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ABSTRACT In this study, we focus on the egocentric segmentation of arms to improve self-perception
in Augmented Virtuality (AV). The main contributions of this work are: i) a comprehensive survey of
segmentation algorithms for AV; ii) an Egocentric Arm Segmentation Dataset (EgoArm), composed of
more than 10, 000 images, demographically inclusive (variations of skin color, and gender), and open for
research purposes. We also provide all details required for the automated generation of groundtruth and
semi-synthetic images; iii) the proposal of a deep learning network to segment arms in AV; iv) a detailed
quantitative and qualitative evaluation to showcase the usefulness of the deep network and EgoArm dataset,
reporting results on different real egocentric hand datasets, including GTEA Gaze+, EDSH, EgoHands,
Ego Youtube Hands, THU-Read, TEgO, FPAB, and Ego Gesture, which allow for direct comparisons with
existing approaches using color or depth. Results confirm the suitability of the EgoArm dataset for this task,
achieving improvements up to 40%with respect to the baseline network, depending on the particular dataset.
Results also suggest that, while approaches based on color or depth can work under controlled conditions
(lack of occlusion, uniform lighting, only objects of interest in the near range, controlled background, etc.),
deep learning is more robust in real AV applications.

INDEX TERMS Egocentric arm segmentation, mixed reality, augmented virtuality, self-perception, arm
segmentation, automatic labeling, EgoArm dataset, demographically inclusive.

I. INTRODUCTION
Most computer vision applications are traditionally focused
on third-person view (TPV) actions that happen while inter-
acting directly or indirectlywith a camera [6].With the advent
of new wearable devices such as GoPro, Microsoft Sense-
Cam, or even some Head Mounted Displays (HMD) used in
immersive applications, research on first-person view (FPV)
or egocentric vision is attracting some attention [7]. Main
research lines in egocentric vision can be categorized into:

• Localize egocentric objects usually knowing hand
position and recognizing which objects are in contact
with them. Typical tasks here are recognition [53],
detection [35], segmentation [59], tracking, and predic-
tion [69], among others.
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• Recognize the activities performed by humans through
the analysis of the relationship between objects and
hands (action recognition) [15], [20] or hand gesture
recognition for Virtual Reality (VR) and Augmented
Reality (AR) [10], [14], [50], hand poses [39], etc.

• Visual lifelogging, which consists on capturing daily
experiences [8]. Video summarization of people lives is
also a related area, which could be used for detecting
novel or anomalous events. This research line is of spe-
cial relevance for people with memory loss [17].

In this study, we explore egocentric arm segmentation
as an essential requirement for enhanced self-perception
in Mixed Reality (MR) (see Fig. 1). One of the main
problems of immersive environments (IE)1 is the so-called

1Immersive Environment covers Virtual Reality environments (computer
generated or 360◦ video), and also Mixed Reality environments, combining
IE with the reality surrounding the user (hereinafter local reality).
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FIGURE 1. We propose semantic segmentation networks to segment human body parts (in this study the arms) to enhance self-perception in AV.
Left: local reality; center: segmented arms; and right: AV with egocentric arms.

presence factor or sense of presence: the subjective experi-
ence of being in a remote location without moving from the
physical place. According to Lee [34], the presence concept
can be divided into three components: physical, social, and
self-presence. In particular, self-presence involves experienc-
ing the representation of one’s own genuine self, physically or
psychologically manifested, inside a virtual environment.

First attempts towards self-perception on IE are based
on avatars, which are virtual representations of the user
mimicking his/her movements [54]. Current research lines
further study avatar representations [2], [65], their effect on
the user [3], [58], and their interaction with the IE [3], [21],
[25], [30], [55].

Considering MR in particular, there is a different way
of reaching self-perception. As stated by Milgram and
Kishino [46] and Regenbrecht et al. [52], Augmented Virtual-
ity (AV) is a MR subcategory of the virtuality continuum that
aims to merge the reality surrounding the user (hereinafter
local reality) with an IE. This means, instead of seeing an
avatar of the user’s body tracking his movements, the user is
presented with his real body immersed in the IE. The merge
of a real and virtual world can be achieved with the video
see-through capabilities of the newest HMD devices such
as HTC VIVE Pro, Varjo XR-1 or just by attaching a local
camera to theHMD.Hence, human body parts (such as hands,
arms, lower body, etc.) or local objects (such as keyboards,
smartphones, coffee cups, etc.) can be segmented from the
see-through video and merged into the IE. Depending on
the objects segmented, AV could be used to: i) increase
self-presence and/or awareness of other people to prevent
isolation, or ii) facilitate interaction with local objects [44].
Main segmentation approaches proposed in the literature

for AV have been based on color or depth. However, they
still show some limitations such as very complex physical
setups [44], limited field of view [32], or poor depth estima-
tion that prevent AV from reaching its full potential. To over-
come these limitations, we explore Semantic Segmentation
algorithms (hereinafter Sem-Seg) proposed in the literature,
based on deep learning (DL) to segment egocentric arms.
Our main motivation to focus on the whole arms and not just
the hands is to study this problem under real-life conditions.
Indeed, arms and not just hands are easily visible when
wearing a HMD (see Fig.1). Moreover, we also hypothesize

that seeing your whole arms and not just your hands, may
have a positive impact on the self-presence factor of the expe-
rience. Aside from the segmentation challenges pertaining to
egocentric vision, the reader should notice that arms contain
additional variability factors such as clothes or skin color that
need to be considered. The proposed work is a continuation
of [27] that we have significantly extended with the following
contributions:

• a comprehensive discussion on segmentation methods
for AV, conceptually categorizing them by color, depth
and other approaches.

• an EgoArm dataset, composed of more than 10, 000
semi-synthetic images, which is demographically inclu-
sive and publicly available for research purposes.2

In addition, we describe the procedure carried out to
automatically generate the groundtruth mask.

• a proposal based on deep segmentation networks to
segment egocentric arms. To the best of our knowledge,
we are the first ones to consider deep networks for AV
applications and the first to consider the whole arms and
not just the hands.

• a thorough and in-depth evaluation of our method
to a wide number of real egocentric datasets exist-
ing in the literature: GTEA Gaze+ [41], EDSH [36],
EgoHands [5], Ego YoutubeHands [63], THU-READ
[61], TEgO [33], FPAB [24], and Ego Gesture [70].
We also contribute with a segmentation groundtruth of
representative subset from two RGB-D datasets: Ego
Gesture (277) and THU-READ (203), which will also
be made available for research purposes.

• a comparison with former segmentation approaches
for AV, based on color or depth, highlighting their pros
and cons.

The rest of this article is structured as follows: Section II
covers related works regarding AV, with an emphasis on the
different up-to-date algorithms proposed to segment local
reality objects. Section III describes the EgoArm Dataset
and the whole procedure to generate semi-synthetic images
while automatically obtaining the segmentation groundtruth.
Section IV presents the Sem-Seg algorithms considered to

2https://cloud.proinnovation.es/index.php/s/
tekqtneGXgrUgFD
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TABLE 1. Related works on egocentric human body parts or object segmentation for AV. They are categorized into color, depth or other approaches. CRF
stands for conditional random fields. Notice that [59], [63] are focused on egocentric hand segmentation but are not designed for AV.

segment egocentric arms. Then, Section V explains the exper-
imental protocol and test datasets considered to conduct
the experiments, while Section VI reports the segmenta-
tion results and the comparison with former segmentation
approaches used for AV. Finally, Section VII concludes the
paper with some discussions and future research lines.

II. RELATED WORKS
This section discusses the main related works on segmen-
tation methods of local reality objects in AV. Our aim here
is to conceptually categorize most relevant methods into
color, depth as well as other approaches and provide a brief
description thereof. In addition, Table 1 lists the main prop-
erties of these works concerning the segmentation method
used, the augmented elements and the VR devices used (for
information regarding state-of-the-art Sem-Seg approaches,
we refer to [23]).

A. COLOR-BASED APPROACHES
One of the preliminary approaches for segmenting objects
from local reality was the chroma-key, similar to the concept
applied within weather forecast in television for decades. The
idea is simple: given an input video with this chroma-key

color presented, only pixels not sharing this color are retained.
Metzger [45], one of the pioneers of the idea of AV, put
forward the use of blue chroma-key, to select the user’s
hands from the local reality. Further, the authors pointed
out the importance of having the space uniformly lit to
obtain accurate results. Similarly, McGill et al. [44] used a
green chroma-key to filter objects from the local reality (see
Fig. 2 A). The particular task involved typing with a keyboard
in a VR environment. For this purpose, they designed a
scenario with a green chroma-key surface where the key-
board was placed. The segmentation was performed in two
stages: first, both hands and the keyboard were segmented
by discarding all pixels that shared the green color; then
hand detection and keyboard actions were carried out using
blob detection and hand markers, respectively. Although the
results obtained with this simple method were almost perfect
in terms of segmentation, the application itself is very limited
if the local reality appearance is constrained to exhibit a
certain chroma-key color. The same strategy was carried out
by Zhu et al. [73], using a green-chroma to introduce user’s
body into the IE. Additionally, thanks to their real-time per-
formance, they enabled the realistic virtual reality experience
to be shared among a large number of people at the same time.
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FIGURE 2. Examples of the different segmentation approaches proposed in the literature to segment local reality objects.
From left to right: A) green chroma-key [44], B) skin detection [9], C)− D) depth information [1], [32] and E) edge detection
and statistical classifier [18].

Focusing particularly on the hand segmentation prob-
lem, researchers have also proposed the use of skin detec-
tion algorithms to segment hands from local reality [9]
(see Fig. 2 B). The idea behind this algorithm is the fol-
lowing: the local reality image is first transformed to the
HSV color space, and then it is filtered out so that only
pixels values that are around a certain Hue range (µ ± σ )
are segmented. Although this approach enhanced the green
chroma-key approach in the sense that local reality is not
constrained anymore, some false positives may appear hav-
ing similar skin color such as faces in the scene, furniture,
boxes, etc. In the same work, the egocentric lower body part
was also segmented with a naive floor subtraction approach.
Taking the assumption that the floor appearance was uniform,
the body was retained by simply filtering out all pixels not
belonging to the floor. Then, a follow-up work using the
same HSV-based segmentation algorithm, developed a user
interface where users could adjust segmentation parameters,
transparency level or even modify hand color [29].

In the same line, Perez et al. [49] used a YCbCr skin
detection algorithm based on red chrominance, adding a
transparency alpha layer to the local reality. By using less
strict thresholds than those normally used for skin detection,
objects with yellow and red tones with high saturation such
as food were also segmented. This segmentation method
allowed them to build a proof of concept of an Immer-
sive Gastronomic Experience using Distributed Reality [64],
a new type of Mixed Reality that involves capturing different
realities (at least one remote in the form of 360◦ video and
a local reality) to foster remote human communications and
shared experiences.

Despite the popularity of color-based approaches and their
real-time performance, they have some limitations: they
require controlled physical setups, where no background
objects have any of the colors included in the foreground (this
is especially restrictive in traditional green chroma). Also,
they are very sensitive to illumination and fail at dealing with
different skin colors or with long-sleeve clothes [22].

B. DEPTH-BASED APPROACHES
Based on the idea of filtering out everything that is below a
certain depth threshold value, Nahon et al. [48] blended into

the IE not only the user’s own body but also objects from the
local reality and even other people. This way, self-presence is
increased and also interaction and communication with other
objects or people is feasible. Likewise, Lee et al. [32] used
depth information to include the user’s own body into an
immersed cinema experience (see Fig.2 C). Alaee et al. [1]
also incorporated objects which were in the distance range of
10− 40 cm, with the aim of interacting with the smartphone
in the IE (see Fig. 2 D). More recently, Rauter et al. [51]
implemented the same idea while estimating depth from the
stereo camera of HTC VIVE Pro. They also performed some
post-processing of the estimated foreground mask to address
pixels with missing depth values.

Depth-based solutions are relatively simple to implement,
due to the affordability of RGB-D sensors. However, such
sensors have some limitations: on the one hand, depth esti-
mation is noisy and prone to artifacts when handling near
objects, specular materials, non-reachable areas, or in the
shade [47]; on the other hand, RGB-D sensors have a narrow
field of view which also impairs the sense of presence [32].

C. OTHER APPROACHES
Aside from the mainstream segmentation approaches, other
alternatives have been proposed. Fiore et Interrante [22] built
probabilistic models based on histograms for both foreground
and backgrounds to segment hands, producing good results
in the absence of wooden objects. Later, Desai et al. [18]
proposed a method to segment smartphones or tablets based
on two stages: 1) edge-based object detection to select the
smartphone; and 2) a statistical classifier based on attributed
features to decide whether the segmented object was a smart-
phone (see Fig.2 E). The overall goal was to interact with
these devices while being immersed. This algorithm, how-
ever, was not scalable to segment other objects.

Korsgaard et al. [31] conducted an AV experience in which
the user had to interact with real food placed in front of him.
Merge between both local and remote worlds was controlled
through head orientation. Every time the head was orien-
tated in a downward angle (where food is normally placed),
the local reality was visible whereas if the user looked straight
ahead, the IE became visible. The main limitation of this
approach is that no optimal full immersion is achieved but
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FIGURE 3. Procedure to obtain groundtruth and semi-synthetic images: through an Android app installed on the smartphone, images are
recorded from the HMD perspective using a green chroma-key approach. Subsequently, we applied HSV filtering to obtain the groundtruth
images. With the groundtruth image, we select the relevant information from the chroma-key image that will be later combined with a
background image to form the final semi-synthetic image.

just an angle-based transition approach between the IE and
the local reality.

Beyond using skin color, there are other attempts, not
specifically designed for AV, to segment hands from an
image-based point of view. Serra et al. [59] proposed a
hand-crafted method for segmenting skin based on random
forest superpixel classification, considering light, time, and
space consistency. Although it may be seen as an evolution of
color-basedmethods, this approachwould still fail to segment
arms containing clothes. There are also some attempts to
detect [5] or segment hands [63] using deep learning that
show the feasibility of adapting existing pre-trained models
such as RefineNet or CaffeNet (slight modified versions of
Alexnet). Again, these approaches are focused on segmenting
hands, but not arms.

III. EgoArm DATASET
At the present time of writing, there are no databases in the
literature suitable for egocentric arm segmentation. There
exist some databases that are related to egocentric hand
detection or segmentation but not related to the whole arm.
Therefore, we introduce the Egocentric Arm Segmentation
Dataset (EgoArm), which is designed with a wide range of
variations to maximize generalization capabilities. Table 2
describes the main features of EgoArm, containing more than
10, 000 images. We highlight that EgoArm includes images
of people with different skin color, gender and it is publicly
available for research purposes.3

TABLE 2. Features considered in EgoArm dataset.

Unlike other supervised learning approaches such as
classification or regression, in which the required labels or

3https://cloud.proinnovation.es/index.php/s/
tekqtneGXgrUgFD

groundtruth are just text labels or a few numbers defin-
ing bounding boxes, Sem-Seg labels are images where
every pixel contains a particular number accounting for
the class information. The acquisition of such databases is
time-consuming, which represents a major problem that has
already been observed by Bandini and Zariffa [6]. To over-
come this issue, we propose a semi-automatic way of labeling
images (see Fig. 3), composed of the following steps:

A. ACQUISITION
First, the user wears a Gear VR Samsung headset with a
Samsung-S8 smartphone attached to the device and situated
himself/herself in front of a chroma-key backdrop, as can
be seen in Fig. 3 A. An Android application is used to
record videos of 30 fps from the smartphone frontal camera.
Unlike other segmentation datasets, we recorded videos at a
resolution of 720 × 720 pixels to target the high-resolution
requirements of VR applications (Fig. 3 B). Each session
is designed to record videos with a particular configuration
in terms of people, scenario, outfit, and sleeve. A recorded
assistant ensures that, at each session, videos from the five
different arm poses are recorded.

B. HSV FILTERING
With the recorded chroma-key videos (see Fig. 3 B),
an HSV-based filter is applied to obtain the foreground
images (see Fig. 3 C), as follows:

f (x, y)=

{
1 if H (x, y)≤h1∧H (x, y)≥h2∧S(x, y)≥s1
0 otherwise

(1)

being h1, h2 and s1 set to 0.22, 0.45, and 0.20, respec-
tively (values obtained by empirical testing) and H (x, y) and
S(x, y) being the Hue and Saturation channel images, respec-
tively. To prevent high similarity, images are selected every
5 frames. Additionally, some morphological operations are
applied to delete noisy areas (see Fig. 3 C).

C. MASKING
Before creating the semi-synthetic image, the chroma-key
image is masked with the groundtruth image to get the area
of interest (arms in our proposed approach, see Fig.3 D).
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FIGURE 4. Example images of the EgoArm dataset showing a wide variety in terms of different subjects, gender, arms position, scale,
clothes, skin color, illumination and background.

D. COMBINATION
Semi-synthetic images (Fig.3 F) are created combining back-
ground (Fig.3 E) with chroma-key images (Fig. 3 B) masked
with foreground images (Fig.3 D). In this work, natural back-
ground images are obtained from the MIT Scene Parsing
Benchmark [72]. Among the whole set of 20, 210 images,
we select those which hold height = width and then reshape
it to 720× 720, resulting in a subset of 3, 697 different back-
ground images. These backgrounds contain indoor scenes
related to houses, public spaces, commercial places as well
as outdoor scenes such as landscapes, beaches, mountains,
etc. As a final post-processing, we discarded those pairs
of groundtruth and semi-synthetic images with some false
positives in the groundtruth. Fig.4 shows examples of the
variability of these images.

IV. EGOCENTRIC ARM SEGMENTATION
Accurate and robust arm segmentation is vital to achieve
enhanced self-perception in MR. DL-based approaches
have outperformed conventional approaches in diverse com-
puter vision tasks whenever available training data reflects
real-world scenarios. This clearly motivates the develop-
ment of a novel arm segmentation system based on deep
learning in order to overcome the disadvantages existed in
traditional approaches (see Section II). Convolutional Neural
Networks (CNN) achieved the state-of-the-art results for
supervised classification and detection tasks [28]. CNN are
composed of different types of hidden layers: Convolutional,
Rectifier Linear Unit, Pooling and Fully Connected (FC).
FC are the final layers of CNNs that, along with the clas-
sification layer, hold the output (having the same size as the
number of objects to classify). In 2015, Long et al. proposed
Fully Convolutional Networks (FCN): amodification of CNN
architectures that reached state-of-the-art performance in
Sem-Seg problems. Concretely, they replaced FC layers by
fully convolutional ones to preserve the spatial dimension
while keeping the class identity information [42]. Another
important key component aside from the encoding subnet-
work here is the decoding subnetwork, which is placed after
the fully convolutional layers and is in charge of up sampling
the class spatial map up to the original input size.

A. CONSIDERED SEM-SEG NETWORKS
Our hypothesis, confirmed also by previous work [56], is that
segmentation networks trained for TPV fail when segmenting
from egocentric vision. Indeed, egocentric vision has the
advantage that objects tend to appear at the center of the
image, but also the challenge of the camera moving with
the human body, which creates fast movements and sudden
illumination changes.

Due to the relatively small size of EgoArm (in compari-
son with datasets aimed to train architectures from scratch
such as ImageNet, Pascal VOC, etc.), we took the decision
to apply transfer learning from existing Sem-Seg architec-
tures. The first Sem-Seg architecture considered was the
FCN, proposed by Long et al. and originally trained for the
PASCAL VOC 2011 segmentation challenge. We conducted
extensive experiments to find the best training parameters for
fine-tuning the FCN architecture with the EgoArm database.
Still we observed that results were not accurate enough for the
720× 720 required resolution.
The next Sem-Seg deep architecture we considered

was DeepLab, originally proposed in 2017. In particular,
among their different updated versions [11]–[13], we chose
DeepLabv3+ [13] due to: i) the use of the ResNet pre-trained
model, replacing the former VGG-16 pre-trained model;
ii) the use of a-trous convolutions, that allow dense feature
extraction taking context into account without increasing the
number of parameters; iii) the use of a-trous spatial pyra-
mid pooling module to robustly segment objects at multiple
scales; and iv) the use of a decoder module and short-cut
connections [57] to refine the segmentation results [4], espe-
cially along object boundaries. The fact that this architecture
was very deep at the encoding subnetwork and deeper than
the existing approaches in the decoding subnetwork gave
us the idea that it could segment accurately high-resolution
egocentric images. For a better understanding, we decided to
use the following two different Sem-Seg networks:

• DeepLabv3+: our idea here is to use the original
DeepLabv3+ to segment egocentric arms and confirm
our hypothesis. This original network was trained using
the PASCALVOC database, so arms were segmented as
people class.
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• DeepLabv3+ using EgoArm: we applied transfer
learning using images from our novel EgoArm dataset
so that the network segments two classes: arms and
background. In order to have a more gender-balanced
dataset, we discarded 4 male subjects, having a total of
11, 561 images.

V. EXPERIMENTAL PROTOCOL
The main motivation for not using a subset of EgoArm as
the validation set, was to check how well a network trained
with semi-synthetic images generalizes with real egocentric
images. Among the public real egocentric datasets, GTEA
Gaze+ was the largest one and more similar to the arm
segmentation task [5]. It contains 1, 115 images of egocentric
arms performing actions in a kitchen, with a very cluttered
environment. In this dataset, groundtruth is related to the skin
but no clothes were presented in the images.

Training was done using two GPU GTX-1080 Ti with
12GB RAM each. Batch size was set to 4 due to the large
size of the training images (720 × 720). An exhaustive set
of experiments following grid search strategies were con-
ducted, monitoring validation performance over the GTEA
Gaze+. The final training of the DeepLabv3+ EgoArm was
achieved using stochastic gradient descent, an initial learning
rate of 1e − 3, a final learning rate of 1e − 6, 2 epochs,
7, 500 maximum number of iterations for reducing the learn-
ing rate, and weight decay of 1e− 5.

A. TESTS
In order to assess the generalization capabilities of our algo-
rithm, we performed the evaluation on the following different
public datasets. Fig. 5 describes the associated heatmaps,
to give an idea of the type of groundtruth and the average
position of hands/arms4:
• EDSH (groundtruth related to skin) [36]: EDSH2 and
EDSH kitchen are the test videos of EDSH, and con-
tain indoor and outdoor scenes with large variations of
illumination, mild camera motion induced by walking
and climbing stairs with just one user. They provide 104
and 197 segmentation masks for EDSH2 and EDSHK,
respectively.

• EgoHands (groundtruth related to hands) [5]: it con-
tains 48 Google Glass videos of interactions between
two people playing board games (one with FPV, and
the other with TPV). In order to reduce redundancy and
computational load, we created a subset of this dataset,
by selecting 10 images per each of the 48 different
videos, resulting in a total of 480 images.

• Ego Youtube Hands (groundtruth related to hands)
[41]: it contains 3 egocentric videos from daily activities.

4There were also other datasets available in the literature that we dis-
carded for different reasons. For instance, the EPIC-KITCHENS dataset does
not provide segmentation masks [16]; the Egocentric Gesture Recognition
dataset [10] only provides segmentation masks for chroma-key hand gesture
images; and Keyboard Hand Dataset (KBH, [66]) was not found available
for research purposes.

FIGURE 5. Heatmaps depicting hand/arm position in the validation and
test datasets considered. From up to bottom and left to right: TeGO,
EDSH2, EDSHK, Ego Youtube Hands, EgoArm, THU-Read, GTEA Gaze+, and
Ego Gesture.

Among the entire set of 1, 032 images, we created a sub-
set including images showing hands and arms, resulting
in a total of 689 frames.

• TEgO database (groundtruth related to skin) [33]: to
test the robustness against black skin color, we report
results using the test set pertaining to subject B1 (which
has black skin), composed of different subsets of images
under different illumination (normal and extreme) and
background conditions (vanilla or in the wild).

• FPAB dataset (no groundtruth available) [24]: pro-
vides both color and depth images from egocentric
images. As their original purpose was to infer hand pose,
people wear a mo-cap device on the right hand. As the
color and depth images were extracted from different
sensors and at different positions, it was very difficult
to create a common groundtruth, so we do not report
empirical results, but only visual examples.

• Ego Gesture (groundtruth related to arms) [70]: con-
tains egocentric color and depth videos acquired from
RealSense SR300. It includes 83 different hand ges-
tures from 50 different subjects and 6 different scenar-
ios (e.g. indoors, outdoors, illumination, static clutter
background, dynamic background, walking, etc.). As the
groundtruth was related to hand gestures, we manually
labeled the arm segmentation masks of a representative
subset of 277 images (by sampling approximately one
image per subject and scenario).

• THU-Read (groundtruth related to arms) [61]: is
created for egocentric action recognition from RGB-D
data. Concretely, there are up to 40 different actions,
each related to particular objects, performed by 8 dif-
ferent users. Due to the lack of pixel-wise labeling for
both RGB and depth images, we also manually labeled
the segmentation masks of a representative subset of
203 images, ensuring variability of actions and users.

B. PERFORMANCE METRIC
Empirical results are given in terms of Jaccard Index, also
known as Intersection over Union (IoU ), defined as:

mIoU =
1
k

k∑
i=1

IoUi =
1
k

k∑
i=1

[
TP

TP+ FP+ FN

]
i

(2)
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TABLE 3. Segmentation results in terms of Intersection over Union (IoU) for different egocentric segmentation datasets. The considered segmentation
algorithms for AV are: 1) color, 2) baseline Deeplabv3+ using the person class; 3) Deeplabv3+ using the proposed EgoArm dataset. GTEA Gaze+ is our
validation dataset. The reader should keep in mind that there is discrepancy between the available groundtruth (related to hands or skin) with the arm
concept. Due to that, MissRate is also reported. Bold indicates best IoU for a given dataset. Results format follows IoU (MissRate).

where k is the number of classes (in our case k = 2: arms
and background). IoU is first computed independently for
each class and then averaged to have mean Intersection over
Union mIoU . IoU measures the ratio between intersection
between groundtruth and predicted segmentation masks over
their union. True Positives (TP) are the number of pixels
belonging to the target class which were successfully pre-
dicted. False Positives (FP) account for the number of pixels
which were wrongly predicted to belong to the target class.
False Negatives (FN ) counts the number of pixels belonging
to the target class but were not correctly predicted. Due to the
great imbalance of pixels belonging to arm and background
per image, we report exclusively IoU pertaining to the arm
class, in the range 0-100%.

As grountruth of the available test datasets presented in
Section V-A is only related to hands or skin, but not clothes,
reported IoU is underestimated. This means that clothes, even
when segmented by our proposed method, count as FP and
thus, reduce the IoU . For further understanding, we also
reported MissRate = FN

FN+TP , also in the range 0-100%.
MissRate accounts for the percentage of pixels belonging
to the hand/skin class wrongly classified as background.
Therefore, the smaller, the better.

VI. RESULTS
In the following we provide an extensive quantitative
and qualitative assessment of our proposed deep segmen-
tation network, in comparison with former segmentation
approaches used in AV, namely color and depth. Concretely,
Section VI-A starts the discussion introducing the baseline
performance of color-based segmentation in comparison with

the baseline DeepLabv3+ deep network; Section VI-B fol-
lows it comparing the performance of baseline DeepLabv3+
with the one trained with EgoArm. Last, Section VI-C
will compare deep-based with respect to depth approaches.
Table 3 and Table 4 present IoU andMissRate values for RGB
and RGB-D datasets, respectively.

A. COLOR PERFORMANCE
Color-based segmentation is applied using an HSV filtering
similar to Equation 1. As can be seen from Table 3,
color-based segmentation achieves similar or worse results
than the baseline DeepLabv3+. Concretely, there is an abso-
lute improvement from 10.00% to 25.00% IoU when replac-
ing color-based to DeepLabv3+ for GTEA Gaze+, EDSH,
THU-Read and TEgO datasets. From a high-level perspec-
tive, this is expected since deep learning algorithms, unlike
color-based ones, consider additional information beyond
color such as shapes, texture, and other complex information.
Due to this reason, performance is also hindered when there
are objects in the scene which share the skin color; notice
the very bad performance of GTEA Gaze+ or THU-Read
databases due to their yellowish/reddish scene appearance
(see Fig.6 A and J). Also, results reported from the TEgO
database show that relying exclusively on color is not an
appropriate method when users from different ethnicities are
involved (see Fig.7). Besides, this method fails at segmenting
clothes (see Fig.6 G and L and Fig.8 A).
In the case of Ego Gesture, there are no observable

performance differences between the color and the base-
line DeepLabv3+, according to results reported in Table 3.
However, when assessing those results per scene
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FIGURE 6. Segmentation examples of the different segmentation methods explored for GTEA GAZE+, EDSH, EgoHands, Ego Youtube Hands,TeGO, FPAB
and THU-Read. The first column refers to the groundtruth defined in each case. Notice that FPAB do not contain groundtruth images, we have manually
labeled these two examples.

FIGURE 7. Samples from TeGO. Notice that groundtruth is related to the
skin.

(see Table 4), we observe that: i) both color and DeepLabv3+
are severely affected by extreme illumination conditions
(Scene3, see Fig.8 C); ii) color is more robust than
DeepLabv3+ in both dynamic or walking indoor scenarios
where movement can produce some blur effect (around
10.00% average absolute improvement when using color
rather than DeepLabv3+ for Scene2 and Scene4, see
Fig.8 B), and iii) that DeepLabv3+ outperforms color when
good illumination is available (Scene5 and Scene6, see
Fig.8 D-E) or there is a controlled background.

B. DEEP PERFORMANCE
Concerning the behavior of the two deep Sem-Seg networks,
we observe the general superiority of the network trainedwith

FIGURE 8. Comparison results using Ego Gesture dataset, composed of
RGB and depth egocentric images in 6 different scenes. Notice that
groundtruth is related to arms.

EgoArm in comparison with the baseline DeepLabv3+. This
observation validates our hypothesis of the convenience of a
database more similar to the real application.

We observe a slight, moderate or large improvement,
depending on the particular dataset. Slight improvement is
observed for EgoHands (6.87% absolute improvement) and
no improvement is observed for the Ego Youtube Hand
datasets. In both cases, results are very poor due to the
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TABLE 4. Comparison results using Ego Gesture dataset, composed of RGB and depth egocentric images in 6 different scenes, and THU-READ dataset.
Results format follows IoU (MissRate). Bold indicates best IoU .

groundtruth being related just to hands despite most images
show whole arms with or without clothes (see Fig.6 G and F).
Also, in the case of EgoHands (see Fig.6 F), the majority
of images present both FPV and TPV arms. Moreover, TPV
arms occupy a larger surface than FPV ones. As the network
trained with EgoArm focuses on FPV arms, it makes sense
that the improvement on such database is limited. In what
concerns Ego Youtube Hands images, we assume that their
low resolution (384 × 216) along with their uncontrolled
and cluttered environment makes the segmentation specially
challenging.

A slight gain is observed with EDSH2 when including
EgoArm (6.50% absolute improvement). We believe this is
because most test images just contain arms but not clothes,
but also because background and hand position are controlled
(e.g. fingers are very well separated). For the more uncon-
trolled EDSHK, there is a larger improvement specially in
terms of MissRate (from 22.91% to 8.10%) between the
baseline DeepLabv3+ and the one trained with EgoArm.
Among EDSHK images, it is very frequent to encounter arms
with clothes, which are not considered part of the groundtruth
(see Fig.6 D). Therefore, part of FP is related to the clothes
side of the arm.

Moderate enhancement is encountered for the GTEA
Gaze+ and Ego Gesture in the range of 15.00% to 25.00%
absolute improvement of IoU , but also in THU-READ, con-
sidering the decrease of MissRate from 22.00% to 6.33%.
As these datasets are purely egocentric, it is more noticeable
the gain when using the EgoArm (see Fig.6 A-B, Fig.6 K-L
or Fig.8 A-B). Having a more in-depth look to the IoU per
scene reported in Table 4, it is observed a huge improvement
of DeepLabv3+ trained on EgoArm in all scenes and notably
in outdoors scenarios, which apart from the nature of the
scenarios, might benefit from uniform and good illumination.
Lastly, a considerable increase in performance is noticed with

the different subsets from TEgO dataset (in the range of
20-40% of absolute improvement). The main reason behind
it resides on the diversity of skin colors presented in the
EgoArm.

After having a visual inspection to the images, we notice
that in some cases, the DeepLabv3+ EgoArm network gener-
ates some false positives from background items. We hypoth-
esize this has to do with the huge variability (both in terms of
color, shapes, textures) of backgrounds, which might not be
fully retained by the network parameters.

C. COMPARISON WITH DEPTH
Here we provide a detailed analysis of the results obtained
with depth in comparisonwith color-based or deep-based seg-
mentation, using the Ego Gesture and THU-READ RGB-D
subsets described in Section V-A.

As stated in Section II, segmentation based on depth
implies the selection of all objects that are below a particular
distance threshold d1 from the sensor, as defined by the
following equation:

f (x, y) =

{
1 if 1 ≤ Depth(x, y) ≤ d1
0 otherwise

(3)

where x and y refer to the pixel position in the image. In our
experimental framework, we set d1 to a value greater than 0 to
discard unknown depth pixels.

It is clearly visible from Table 4 that the segmentation
based on depth is more uniform across the different indoor
scenes of Ego Gesture than deep- or color-based approaches.
A slight drop in the depth performance is shown in outdoor
scenarios (see Fig.8 D-E), possibly because signal light5

is much weaker than ambient sunlight. As a result, depth
estimationworks fine in EgoGesture as the considered scenes

5Texture being projected in infrared to compute depth through disparity.
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FIGURE 9. Comparison results using THU-READ dataset, composed of 203 RGB and depth egocentric images in cluttered and challenging scenarios.
Notice that groundtruth is related to arms.

avoid all the critical scenarios for RGB-D sensors [47]:
i) hands/arms are always within the distance range of the
camera (and never closer) and no other object is in such range;
ii) hands are fully visible from both infrared sensors, and
iii) they never cast shadows from the infrared emitter.

In contrast, images of the RGB-D THU-READ subset
showcase more challenging scenarios: arms are always sur-
rounded by other objects or furniture. Thus, resulting depth
images are much noisier due to occlusions when estimat-
ing depth through disparity. It also presents a narrower
field of view with respect to the RGB sensor (see Fig.9).
As reported by Table 4, depth performs very poorly in these
cluttered scenarios, reaching an IoU of 19.63%, in con-
trast to 57.75% achieved by DeepLabv3+ EgoArm. Indeed,
a threshold-based segmentation have many limitations: arms
can be partially segmented (see Fig. 9 B) additional objects
segmented beyond the desired ones (see Fig.9 C-D). In some
situations, having a dynamic threshold could solve some of
the limitations of depth, but still it would not be trivial,
especially in those cases in which arms and other objects
share the same distance range. Also, depth sensors have a
minimum distance at which depth can be estimated. This also
hinders the segmentation in a situation where arms or objects
are very close to the sensor.

Based on the aforementioned results, depth works well
at segmenting arms in isolated areas (see Fig.9 A) without
any other object at the same distance range, but its perfor-
mance severely degrades in outdoor and cluttered scenarios.
Moreover, there are recent studies exploring deep learning to
enhance depth maps (also known as depth completion), that
suggest that there is still a large room for improvement in this
area [40], [43], [71].

D. COMPUTATION TIME
Given a 720×720 image, segmenting it with color, depth, and
deep approacheswould take 2.9ms, 700µs6 and 74ms, respec-
tively using a PC Intel Xeon ES-2620 V4 @ 2.1Ghz with
32 GB powered with 2 GPU GTX-1080 Ti with 12GB RAM.
Our deep implementation achieves about 15 fps, which is
4 to 6 times slower than what it would be desirable for a
smooth AV system. However, it falls within the right order
of magnitude, so it is just a matter of algorithm optimization
and hardware improvement that the Sem-Seg approach can
work in real time. In practice, it would imply either having
the HMD attached to a resourceful computer or offloading
computation to the edge cloud [19], [37].

VII. CONCLUSION
Egocentric perception has attracted the interest of the AV
community due to egocentric cameras being incorporated
to VR headsets. In particular, egocentric image segmenta-
tion can provide new features such as increasing sense of
presence, if the user’s body parts are segmented, or inter-
activity with the local reality, if nearby objects (e.g. laptop,
mobiles) are segmented. In this work, we aimed to shed
some light on segmentation methods for AV beyond the
traditional approaches based on color or depth. Our main
contributions can be summarized as follow: i) We first con-
duct a comprehensive review of previous studies propos-
ing segmentation methods for AV, focusing on the method,
the objects segmented, and the VR devices used; ii) we
create the EgoArm dataset composed of more than 10, 000

6This does not include the time required to generate the depth map from
the stereoscopic images.
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semi-synthetic images, demographically inclusive (varia-
tions of gender, skin color), and open for research purposes;
iii) we provide a very detailed description on how to generate
semi-synthetic images and the automatic method to generate
pixel wise labeling, which will help future researchers to
create their own custom datasets at a low cost; iv) the use
of deep learning for the first time for segmenting arms in AV;
v) we report results and provide insights while testing our
proposed network trained with the semi-synthetic EgoArm
dataset with 8 real egocentric datasets: GTEA Gaze+,
EDSH, Ego Youtube Hands, EgoHands, FPAB, THU-Read,
TEgO, and Ego Gesture, providing comparisons with color-
and depth-based segmentations. Results have proven the
effectiveness of EgoArm for arm segmentation, boosting
the average IoU from 25.00% reached with color or from
31.35% reached with the baseline DeepLabv3+ network,
up to 50.00% IoU . Besides, these segmentation networks are
more robust than color-based approaches when dealing with
illumination changes, segmenting clothes or arms with dif-
ferent skin color, etc. In comparison with depth, deep-based
segmentation algorithms are also more robust in outdoor or
cluttered scenarios. Segmentation based exclusively on depth
works reasonablywell for isolated scenarios. This encourages
us to foresee a potential use of depth information to comple-
ment the training deep networks based on RGB; it might help
to mitigate the problem of false positives already mentioned.
Potential future research lines could be:

• Make it work on real time by exploring the tradeoff
between inference time and accuracy of shallower archi-
tectures such as [38], [68].

• Explore multimodal approaches based on RGB and
depth input images.

• Evaluate the presence and sense of embodiment prop-
erties of the proposed segmentation method using stan-
dardized questionnaires [26], [60], [67].

• Extend the proposed segmentation method to other
classes, such as human body or some specific objects,
and allow interaction with virtual objects by tracking
human body parts [30].
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