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ABSTRACT With the development of depth sensors and skeleton tracking algorithms, many skeleton-based
pathological gait classification methods have recently been proposed. However, these methods classify
only simple gait patterns, and there is no approach to classify complicated gait patterns. In this paper,
we classify 1 normal and 5 pathological gaits (antalgic, stiff-legged, lurching, steppage, and Trendelenburg
gaits) by using a gated recurrent unit (GRU)-based classifier and 3D skeleton data. We collected skeleton
datasets for 1 normal and 5 pathological gaits by using a multiperspective Kinect system. We developed
the GRU classifier to classify the pathological gaits and compared its performance with that of other
machine learning-based classifiers. Furthermore, we considered various joint groups to identify important
and irrelevant joints for pathological gait classification and to improve the performance of the GRU
classifier. When all skeleton data are used, the GRU classifier achieves a classification accuracy of 90.13%.
A long short-term memory (LSTM)-based classifier achieves the next highest accuracy of 87.25%. The
classification accuracy of the GRU classifier depends on the joint groups considered, and the classification
accuracy increases to 93.67% when only leg joints are considered. This study indicates that various
pathological gaits can be classified by using skeleton data and the GRU classifier. The proposed method can
be used to support medical and clinical decisions. Furthermore, the results for various joint groups can be
used to develop other methods in cases where only specific joint data are available because of environmental
limitations.

INDEX TERMS Pathological gait classification, skeleton-based classification, gated recurrent unit, deep

learning, kinect.

I. INTRODUCTION

Gait patterns are an important type of bioinformation used
to support medical and clinical decisions [1]-[4]. These
patterns are influenced by various factors, such as the physical
characteristics and health of an individual. Weakness in or
damage to some body parts can cause abnormal gait patterns,
and the patterns can vary depending on the weakened body
part. In other words, classifying abnormal gait patterns can
help to identify weakened body parts and determine what
disease or health issue may be affecting an individual.

As various depth sensors and skeleton recognition
techniques have been developed, many methods for
skeleton-based abnormal gait recognition have been pro-
posed [5]-[19]. However, most of these methods focused
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on determining whether a gait is normal or abnor-
mal [5], [8]-[14], [19], whereas only a few studies focused
on pathologically classifying gaits [6], [7], [16]-[18].
Furthermore, the target datasets were composed of only
simple abnormal gaits, such as the dragging-foot gait and stiff
knee gait [6], [16]. To improve skeleton-based pathological
gait classification, it is necessary to classify more complex
pathological gaits. In this paper, we classify 1 normal and
5 pathological gaits (the antalgic, stiff-legged, lurching,
steppage, and Trendelenburg gaits) by using Kinect v2 and a
gated recurrent unit (GRU) [20]. Skeleton data of the gaits to
classify are shown in Fig. 1, and the details of the pathological
gaits are given in Table 1.

Many methods that use machine learning for skeleton-
based abnormal gait recognition have been proposed.
Bayesian classifiers [13] and artificial neural network
classifiers [14] were applied to skeleton data and gait
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TABLE 1. Description of 5 pathological gaits to classify.

Pathological Gait

Characteristics

Causes

Antalgic Gait

Stiff-legged Gait

Lurching Gait

Steppage Gait

Trendelenburg Gait

Attempt to keep weight off the injured leg to avoid pain, shortening the
stance phase of the injured leg

Stiffness of the problematic leg while walking, making an outward
semicircle while swinging the problematic leg

Lurching the trunk backward at the heel strike of the problematic leg to
compensate for weakness of hip extension

Dorsiflexion problem in the problematic leg, lifting the problematic leg
higher than normal to keep the toes from scraping the ground

Moving the problematic hip up and the opposite hip down during the stance
phase to balance the hip level, lurching the trunk toward the problematic

Pain in the foot, ankle, knee, or hip

Joint-related pathologies, such as
rheumatoid arthritis

Weakness or paralysis of the gluteus
maximus muscle

Weakness or paralysis of the anterior
tibialis muscle

Weakness or paralysis of the gluteus
medius and gluteus minimus

side

P

Normal Gait Antalgic Gait

PRIAR FRL AN

Steppage Gait

TRAAT A

Stiff-legged Gait

Lurching Gait

Trendelenburg Gait

FIGURE 1. Skeleton data of normal and pathological gaits to classify.

features extracted from skeleton data, respectively, to iden-
tify Parkinson’s disease. Nguyen et al. [9] proposed a
method for recognizing abnormal gaits using a hidden
Markov model (HMM). Li et al. [7] extracted a covariance
matrix from skeleton data and fed the matrix to a k-
nearest neighbor (k-NN) classifier to identify abnormal gaits.
Khokhlova et al. [6] identified abnormal gaits by using a long
short-term memory (LSTM)-based ensemble model and the
dynamic features of the lower limbs obtained from skeleton
data. Jun et al. [16] extracted features from skeleton data by
using a recurrent neural network (RNN)-based autoencoder
and fed the features to classifiers to recognize abnormal
gaits. Pachdn-Suesctin et al. [17] classified Parkinsonian,
hemiplegic, and spastic diplegic gaits by using an LSTM.
The datasets of the pathological gaits were generated by
simulation of healthy people. They fed the sequence of
distances from the hip center joint to each joint into the
LSTM classifier. Chakraborty et al. [19] compared a logistic
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regression model, a support vector machine, and multiple
adaptive regression splines for detecting an equinus foot
deformity gait. They used feature vectors constructed from
angles of the hip, knee, and ankle of both sides as input
data. In the data collection, healthy young subjects were
asked to mimic an equinus foot deformity gait. Loureiro
and Correia [18] used a skeleton energy image to classify
normal, diplegic, and hemiplegic gaits simulated by healthy
people. They used VGG-19 architecture to directly classify
pathological gaits or to extract features from the skeleton
energy image and fed them into linear discriminant analysis
model or support vector machine for the classification.

In this paper, we propose a GRU-based classifier to classify
pathological gaits. The GRU has a recurrent neural network
(RNN) architecture that has a powerful processing ability
for sequential data. Skeleton data are sequential data in a
time series and there have been several approaches applying
GRU to skeleton data [21]-[23]. Therefore, it is appropriate
to apply GRUs for skeleton-based pathological gait classifi-
cation. It is known that a GRU shows similar performance to
an LSTM with fewer learning parameters. The GRU has been
compared with an LSTM and has outperformed it in several
classification studies [24]-[27]. We supposed that a GRU
might outperform an LSTM in pathological gait classification
and compared the performance of both models to verify the
hypothesis.

In this paper, we attempted to classify 5 complicated
pathological gait patterns for the first time. Most of the
previous gait classification methods only considered simple
abnormal gait patterns that could be easily classified.
However, to support a physician’s decision, it is better to
classify various gait patterns and identify a weakened body
part specifically rather than solely determine whether the
gait is normal or not. Furthermore, we fed data for various
joint groups to the GRU classifier to identify the important
and irrelevant joints for pathological gait classification.
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The irrelevant joints decrease the classification performance,
so it is important to select the necessary joints for classifi-
cation. There have been a few approaches to classify gait
patterns by using different joint groups [28]-[31]. However,
the number of joint groups was not sufficient to clarify
the influence of each joint. Alternatively, some works used
various features, such as joint angles, which could also not
clearly explain the relationship between joints and the effect
of their combination in pathological gait classification. In this
paper, we constructed 20 joint groups by using or excluding
specific joints and tested the classification performance.
We improved the classification performance by selecting the
specific joints and clarified the important and unnecessary
joints for the classification. Furthermore, the classification
performances of all joint groups support the feasibility of
utilizing specific joints for gait classification in limited
environments.

The contributions of this paper are as follows:

« We share the skeleton datasets of the pathological gaits
with the public. The datasets contain the antalgic, stiff-
legged, lurching, steppage, and Trendelenburg gaits
of 10 people (10 people x 6 gait types x 120 instances).
The datasets are larger and more varied than other
skeleton datasets of simulated abnormal gaits.

o We classify various complicated pathological gaits with
a greater than 93% classification accuracy by using
the GRU classifier. The classification of pathological
gaits can aid in identifying weakened body parts and
determining the related cause.

o The proposed method can support medical and clinical
decision-making by physicians. Furthermore, we show
the potential to classify other gait patterns when their
skeleton data are collected and trained by the model.

o We feed data for various joint groups to the GRU
classifier and analyze the results. The performance
of the GRU classifier is improved by removing the
irrelevant joints and focusing on the important joints.
The results can aid in the design of other pathological
gait classification schemes.

This paper is an extended version of a preliminary
conference report that we presented at the 41st International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Berlin, Germany, 2019 [15].
In the previous work, an LSTM-based classifier was used
to classify the same pathological gaits, and different joint
groups were fed to the classifier. The same data collection
system was used in our previous work. We conducted
experiments by using only an LSTM classifier and did
not compare it with other classifiers. Only 4 subjects
participated in data collection, so it was hard to apply a
cross-validation method in our previous work. We solely
used a quarter of the datasets of each subject as test
datasets. Consequently, the overall test accuracies were high,
but the results were not very convincing. In this paper,
10 subjects participated in the data collection, and we applied
leave-one-subject-out cross-validation in all experiments,
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which could further improve the reliability of the evaluation
results. Furthermore, we analyzed the accuracy, sensitivity,
specificity and precision for a single gait type, whereas our
previous work considered only the test accuracy. In this
paper, we also increased the diversity of the joint groups to
achieve more systematic results. We compared classification
performances of various classifiers, whereas only the LSTM
classifier was used in our previous work. In addition, the
GRU classifier proposed in this paper was shown to achieve a
better performance than the LSTM classifier of our previous
work.

Il. METHODS

A. DATA COLLECTION

We collected skeletal gait data by using Kinect v2. Specifi-
cally, 3D coordinates of 25 joints were obtainable by using
Kinect v2 and Microsoft SDK. We developed a multiper-
spective Kinect system using 6 sensors and calibrated each
sensor. If the sensors were not calibrated, their coordinate
systems would differ. It was necessary to calibrate the sensors
to obtain direction-consistent data. We used a fiducial marker
called ArUco [32] and Microsoft SDK to calibrate each
sensor, as shown in Fig. 2. The left-bottom corner of the
ArUco marker was set as an origin, and the directions of
x and y are set as vectors from the origin toward the right
side and toward the upside, respectively. The z-direction
was determined by the cross-production of the x-direction
and y-direction. We transformed the xyz-coordinate system
of Kinect to the xyz-coordinate system of ArUco marker
by applying a rotation and translation matrix. Three ArUco
markers were attached to the ground, and sensors on the
same line were calibrated to the xyz-coordinate system
of the same ArUco marker, as shown in Fig. 2. Thus,
the calibrated sensors had the same xyz-directions, so they
collected consistent data from different positions.

We used Microsoft SDK to obtain skeleton data from
Kinect. Skeletons were generated by each sensor individually.
Therefore, 6 different skeleton data points were obtained
when a walker passed through the walkway. Each sensor
requires a single PC to use Microsoft SDK. We installed
6 Intel NUC PCs to use 6 Kinect sensors and 1 desktop PC
to control the sensors. When a user enters the user name and
clicks a start button, the desktop PC sends a signal to each
NUC PC by using the TCP/IP network. Then, each NUC PC
starts to collect skeleton data and stops the collection when
the distance between the user and the sensor is less than 1 m.
If the NUC PCs on the last line stop the data collection, they
send a signal to notify the end of the data collection.

Ten healthy people participated in the data collection
process and were asked to simulate antalgic, stiff-legged,
lurching, steppage, and Trendelenburg gaits. The 5 patholog-
ical gaits to classify are relatively easily simulated compared
to other pathological gaits because they can be simulated
by limiting physical functions, such as joint rotation and
flexion, in a mechanical way. If the cause of pathological
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FIGURE 2. Gait data collection system. (a) View of the setup. (b) System specifications.

gait is related to the sensory or cognitive system, it is
difficult to simulate the gait naturally and takes a long time
to train a subject. We prepared guidelines for simulating the
5 pathological gaits and collected the datasets after the subject
became familiar with simulating them. The guidelines for
simulating the 5 pathological gaits were as follows:

« When simulating antalgic gait, keep the weight off one
leg and minimize the time during which that leg touches
the ground.

o When simulating stiff-legged gait, do not bend the
knee of one leg and make an outward semicircle when
swinging that leg.

o When simulating lurching gait, lurch the trunk backward
upon heel strike of one leg.

« When simulating steppage gait, scrape the ground with
the toe of one leg and lift the knee of that leg higher than
normal.

« When simulating Trendelenburg gait, raise the hip of one
leg and lurch the trunk toward the side of the leg when
the foot of the leg touches the ground.

Each person walked 20 times for each gait, so 10 people x
6 gait types x 120 instances were obtained. The datasets have
been shared on GitHub (see https://github.com/kooksung/
pathological_gait_datasets).

B. GRU CLASSIFIER

RNN models are effective neural networks for handling
time series of data such as text, sounds, and human
gestures [33]-[42]. Above all, GRUs have a powerful RNN
architecture. In this paper, a multilayered GRU classifier is
utilized for skeleton-based pathological gait classification.
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In the GRU classifier, the input data are in time series form.
The number of input data points varies by joint group, and the
time sequence of the input data is fixed at 50 frames. In this
paper, X; denotes the input from time frame 7. Before x; is fed
to the input layer of the GRU classifier, x; is activated by a
rectified linear unit function (ReLU) [43]. The equation for
the activated input a; is:

a; = ReLU (WxaX; + ba) ey

where Wy, and b, denote the weights and biases of ay,
respectively. The GRU has a reset gate and update gate in each
unit. Since it simultaneously forgets and updates memory
cells, the GRU can overcome the vanishing gradient problem
of the basic RNN model [44], [45]. The reset gate r; and
update gate z;, are composed of equations with respect to
the activated input a, and the previous hidden state h;_; as
follows:

r; = 0 (Wara; + Wieh, 1 +by) )
2; = 0(Waza; + Wyzh; | + by) 3)

where W and b denote the weights and biases of each
gate, respectively. These equations also include the sigmoid
function o, which converts all real values to values in a range
from O to 1. The reset gate and update gate are defined by
a similar form, but the corresponding calculations involve
different weights and biases. The GRU uses the combination
of these two gates to update the current hidden state h; as
follows:

h;=(1-2;) o h;_1+%; o tanh(Wana;+r; o Wynh; 1 +bp)
4
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FIGURE 3. Structure of the GRU-based classifier.

where the operator o denotes the Hadamard product. Using
the reset gate and update gate, hidden states are updated to
distinguish and recognize necessary memory for classifica-
tion. In the final frame, the last hidden state is determined, and
this hidden state is fed to a fully connected layer to classify
the data with the proposed GRU classifier. The final output
y indicates the (1 x 6) vector of the predicted result and is
determined by the following equation:

y = softmax(Wyyhr + by) 5)

where Wyy and by denote the weights and biases of the fully
connected layer, respectively. A softmax classifier is used to
determine the pathological gait based on the output of matrix
multiplication in the form of a probability. The predicted class
is the argument of the maximum value in y. The proposed
GRU classifier is composed of 4-layer GRU neural networks,
and each network has 125 hidden neurons.

C. JOINT SELECTION

The skeleton data in Kinect v2 contain the 3d coordinates
of 25 joints, as shown in Fig. 4(a). Some of the joints
have a positive impact on pathological gait classification
and can be used to distinguish among different gait types
and improve the GRU classification process. Additionally,
some irrelevant joints have a negative impact on pathological
gait classification. These joints make it difficult to identify
differences among gait types and decrease the performance
of the classifier. Therefore, we hypothesized that the
performance of the GRU classifier can be improved by
excluding the irrelevant joints that have a negative impact
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on pathological gait classification. To identify the irrelevant
and important joints, we divided the skeleton data into
sets for various joint groups and fed them to the GRU
classifier.

All joints in the skeleton are roughly divided into those
for lower limbs (legs) and upper limbs (arms), and then
they are divided into specific joint groups: neck and head,
shoulders, elbows, spine, hands, hips, knees, and feet,
as shown in Fig. 4(b). After dividing the joints, we controlled
the input data for the GRU classifier by excluding one of the
joint groups or only considering one joint group. We then
analyzed the effect of each joint group on pathological
gait classification. The objectives of this approach are
summarized as follows:

o We intend to improve the performance of the GRU
classifier by excluding the irrelevant joints and focusing
on the important joints.

o The results for various joint groups can be used to design
other pathological gait classification studies in which
data for some joints are not available.

D. MODEL TRAINING
The GRU classifier was trained to classify 1 normal and
5 pathological gaits by using skeletal gait data. The selected
joints are used as the inputs for the classifier. A single dataset
contains approximately 80~90 frames of skeleton data.
We did not use the first 10 frames of the data because of noise.
We used the next 50 frames of the data for classification.
If the number of frames was less than 60, we did not use the
dataset. Therefore, among 7200 datasets (10 people x 6 gaits
x 120 instances), we used 7157 for training and testing the
classifier. The training process required a minimum of 500
iterations to satisfactorily train the classifier.

During the training process, the cross-entropy cost function
and L2 regularization methods are used to train the classifier
and prevent overfitting as follows:

6
A
L(x,y) = = ) yilog(sofrmax() + 2 IW* - (6)

i=1

where L(X,y), A, and W denote the cost with the input
data x and the true one-hot vector label y, the regularization
parameter, and the trainable weights, respectively. We trained
the model by using various optimizers and compared the
results to find the most effective optimizer. We used
the training results when the highest test accuracy was
achieved.

We calculated the classification accuracy by using the
leave-one-subject-out cross-validation method. Among the
datasets of 10 subjects, the datasets of 1 subject were used for
testing, and the datasets of the remaining subjects were used
for training. We performed 10 repetitions to test the dataset of
every subject. Finally, we obtained the classification accuracy
by calculating the average test accuracy. Furthermore,
we counted the true positives (TP), false positives (FP), true
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FIGURE 4. (a) Skeleton data from Kinect v2 and (b) grouped joints.

negatives (TN), and false negatives (FN) to calculate the
accuracy, sensitivity, specificity and precision for a single gait
type as follows:

TP + TN
Accuracy = 7)
TP 4 FP 4+ TN 4 FN
Sensitvit P ®)
nsi = —
VY = TP EN
Specificit N ©)
ecificity = ———
ey = Bp TN
.. TP
Precision = ——— (10)
TP + FP

The configuration of the computer used for training
consisted of an Intel® Core™ i7-7700K central processing
unit (CPU), 16.00 GB random-access memory (RAM), and
an NVIDIA GeForce RTX 2080-Ti. All classifiers used in this
paper were developed by using TensorFlow.

Ill. RESULTS

We classified 1 normal and 5 pathological gaits by using
the GRU classifier. To demonstrate the effectiveness of the
GRU classifier, we also fed all the skeleton data into various
machine learning-based classifiers and compared the results.
In this experiment, we used the dataset of all joints as the
input for the classifiers. We fed the skeleton data to the
GRU classifier, an LSTM classifier, a basic RNN classifier,
a convolutional neural network (CNN) classifier, a deep
neural network (DNN) classifier, a k-nearest neighbor (k-NN)
classifier, a k-means classifier, and a random forest classifier.
For most of the neural network-based classifiers, such as
the GRU, LSTM, basic RNN, and DNN classifier, a 4-layer
structure and 125 hidden neurons on each layer were applied.
Among them, the skeleton data were flattened and fed to the
input layer for the DNN classifier. Only the CNN classifier
had a different structure, where a 1D convolutional filter with
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TABLE 2. Classification accuracy (%) of the models.

Model Classification Accuracy
GRU 90.13
LSTM 87.25
RNN 86.23
CNN 86.65
DNN 85.86
k-NN 62.63
k-means 66.74
Random Forest 74.29

a filter size of 32 and 3 channels was attached to the input
layer. The output of the convolutional filter entered fully
connected layers that consisted of a 5-layer structure with
125 hidden neurons on each layer. Analogous to the DNN
classifier, the flattened skeleton data were fed to the input
layer in the CNN classifier.

Table 2 shows the classification accuracy of each classifier.
The GRU classifier achieves the best performance with
a 90.13% classification accuracy. The LSTM classifier
ranks second with an 87.25% classification accuracy. The
neural network-based classifiers performed better than the
nonneural network-based classifiers, such as the k-NN,
k-means, and random forest classifiers. With the configura-
tion of the computer and training environment mentioned in
Section II, it took 0.359 s, 0.355 s, 0.164 s, 0.072 s, and
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FIGURE 5. Loss curves of the GRU classifier for different optimizers.

0.312 s to train the GRU, LSTM, basic RNN, DNN, and CNN
classifier, respectively, for a single epoch when feeding the
data of all joints.

We trained the GRU classifier by using various optimizers
(adaptive moment estimation (Adam) [46], adaptive learning
rate method (Adadelta) [47], adaptive gradient method (Ada-
grad) [48], root mean square propagation (RMSprop) [49]
and gradient descent) and compared the training results to
determine the most effective optimizer. The loss curves for
the optimizers are shown in Fig. 5. Among the optimizers, the
Adam optimizer shows the best performance. The loss of the
Adam optimizer converges at the fastest rate, which means
the optimizer trains the GRU classifier more effectively than
the other optimizers. We considered the Adam optimizer as
the most appropriate optimizer to train the skeleton-based
classification model composed of the GRU architecture.
Therefore, we used Adam optimizer to train the GRU
classifier in other experiments of this research.

To improve the performance of the GRU classifier,
we controlled the input data fed to the classifier. We selec-
tively fed certain joints by excluding or including specific
joint groups and observed improvements in classification
accuracy, as shown in Table 3. The results show that the
performance of the GRU classifier depends on the joint
group used as the input. As a control group, group A
included all joints, and the classifier achieved a 90.13%
classification accuracy. However, when only foot or leg joints
are fed to the classifier (09 and O10), the classification
accuracy increases to 91.18% and 93.67%, respectively.
Group Q9 displays higher accuracy than group A even though
only 4 joints out of a total of 25 were used. Group O10,
which contains only leg joints, displays the best performance
among all the groups. Furthermore, when excluding the leg
joints, the classification accuracy decreases to 75.68%, which
is the poorest performance among the E (joint selection by
excluding specific joints) groups. These results show that the

VOLUME 8, 2020

leg joints are the most important joints for pathological gait
classification.

Importantly, excluding the joints considered irrelevant
to the classification task can increase the classification
accuracy. As shown in Table 3, the performance is improved
by excluding the elbows, hands or arm joints (E4, ES5,
and E6), which increases the classification accuracy to
90.45%, 91.25%, and 92.15%, respectively. These results
show that the arm joints decrease the performance of the GRU
classifier when all the joints are fed to the classifier.

The test loss curves of each group are shown in Fig. 6.
The loss curve of group O10 converges to the lowest values
at the fastest rate, which means the GRU-based classifier
can more easily find a way to classify the pathological gaits
when using only the legs. Group O7 (only hips) shows the
highest loss value among all groups. The losses of all groups
decrease at the early phase, but some of them start to increase
at some training epoch. Thus, the model is overfitted to
the training data and not generalized. Group O7 shows the
largest increase. Although the hip joints are important in the
pathological gait classification, they show their strength only
if they are used with the joints of the knees and the feet. The
losses of the O groups converge faster than those of the E
groups. The number of input data is smaller in the O groups
compared with the E groups. The smaller the number of input
data, the earlier the training of the model finishes.

In this research, we achieved a 93.67% classification
accuracy in pathological gait classification by using Kinect
v2 and the GRU classifier. Furthermore, we also assessed the
performance changes based on the various joint selections.
In some cases, practically valid performance was achieved,
even with limited joint data, and considering some joint
groups even improved the performance compared to that
obtained for the control group. These results support the
feasibility of utilizing specific joints for gait classification in
limited environments. For example, if the data of the hips are
not collected accurately because of long and thick clothing,
it is better to use only the feet joints (O9) than the joints except
for the hips (E7).

IV. DISCUSSION

In this study, we confirmed that various pathological gaits
can be classified using the skeleton data from Kinect v2 and
the multilayered GRU classifier. Furthermore, we identified
important and irrelevant joints for pathological gait classifi-
cation by specifically considering various joint groups.

The GRU is an advanced RNN architecture that has
displayed excellent performance comparable to LSTM clas-
sifiers. Since the GRU was introduced recently, it has not
been verified that the GRU outperforms LSTM methods in
all cases. However, these approaches have been compared in
some research fields. In this paper, the GRU classifier exhibits
better performance than the LSTM classifier, with a 2.88%
higher classification accuracy, as shown in Table 2. This result
indicates that the structure of the proposed GRU classifier
is more appropriate and robust to overfitting than the LSTM
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TABLE 3. Classification accuracy (%) and improvement (%) of the GRU classifier for different joint groups.

Annotation Description Selected Joints ilca:j;gcc;mn Improvement

A All Joints 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23.24  90.13

El Joints except for spine 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24 86.37 -3.76

E2 f}‘;{;gs except for neck and 1,4,5,6,7,8.9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 89.48 -0.65

E3 Joints except for shoulders 1,2,3,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 89.77 -0.36

E4 Joints except for elbows 1,2,3,4,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24 90.45 +0.32

ES Joints except for hands 1,2,3,4,5,8,9,12,13,14,15,16,17,18,19,20,21 91.25 +1.12

E6 Joints except for arms 1,2,3,12,13,14,15,16,17,18,19,20 92.15 +2.02

E7 Joints except for hips 1,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18,19,20,21,22,23,24 89.23 -0.90

ES8 Joints except for knees 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,18,19,20,21,22,23,24 87.64 -2.49

E9 Joints except for feet 1,2,3,4,5,6,7,8,9,10,11,12,13,16,17,20,21,22,23,24 82.45 -7.68

E10 Joints except for legs 1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,24 75.68 -14.45

01 Only spine 0,1,20 64.59 -25.54

02 Only neck and head 23 55.74 -34.39

03 Only shoulders 4,8 54.16 -35.97

04 Only elbows 5,9 54.38 -35.75

05 Only hands 6,7,10,11,21,22,23,24 65.39 -24.74

06 Only arms 4,5,6,7,8,9,10,11,21,22,23,24 71.27 -18.86

o7 Only hips 12,16 48.29 -41.84

08 Only knees 13,17 79.97 -10.16

09 Only feet 14,15,18,19 91.18 +1.05

010 Only legs 12,13,14,15,16,17,18,19 93.67 +3.54

loss curves of O groups loss curves of E groups

7 —a—A ——06 | 73 —=—A ——E6
6 |—e—01 —e—07 63 ==Ll =e=E]
5 i —&—02 ——O08 5 —a—E2 ——E8
4] —v—03 —e—09

—4+—04 ——0l0|
~<—05

test loss

X T ¥ T % T ¥ T ¥ 1
0 100 200 300 400 500
training epoch

FIGURE 6. Loss curves of O groups and E groups.

classifier when classifying pathological gaits using skeleton-
based gait data.

In neural networks, it is difficult to minimize the impact
of irrelevant data while maximizing the amount of data used
during training. Therefore, excluding irrelevant data before
feeding the data to the GRU classifier can improve classifier
performance. In this study, we divided the skeleton into
various joint groups and fed them to the GRU classifier
to verify the impact of each joint group on classification.
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The results show that the spine, neck, and head joints are
less influential than the other groups, as supported by the
fact that the classification accuracy slightly varies when
those groups are excluded from classification. The leg joints
have the highest influence among all the joints, and the
classification accuracy decreased by 14.45% when the leg
joints were excluded. Since analyzing pathological gaits
requires considering the weakness of an individual’s lower
limbs, it is reasonable to conclude that leg joints play a key
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TABLE 4. Accuracy (%), Sensitivity (%), Specificity (%), and Precision (%) of group A (all the joints) and group 010 (only the legs).

Group A (All joints) Group O10 (Only legs)
Gait type
Accuracy Sensitivity Specificity Precision Accuracy Sensitivity Specificity Precision
Normal 96.67 98.70 96.28 83.66 97.79 98.88 97.58 88.75
Antalgic 96.65 83.83 99.23 95.63 98.64 94.67 99.45 97.18
Stiff legged 98.77 95.58 99.41 97.04 98.20 96.08 98.62 93.36
Lurching 95.01 86.92 96.64 83.91 96.81 87.50 98.69 93.09
Steppage 97.16 92.17 98.17 91.03 98.34 92.08 99.60 97.87
Trendelenburg 95.92 83.67 98.39 91.27 97.50 92.83 98.44 92.29
Confusion matrix of group A Confusion matrix of group O10
Normal 0 1 5 3 7 Normal 1 2 4 5 7
Avtatgi | ® | 1| 3| 25 " Antalgic 1 20 0 | 1 | 28
5 Stiff legged o 3 = Stiff legged o
= =
g E
= Lurching - B = Lurching s
Steppage - - Steppage - s

Trendelenburg 4

Predicted label

FIGURE 7. Confusion matrix of group A and group 010.

role in pathological gait classification. Conversely, arm joints
have a negative impact on pathological gait classification.
The subjects had different arm swing patterns when they
walked, which influenced pathological gait classification.
The inconsistent arm swing patterns of the subjects can
confuse the classifier and decrease the performance of
pathological gait classification. Therefore, the classification
accuracy can be increased by excluding arm joints from
the skeleton data fed to the classifier. However, it is still
controversial to conclude that upper limbs do not play
a critical role in pathological gait classification because
some gait disorders have been diagnosed by reduced arm
swings [50].

Considering only specific joint groups can help to
effectively improve pathological gait classification systems
in cases in which data for only some joints are available
or accurate. For example, if knee data are not accurately
collected because the walker is wearing a knee pad, it may
be better to use only foot joints (O10) than to exclude the
knee joints (E8). Moreover, if the view of the sensor is
limited, the upper body joints should be excluded to focus on
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Trendelenburg

T
> © > & & 4
& 3 g .
S o & 3 *
\ g § R 5
~ o ¢

Predicted label

accurately collecting the leg joint data instead. It is important
to select joints depending on the environment, and the results
in Table 3 can be used to design classification systems and
improve their performance.

Table 4 shows the accuracy, sensitivity, specificity, and
precision for each gait type when data for all joints (A) and
only leg joints (O10) are fed into the model. The highest
classification accuracy among all the groups is observed
for group O10. The overall performance is improved when
using only leg joints instead of all joints. In particular,
the sensitivities of the antalgic and Trendelenburg gaits
are increased by 10.84% and 9.16%, respectively, in this
case. Thus, the GRU classifier more accurately classifies
the antalgic and the Trendelenburg gaits when unimportant
joint groups are excluded. Furthermore, the precisions of
the lurching, steppage, and normal gaits are improved by
9.18%, 6.84%, and 5.09%, respectively, when unimportant
joint groups are excluded. When all skeleton data are used,
the GRU classifier is likely to misclassify input gait types
as lurching, steppage, or normal gaits. Using only leg joint
data allows the GRU classifier to avoid confusion. These
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results suggest that using only leg joints can help the GRU
classifier distinguish among the different pathological gaits
and improve the classification performance.

The corresponding confusion matrices of group A and
group O10 are shown in Fig. 7. The overall classification
accuracy is higher in group O10. However, there are some
issues to be considered. When feeding antalgic gait data,
misclassification as normal gait is more likely in group
010 than in group A. On the other hand, antalgic gait is
more frequently misclassified as steppage gait in group A
than in group O10. For stiff-legged gait and steppage gait,
group O10 shows much higher total accuracy than group
A. However, both gaits are misclassified as lurching gait
more frequently in group O10. The largest improvement is
achieved in Trendelenburg gait. In group A, Trendelenburg
gait is often misclassified as other gaits, especially normal
gait or antalgic gait. On the other hand, in group OI10,
Trendelenburg gait is mostly correctly classified and is
misclassified as antalgic gait less frequently than in group A.

V. CONCLUSION
In this paper, we propose a method to classify pathological
gaits by using Kinect v2 and a GRU classifier. Furthermore,
we feed the various joint groups to the classifier and
analyze the results. We improve the performance of the GRU
classifier by excluding the irrelevant joints and focusing
on the important joints. The GRU classifier achieves a
93.67% classification accuracy by using only the leg joints.
Furthermore, the performance of each joint group can be
used to design other pathological gait classification studies
in which usable joint data are limited. The proposed patho-
logical gait classification method can help physicians make
clinical decisions and contribute to improving smart home
care systems. Since skeleton data can be easily collected in
daily life without attaching any sensors, a gait classification
system can be installed in the home and recommend that users
visit a doctor if their gaits are classified as pathological gaits.
We confirmed that the various pathological gaits can
be classified by using skeleton data and the GRU-based
classifier if the datasets are collected and trained in a
proper way. In future work, we plan to collect skeleton
datasets of real patients by collaborating with hospitals and
rehabilitation centers. We will also collect pathological gaits
related to cognitive or sensory function that are difficult to
simulate, such as Parkinsonian gait. Then, we will evaluate
the GRU-based classifier by classifying these gait patterns.
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