 0 and agrees with η
for other clocks in Clk \ r .
There are two possible ways in which a timed automaton

can proceed: by taking a transition in the timed automaton
(discrete transition), or letting the time progress while staying
in a location (delay transition). The state of a timed automa-
ton is determined by its current location and the current
values of all its clocks. Due to the continuous time domain
timed automata have infinitely many states. Thus the timed
automata can be considered as finite description of an infinite
transition systems.
Definition 15 (Semantics of Timed Automata): Let (L,Act,

Clk,T , l0, Inv) be a timed automaton. The semantic is defined
as a transition system (S, s0,→), where S ⊆ L × Eval(Clk)
is the set of the states, s0 = 〈l0, η0〉 is the initial state, and
→⊆ S × (R+ ∪Act)× S is the transition relation defined by
the rules:

• delay transition, 〈l, η〉
d
−→ 〈l, η + d〉 if ∀d ′ : 0 ≤ d ′ ≤

d ⇒ η + d ′ ∈ Inv(l) where d ∈ R+.
• discrete transition, 〈l, η〉

a
−→ 〈l ′, η′〉 if l

g,a,r
−−→ l ′, η ∈

g, η′ = [r 7→ 0]η and η′ ∈ Inv(l ′).

A. NETWORK OF TIMED AUTOMATA
A network of timed automata [4] is the parallel composition
A1 ‖ · · · ‖ An of a set of timed automata A1, · · · ,An
where Ai = (Li,Act,Clk,Ti, l0i , Invi), 1 ≤ i ≤ n over a
common set of clocks and actions. A location vector is a
vector l̄ = (l1, . . . , ln) and the invariant at l̄ is defined by
Inv(l̄) = ∧iInvi(li). Synchronous communication between
timed automaton is carried out by handshaking synchronized

input and output actions. The notation l̄[l ′i/li] represents the
vector where ith element li of l̄ is replaced by l ′i . For an action
a ∈ Act , a? denotes an input action and a! denotes an output
action and the internal action is represented by τ .
Definition 16 (Semantics of a Network of Timed

Automata): Let Ai = (Li,Act,Clk,Ti, l0i , Invi) be a network
of n timed automata. Let l̄0 = (l01 , . . . , l

0
n ) be the initial

location vector. The semantic is given as for the single timed
automata in terms of transition system (S, s0,→), where S =
(L1×· · ·×Ln)×Eval(Clk) is the set of states, s0 = (l̄0, η0) is
the initial state, and→⊆ S× (R+∪Act)×S is the transition
relation such that:
• 〈l̄, η〉

d
−→ 〈l̄, η+d〉 if ∀d ′ : 0 ≤ d ′ ≤ d ⇒ η+d ′ ∈ Inv(l̄)

where d ∈ R+.
• 〈l̄, η〉

a
−→ 〈l̄[l ′i/li], η

′
〉 if li

g,τ,r
−−→ l ′i , η ∈ g, η

′
= [r 7→

0]η and η′ ∈ Inv(l̄[l ′i/li]).

• 〈l̄, η〉
a
−→ 〈l̄[l ′i/li, l

′
j/lj], η

′
〉 if li

gi,c?,ri
−−−−→ l ′i and lj

gj,c!,rj
−−−→

l ′j η ∈ gi ∧ gj, η
′
= [ri ∪ rj 7→ 0]η and η′ ∈ Inv(l̄[l ′i/li,

l ′j/lj]).

IV. TIMED AUTOMATA FOR THE SYSTEM MODEL
In this section we will describe how the system model M =
(GL(a,b),P) can be formalized using timed automata, where
GL(a,b) = (AL ,DL ,C0L) is the latency graph of an SDFGG =
(A,D,C0) and P is an execution platform. The entire system
model can be defined as System, which can be described as
follows:

System = AGL(a,b) ‖ Processor1 ‖ · · · ‖ Processorn

where ‖ denotes parallel composition of timed automata in
UPPAAL [3], shown in Fig. 3. The timed automaton AGL(a,b)
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FIGURE 3. UPPAAL model for system model M1 = (G1L(u,w)
, P1).
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FIGURE 3. (Continued.) UPPAAL model for system model M1 = (G1L(u,w)
, P1).

models the latency graph GL(a,b) as shown in Fig. 3(a).
The timed automata Processor0, . . . ,Processorn−1 model
the processors p0, . . . , pn−1 of P, as shown in Fig. 3(b).
These timed automata are adapted from [1] with appropriate
modification for computing latency as defined below. AGL(a,b)
is defined as,

AGL(a,b) = {L,Act,Clk,T , l
0, Inv}

where AGL(a,b) has three locations: L = {Initial,
RepeatCycle,EndCycle}, with initial location l0 =
Initial (marked with double circle). When the timed
automaton AGL(a,b) is in the EndCycle location all actors a
in AL have completed firing f × γ (a) times, where f is the
unfolding factor and γ (a) is the number of times an actor
a must fire in each iteration. At the location EndCycle,
AGL(a,b) decides whether it should repeat another schedule
cycle of f iterations.
The action set Act contains two actions fire! and end?

to synchronize with the timed automata Processor0, . . . ,
Processorn−1. When an actor a is enabled it synchronizes
with a timed automaton Pocessori by fire[a][i]!. The
Processori has a corresponding Fire[a][i]?. For each pi ∈
P and a ∈ AL , Fire[a][i]? represents the start of the firing

of the actor a on the processor pi and end[a][i]? represents
its ending.

In AGL(a,b) there are no location invariants and Clk is
the set {src_start1, . . . , src_startf , dst_end1, . . . , dst_endf }
of 2f clocks. The src_starti clock is used to find the time
duration between the i-th firing of the src and the end of the
schedule. The dst_endi clock is used to find the time duration
between the firing of dst corresponding to i-th firing of src
and the end of the schedule.

For each a ∈ AL and all d ∈ InC(a), T contains the
following two edges:

• Initial
g,fire[a][i]!,∅
−−−−−−−−−→ Initial, where g =

(C(d) ≥ CR(d)) && (counter[a] < f × γ (a)))

• Initial
true,end[a][i]?,∅
−−−−−−−−−−−→ Initial

The guard g signifies that an actor a ∈ AL must be enabled
and the total number of firings for amust be less than f ×γ (a)
in order to execute the action fire!. An actor completes its
firing by executing the action end?. There is no input edge
for the actor src ∈ AL , so it can fire at any time. We control its
firing and it fires only when its output edge connecting to the
actor a does not contain any token and the actor a is ready to
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FIGURE 4. The system model M3 of the MPEG-4 decoder (a) the SDFG G3;
(b) the execution platform P3 and execution time of actors in G3 on
different processors.

FIGURE 5. The system model M4 of the Modem (a) the SDFG G4; (b) the
execution platform P4 and execution time of actors in G4 on different
processors.

fire. In the timed automaton AGL(a,b) , T contains the following
additional edges:

• Initial
g,null,∅
−−−−→ EndCycle, where g =

∀a counter[a] == f × γ (a).

• EndCycle
true,null,∅
−−−−−−−→ RepeatCycle

• RepeatCycle
Stop_Cycle==0,null,∅
−−−−−−−−−−−−→ Initial

The guard g in the first transition signifies that if all
actors a in AL have fired f × γ (a) times, then AGL(a,b)
must move to the location EndCyle from the location

FIGURE 6. The system model M5 of the bipartite SDFG (a) the SDFG G5;
(b) the execution platform P5 and execution time of actors in G5 on
different processors.

Initial. In the second transition above, the automaton
AGL(a,b) moves from the location EndCycle to the location
RepeatCycle. In the same transition the automatonAGL(a,b)
sets the boolean variable Stop_Cycle to true if the actor dst
completes all its firings corresponding to all the firings of
src in the first schedule cycle of f iterations. In the third
transition above, if the variable Stop_Cycle is false then the
automaton AGL(a,b) moves from the location RepeatCycle
to the location Initial and it resets the counter[a] to 0 for
all actors a ∈ AL . If the variable Stop_Cycle is true then the
automaton AGL(a,b) will halt in the location RepeatCycle,
i.e., System will be in deadlock.
The timed automata Processor0, . . . ,Processorn−1 are

defined as:

Processori = {Li,Act i,Clk i,Ti, l0i , Invi}; 0 ≤ i ≤ n− 1

where l0i = idle is the initial location. This location has
no invariant. Clk i contains only one clock xi. For each actor
a ∈ AL there is a location Use_a in the set Li. The location
Use_a indicates that processor pi ∈ P is currently used by
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TABLE 1. Repetition vectors.

TABLE 2. Experimental results.

actor a ∈ AL . The location Use_a has an invariant xi <=
exe_time[a][pi] and its outgoing transition has the constraint
xi == exe_time[a][pi]. This means that the timed automaton
Processor i can stay in Use_a for exactly exe_time[a][pi]
time units. The action set contains two actions fire? and
end! to synchronize with the timed automaton AGL(a,b) . For
each actor a ∈ AL , Ti contains two edges:

• Idle
true,fire[a][i]?,xi
−−−−−−−−−−−−→ Use_a.

• Use_a
xi==exe_time[a][pi],end[a][i]!,∅
−−−−−−−−−−−−−−−−−−−→ Idle.

In the location Idle, the timed automaton Processor_i
waits for the firing of an actor a ∈ AL with the fire[a][i]?
synchronization. When an actor a executes the action
fire[a][i]! the timed automaton Processor i moves to the
location Use_a. Processor_i stays in the location Use_a
for exactly exe_time[a][pi] time units and leaves the location
Use_a by executing the end[a][i]! action.

V. MODELING SYSTEM MODELS IN UPPAAL
In this section we describe the specification of the timed
automata used to capture the systemmodelM = (G,P) using
UPPAAL [3]. Consider the system model M1 = (G1L(u,w) ,

P1) where G1L(u,w) is the latency graph shown in Fig. 1(f) and

P1 is an execution platform shown in Fig. 1(b). Fig. 3 shows
the UPPAAL model of the system model M1. In UPPAAL,
we have separate templates for G1L(u,w) and execution plat-
form P1, namely SDFG and Processor respectively.

In the template SDFG shown in Fig. 3(a), the select
statement e : id_p is used to select a processor with e
ranging over the user defined type id_p. The model consists
of two instances of Processor derived from the same tem-
plate. The template has an argument id_p pid that defines its
identifier.

A. LATENCY CALCULATION
To obtain the schedule of the system model with optimal
throughput for a given unfolding factor, we ask UPPAAL to
check E <> deadlock and to return a fastest trace. The
latency for the system model is calculated as follows:

Lσf = max
1≤i≤f

(src_start i − dst_end i)

VI. CASE STUDIES
We evaluate our methodology on a real DSP and amultimedia
application modeled as SDFGs. From the DSP domain we

VOLUME 8, 2020 140179



S. Rajadurai et al.: Latency Evaluation of SDFGs on Heterogeneous Processors Using Timed Automata

used a modem [5] and from the multimedia domain, we used
an MPEG-4 decoder [14] with scenario P30 for the eval-
uation of the trade-off between throughput and latency for
different unfolding factors. The MPEG-4 decoder is modeled
as a scenario-aware dataflow (SADF) model in [14]. Each
scenario in an SADF model is an SDFG. We consider the
scenario P30. We also analyzed the examples shown in Fig. 1
and the bipartite SDFG with buffer capacities from [5].

The system model of an MPEG-4 decoder, modem and
bipartite SDFG are shown in Fig. 4,5 and 6, respectively.
Table 2 shows the repetition vector and source and destination
actors for latency evaluation of each SDFG. In the SDFG
G3, consumption and production rates are omitted when they
are 1. We have computed the latency betweens the actors
of a static schedule with optimal throughput by varying the
unfolding factor from 1 to 5.

All experiments were performed on a laptop that runs on
Intel core-i7 processor with 2 GHz and 16GB of RAM. The
results of the experiments are shown in Table 2. The sec-
ond column is the unfolding factor f . The third and fourth
column show the optimal throughput and latency of a static
schedule for the unfolding factor varying form 1 to 5. The
fifth and sixth column show the execution time and memory
consumption of our approach finding the optimal throughput
and latency. For the MPEG-4 decoder an unfolding factor
higher than 5 and for the modem an unfolding factor higher
than 4 resulted in a running time of more than an hour.

VII. CONCLUSION
In this paper, we have presented an approach to compute
the latency of a static schedule for a given unfolding factor
with an optimal throughput for an SDFG on a heterogeneous
multiprocessor platform using timed automata. The experi-
mental evaluation shows that our technique can manage a
model of moderate size within reasonable execution time, and
can find how the unfolding factor affects the throughput and
latency. Increasing the unfolding factor provides more scope
for expanding the throughput at the cost of longer latency. Our
approach allows the system designer to find the unfolding
factor such that throughput and latency constraints of the
system are met. We encountered the state-space explosion
problem for bigger models while using UPPAAL. Future
work includes computing the minimal achievable latency of
a system model on a heterogeneous multiprocessor platform.
We also plan to compute the latency considering other con-
straints like energy consumption and buffer size.
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