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ABSTRACT Single objective real-parameter optimization problems exist in many areas of the real world,
and Differential Evolution (DE) is a powerful population based stochastic optimization approach for tackling
such problems. There are many different mutation strategies mentioned in the literature, and each of them
has its own advantage. In this paper, we propose combined mutation strategies which can make a full use
of the advantage of each mutation strategy regarding a population diversity indicator during the evolution.
Furthermore, Novel Parameter Control (NPC) for the three control parameters including the scale factor F ,
crossover rateCR and population size PS are also proposed in the paper. Different from employing the fitness
value as a weight in recent proposed state-of-the-art DE variants, our PaDE-NPC algorithm can tackle a large
optimization problems especially for those the fitness differences are unavailable; Moreover, a platform
based population size reduction scheme is also involved in the NPC, which can get a better perception of the
landscape at the early stage of the evolution while obtaining a balance between exploration and exploitation
in the later part of the evolution. The novel PaDE-NPC algorithm is verified under 58 benchmark functions
from CEC2013 and CEC2017 test suits for real-parameter optimization competitions and experiment results
show that our proposed PaDE-NPC algorithm outperforms these recently proposed powerful DE variants.

INDEX TERMS Combined strategy, differential evolution, novel parameter control, single-objective opti-
mization.

I. INTRODUCTION
Differential evolution (DE), as one of the most power-
ful and efficient evolutionary algorithms (EAs) [1]–[4] for
global optimization, is first introduced by Price and Storn
[5]–[10]. Because of its simple structure and feasibility for
tough optimization problems [11]–[14], DE has gained a
lot of focus and has been widely used in many real-world
application, such as scientific and engineering applications
[15]–[19]. In order to further improve the performance of
DE, many researchers engaged in the study of DE and pro-
posed lots of new DE variants in the past two decades [20]–
[24]. Among these existing DE variants, most studies focus
on developing new efficient mutation strategies and design-
ing intelligent adaptation schemes for control parameters
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[25]–[30]. Brest et al. proposed a parameter control technique
with self-adapting strategy [20], the values of both F and
Cr were randomly altered within certain range when prob-
ability constraints were satisfied. Zhang and Sanderson pro-
posed JADE algorithm [21] in which a new mutation strategy
‘‘DE/current-to-pbest’’ was invented. The mutation strategy
can effectively maintain population diversity while keeping
fast convergence property. Moreover, adaptation schemes of
µF and µCr are also applied to renew the parameters F
and Cr of the individual. Tanabe and Fukunaga proposed
a powerful DE variant named SHADE [31] which further
extended the JADE algorithm. In SHADE, historical memory
of successful control parameter settings are used to guide the
selection of future control parameter values, and the fitness
difference of the successful individuals are also incorporated
in the adaptation schemes of control parameters. The authors
further enhanced SHADE algorithm by introducing linear
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population size reduction [25], and this algorithm was named
LSHADE which won the first place in the competitions.
Brest et al. proposed iLSHADE [27] for the competition
lunched in 2016, which is a further improvement of LSHADE
algorithm. In iLSHADE, the generated control parameters F
and Cr are readjusted according to different stages of the
evolution, which is considered to be of too much human
intervention and over-fitting problem. The jSO algorithm [29]
proposed a new inertia weight based mutation strategy as
well as incorporating stage-based control parameter readjust-
ments in iLSHADE algorithm won the CEC2017 competi-
tion for single-objective real-parameter optimization among
all the DE variants. Meng et al. proposed LPALMDE [28]
which divided the control parameters into different groups,
and all parameters were updated independently which tack-
led the misleading interaction among parameters. More-
over, the authors also proposed a HARD-DE [30] algorithm,
an enhanced version of LPALMDE. A new hierarchical
archive-based mutation strategy was introduced into it and
better perception of landscapes of objective functions was
obtained by the hierarchial mutation strategy.

In summary, the trial vector generation strategy dominates
the overall optimization performance, and there are two com-
ponents involved in the generation of trial vectors. One is the
mutation strategy and the other is parameter control. As we
know, all the mutation strategies mentioned in the literature
have the advantages and disadvantages of their own and a
single mutation strategy can not tackle all the problems. Here
we propose combined mutation strategies which can make a
full use of the advantage of each mutation strategy regarding
a population diversity indicator during the evolution. For a
given mutation strategy, the control parameters F , CR and
PS are also very important for the optimization performance.
According to these DE variants and some comparative studies
of them [32]–[36], we can see that the fitness difference based
parameter adaptation schemes are empirically very efficient
in the enhancement of DE algorithm [37]–[39]. By intro-
ducing fitness difference in the adaptation of control param-
eters µF and µCr , we can generate more accurate control
parameters which lead to better optimization performance.
That’s also the reason why DE variants with fitness differ-
ence based adaptation schemes win recent competitions and
show their superiority in improving the performance of DE
algorithm [40]–[43]. Although fitness difference based adap-
tation schemes are very powerful, these kind of adaptation
schemes are heavily dependent on the fitness values of the
individuals, and there are the optimization cases that the
exact fitness values are unavailable. To circumvent the above
predicament, a new PaDE-NPC is proposed in this paper.
The main innovation of the proposed algorithm is listed as
follows:

1) The PaDE-NPC algorithm employs a combined muta-
tion strategies which can make a full use of the advan-
tage of each mutation strategy regarding a population
diversity indicator, therefore, it is more likely to obtain
better performance.

2) Novel Parameter Control (NPC) for the three control
parameters including the scale factor F , crossover rate
CR and population size PS are also proposed in the
paper. Different from employing the fitness value as a
weight in recent proposed state-of-the-art DE variants,
our PaDE-NPC algorithm can tackle a large optimiza-
tion problems especially for those the fitness differ-
ences are unavailable;

3) A platform based population size reduction scheme
is also involved in the NPC, which can get a better
perception of the landscape at the early stage of the evo-
lution while obtaining a balance between exploration
and exploitation in the later part of the evolution.

4) A test suite containing 58 benchmarks from CEC2013,
and CEC2017 test suites on real-parameter single
objective optimization is employed in the algorithm
validation and the experiment results show the compet-
itiveness of our PaDE-NPC algorithm.

The rest of this paper is organized as follows. In Section II,
DE is briefly introduced. Section III presents the review of
several powerful DE variants in the literature. Section IV
presents the details of the proposed PaDE-NPC algo-
rithm. Section V presents the experimental analysis under
CEC2013 and CEC2017 test suits. Finally, conclusion is
given in Section VI.

II. THE CLASSICAL DE ALGORITHM
DE is a stochastic population based trial-and-error method for
the tackling of optimization problems by mimicking biologi-
cal evolution. The whole optimization process can be divided
into different stages of evolution: initialization and loop of
mutation, crossover and selection.

A. INITIALIZATION
In general, the single objective optimization problem can be
mathematically represented as searching for a global opti-
mum point X∗ in a D-dimensional space RD:

min f (X ) s.t.X ∈ S (1)

where f (X ) is an objective function, S is the search region,
and X is an D-dimensional vector restricted by lower bound
Xmin = (xmin,1, xmin,2, . . . , xmin,D) and upper bound Xmax =
(xmax,1, xmax,2, . . . , xmax,D). Typically, the initialization of
the ith individual can be generated as follows:

xi,j = xmin,j + rand(0, 1) · (xmax,j − xmin,j)

s.t. j ∈ {1, 2, . . . ,D} (2)

where rand(0, 1) denotes a uniformly distributed random
number between 0 and 1, and the ith individual of the pop-
ulation in the gth generation is represented as Xi,g.

B. MUTATION
After initialization, the mutation operation is implemented to
generate donor vector Vi,g = (vi,1,g, vi,2,g, . . . , vi,D,g), and
four frequently used mutation strategies are presented below:
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• DE/rand/1

Vi,g = Xr1,g + F · (Xr2,g − Xr3,g) (3)

• DE/best/1

Vi,g = Xbest,g + F · (Xr1,g − Xr2,g) (4)

• DE/current-to-rand/1

Vi,g=Xi,g+F · (Xr1,g−Xi,g)+F · (Xr2,g − X3,g) (5)

• DE/current-to-best/1

Vi,g=Xi,g+F · (Xbest,g−Xi,g)+F · (Xr1,g − X2,g) (6)

where r1, r2, r3 ∈ {1, 2, . . . , ps} are the mutually exclusive
indices randomly selected from the range [1, ps], and all these
indices are distinct from i. The scale factor F ∈ {0, 1} is a real
number which is used for the amplification of the difference
vectors. Xbest,g denotes the individual with the best fitness
value in the gth generation.

C. CROSSOVER
After mutation operation, crossover operation is conducted
to produce trial vector Ui,g by selecting the components
both from target vector Xi,g and donor vector Vi,g [44]–[46].
Commonly, the crossover operation in DE has two ways:
exponential crossover and binomial crossover. According to
some comparative studies, crossover in binomial way is gen-
erally more robust and effective than exponential way, and
in most recently published papers, the binomial way is the
commonly used crossover scheme in numerical optimization.
For the crossover scheme, the operation is conducted on
each dimension according to whether a randomly generated
value rand(0, 1) is no bigger than the crossover probability
Cr or not, and it can be formulated as follows:

ui,j =

{
vi,j, if rand(0, 1) ≤ Cr or j = jrand
xi,j, otherwise

(7)

where jrand is a random integer in the range [1,D]. Fig. 1
illustrated the relationship between target Xi,g, donor vector
Vi,g and trial vector candidates (i.e.,Ui,g,U ′i,g andU

′′
i,g) of the

canonical DE in 2-D search domain.

D. SELECTION
As DE is based on the principle ‘‘Survival of the fittest’’,
therefore the solution with better fitness value will be
reserved while the one with relatively poor fitness value will
be discarded in next generation. At this point, a comparison
will be conducted between the trial vector Ui,g and the target
vector Xi,g according to their function values, i.e., f (Xi,g)
and f (Ui,g), and the one with better function value will sur-
vive into the next generation. For a minimization problem,
the selection operator can be represented like this:

Xi,g+1 =

{
Ui,g, if f

(
Ui,g

)
≤ f

(
Xi,g

)
Xi,g, otherwise

(8)

This evolution continues until the termination criterion is met.

FIGURE 1. Relationship between target Xi,g, donor vector Vi,g and trial
vector candidates of the canonical DE in 2-D search domain.

III. RELATED WORK
The performance of the DE algorithm can be heavily influ-
enced by the selection of different mutation strategies and
control parameters. To further enhance the performance of
classical DE, many approaches have been proposed in the
literature, and the majority of these improvements includes
developments in mutation strategies and developments in
parameters control. In this section, literature reviews are
presented from these two improvements of several state-of-
the-art DE variants that closely related to our PaDE-NPC
algorithm.

A. MUTATION STRATEGY
The four mutation strategies mentioned in Section II are
canonical mutation strategies proposed in the early period
of DE development. one branch of later studies mainly
focused on developing new efficient mutation strategies to
balance exploration and exploitation of them. Zhang and
Sanderson proposed an effective mutation strategy in JADE,
and the mutation strategy was denoted as ‘‘DE/current-
to-pbest/1/bin’’ in which an optional external archive was
employed in diversity improvement of the individuals. In this
new strategy, the top 100p% solutions rather than the global
best solution of the current generation were utilized to
guide the evolution of the individuals. The ‘‘DE/current-
to-pbest/1/bin’’ with external archive is presented below in
Eq. 9:

Vi,g = Xi,g + F · (X
p
best,g − Xi,g)+ F · (Xr1,g − X̃r2,g) (9)

where Xi,g is the target vector, Vi,g is the donor vector, and
Xpbest,g is a vector randomly selected form the top 100p%
solutions for the current population. A denotes an optional
external archive that records the inferior solutions of the
evolution, and X̃r2,g is a vector randomly selected from the
union of the current population P and external archive A.
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Brest et al. further improved the mutation strategy of JADE
by incorporating an inertia weight in a new DE variant,
the jSO algorithm [29], meanwhile, the parameter control
of jSO is similar as its former algorithm, the iLSHADE
algorithm [27]. The mutation strategy in jSO is also presented
below in Eq. 10:

Vi,g=Xi,g+Fw · F · (X
p
best,g−Xi,g)+F · (Xr1,g−X̃r2,g) (10)

However, a single powerful mutation strategy can not tackle
all the problems, and combinedmutation strategies may show
the superiority because they can make full use of the advan-
tages of different mutation strategies. Meng et al. proposed
a DE variant with a new hierarchical archive based mutation
strategies in HARD-DE algorithm [30]. The novel hierarchi-
cal archive based mutation strategies were verified to be able
to obtain good perception of objectives at different stages of
the evolution. The details of themutation strategy is presented
as follows:

Vi,g = Xi,g + F · (X
p
best,g − Xi,g)

+F1 · (Xr1,g − X̃r2,g)+ F2 · (Xr1,g − X̃r3,g) (11)

where same symbols have already defined in the earlier part,
and X̃r3,G denotes a randomly chosen individual from the
union P

⋃
B, where P is the current population and B denotes

the set of individuals of former population, moreover, B is
restored in the second part of the hierarchical archive of
HARD-DE algorithm. The mutation strategies of the novel
PaDE-NPC algorithm in this paper is a further development
of the ones in HARD-DE algorithm.

B. PARAMETER CONTROL
Considerable research has also been carried out to develop
effective parameter control. Tanabe and Fukunaga in
LSHADE proposed a novel parameter control mechanism
in which historical superior control parameters were used to
guide the distribution of these control parameters [25], more-
over, the fitness differences of successful individuals are also
incorporated into the update of the µF and µCr . There are H
entries in the memory pool, and each entry was assigned aµF
andµCr pair within it. This setting can enhance the robustness
of the control parameters and only an entry recording theµF–
µCr pair is renewed during each generation. Eq. 12 and Eq. 13
present the details of the parameter control in the LSHADE
algorithm:

wk =
1fk∑|SF |
k=11fk

1fj = f (Xj,G)− f (Uj,G)

meanWL(SF ) =

∑|SF |
k=1 wk · S

2
F,k∑|SF |

k=1 wk · SF,k

µF,G+1 =

{
meanWL(SF ), if SF 6= ∅
µF,G, otherwise

(12)



wk =
1fk∑|SCr |
k=1 1fk

1fj = f (Xj,G)− f (Uj,G)

meanWA(SCr ) =
∑|SCr |

k=1
wk · SCr,k

µCr,k,G+1 =

{
meanWA(SCr ), if SCr 6= ∅
µCr,k,G, otherwise

(13)

Brest et al proposed stage-based adaptation of control
parameters in iL-SHADE [27], and these readjustments of
control parameters were also inherited into a novel jSO algo-
rithm that secured the first place among DE competitors in
CEC2017 competition. Meng et al proposed a new DE vari-
ant which introduced a Parameters with Adaptive Learning
Mechanism (LPALMDE) [28], in which control parameters
were separated into different groups to tackle the misleading
interaction among control parameters, and the adaptation
scheme for the scale factor F is based on the success values
of the corresponding individuals while the adaptation scheme
for crossover rate Cr is based on its success probability.
Although the parameter control in this algorithm tried to
employ fitness-independent ways in the adaptation of µCr ,
the adaptation ofµF still employed the fitness-difference. All
the DE variants with fitness-difference dependent parameter
control can not tackle the optimization applications that the
fitness values were unavailable. That’s also the contribution
of our novel PaDE-pet algorithm in this paper.

IV. THE NOVEL PaDE-NPC ALGORITHM
In this section, we provide an overall description of the novel
PaDE-NPC algorithm, and the PaDE-NPC algorithm can be
separated into the following four parts: mutation strategy,
the grouping strategy, the novel parameter control, and the
population size reduction.

A. MUTATION STRATEGY
As mentioned in Section III, mutation strategy can signifi-
cantly influence the overall optimization of DE variants. It is
known to all that the ‘‘DE/target-to-pbest/1/bin’’ mutation
strategy, firstly introduced in JADE [21], is a very effec-
tive mutation strategy. By incorporating an optional external
archive with inferior solutions, a good population diversity
can be achieved but the fast convergence speed can also be
maintained during evolution. Recently, many state-of-the-
art DE variants, including LSHADE [25], iLSHADE [27],
QUATRE-EAR [35], [46], jSO [29] and LPALMDE [28] etc.,
employed the same or similar strategy as the ‘‘DE/target-
to-pbest/1/bin’’ mutation strategy. As is mentioned above,
a single powerful mutation strategy can not tackle all the
optimization problems and a combined mutation strategy can
solve a much wilder optimization applications. Therefore,
in our novel PaDE-NPC algorithm combined mutation strate-
gies with population diversity indicator are proposed and the
details of the mutation strategies are given in Eq.14 and Eq.15
respectively:

Vi,g = Xi,g+F · (X
p
best,g − Xi,g)+F · (Xr1,g − X̃r2,g) (14)
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Vi,g = Xi,g + F · (X
p
best,g − Xi,g)

+F1 · (Xr1,g − X̃r2,g)+ F2 · (Xr1,g − X̃r3,g) (15)

where same symbols have already defined in the former parts.
For the relationship among the three scale factors in Eq. 15,
F1 = 0.9 · F and F2 = 0.7 · F are employed in the
proposed PaDE-NPC algorithm, which are the same as the
former HARD-DE algorithm. Moreover, two parameters rarc

and rhar are used for delimiting the size of archive A and
H , and the relationship between the population size of gth

generation and the size of archive always satisfy the following
equation: {

|A| = rarc · psg
|H | = rhrc · psg

(16)

where |A| and |H | denote the size of these two archives, and
the default values of rarc and rhrc are set to rarc = 1.0
and rhrc = 3.0. Especially, when the number of solutions
exceeds the fixed maximum of the corresponding archive,
randomly selected inferior individuals will be discarded from
the archive to keep the number of solutions is no bigger than
the fixedmaximum size. For the population diversity indictor,
DM is proposed for the choice of a certain mutation strategy
at current population diversity. Then the evolution can be
divided into two parts according to the following equation:{

LDg/LD1 > DM → Earlier evolution stage
LDg/LD1 ≤ DM → Later evolution stage

(17)

where LDg can be calculated via:

LDg =
1
ps
·

√√√√√ ps∑
i=1

∥∥∥∥∥∥Xi,G − 1
ps
·

ps∑
j=1

Xj,g

∥∥∥∥∥∥
2

(18)

LD1 denotes the density of the population at the initialization
stage of the evolution while LDg denotes the population
diversity in the gth generation. In our PaDE-NPC algorithm,
the hierarchical archive based mutation strategy in Eq. 15 is
employed at the earlier stage and the mutation strategy in
Eq. 14 is employed at the later stage of the evolution.

B. GROUPING STRATEGY OF CONTROL PARAMETERS
For the control parameters in our PaDE-NPC algorithm,
the whole population are divided into k groups in the evolu-
tion, and each group in PaDE-NPC records two parameters,
the selection probability P(·) and the center of the distribution
of crossover rate µCr . At the beginning of the evolution,
the initial value of the selection probability for each group
is assigned to 1/k . Then, all individuals of the population in
each generation can be divided into the different groups by
implementing stochastic universal selection [28]. Moreover,
the selection probability of each group will be renewed at the
end of each generation and µCr of the group with smallest
selection probability will replaced. The update scheme of

selection probability is shown in Eq 19:



rj =


ns2j

ns ·
(
nsj + nfj

) , if nsj > 0

ε, otherwise

ns =
k∑
j=1

nsj

P(j) =
rj∑k

j=1
(
rj
)

(19)

where nsj denotes the number of individuals in the jth group
that do found better solutions, while nsj denotes the number of
individuals in the jth group that do not found better solutions.
Moreover, a small value ε = 0.01 is implemented here to
avoid possible null values of probability. After the update
of selection probabilities, we can find the group with lowest
selection probability, and then, we will update the µCr value
of this group according the corresponding parameter adap-
tation scheme. Especially, the update of µCr is only carried
out in one group at each generation, i.e. when there are more
than one group are associated with the same smallest proba-
bility, we only select one group to renew its corresponding
µCr value at random, and the index of the selected group
is indicated as idx. The adaptation scheme for the control
parameter µCridx will be illustrated in the next part. The
grouping strategy of PaDE-NPC is illustrated in Fig. 2.

FIGURE 2. Different groups of individuals in the PaDE-NPC algorithm.

C. THE NOVEL PARAMETER CONTROL
As is mentioned above, the winner DE variants in the recent
competitions all employed the fitness difference based adap-
tation scheme for control parameters, however, fitness dif-
ferences were unavailable in some real-world optimization
problems. Fig. 3 illustrated a black-box model in real world
application which the fitness differences of the objective
function are unavailable, and in order to tackle this prob-
lem, a novel location information based parameter adaptation
scheme is proposed in this paper.

The main idea of the proposed adaptation scheme is to
adapt the scale factor F and the crossover rate Cr by using
the location information of the population. In our PaDE-NPC
algorithm, a novel adaption scheme for the parameter µF and
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FIGURE 3. A black box model in real-world application: when input A is
better, the black-box function outputs A; otherwise outputs B. We can see
that there is no fitness value available in the black box objectives and the
fitness value based DE variants can not tackle this problem.

µCr are presented in Eq. 20 and Eq. 21:



wk =
std(1Lock )∑|SF |
l=1 std(1Locl)

1Lock = Loc(Xk,g)− Loc(Uk,g)

meanWL (SF ) =

∑|SF |
k=1 wk · S

2
F,k∑|SF |

k=1 wk · SF,k

µF,g+1 =

{
0 .5 · (meanWL (SF )+ µF,g), if SF 6= ∅
µF,g, otherwise

(20)

wk =
std(1Lock )∑|SCr |
l=1 std(1Locl)

1Lock = Loc(Xk,g)− Loc(Uk,g)

meanWL (SCr ) =

∑|SCr |
k=1 wk · S

2
Cr,k∑|SCr |

k=1 wk · SCr,k

µCr,idx,g+1 =



0 .5 · (meanWL (SCr )+ µCr,g),
if SCr 6= ∅&max {SCr } > 0
0,
if SCr 6= ∅&µCridx ,g = 0
µCr,g+1,

otherwise

(21)

where SF denotes the set of the corresponding scale factor
F of success individuals, SCr denotes the set of the corre-
sponding crossover rate of Cr of success individuals. Both
|SF | and |SCr | denotes the size of the set SF and set SCr .
1Lock denotes the location differences, i.e. the coordinates
differences, of the kth individual in the success individual
set. std(·) denotes the operation that calculate the standard
deviation of all different variables of the location differences.
meanWL(S) is the weighted Lehmer mean of the success set S.
And the parameter µF is the mean of the Cauchy distribution
obeyed by the scale factor F , F ∼ C(µF , 0.1), while the
parameter µCr is the mean of the Normal distribution obeyed
by the crossover rate Cr , Cr ∼ N (µCr , 0.1). Furthermore,
if the generated Fi and Cri values is out the range (0,1],
it should be adjust according to Eq. 22 and Eq. 23.

Fi =


Ci (µF , σF ) , while Fi ≤ 0
1, if Fi > 1
Fi, otherwise

(22)

Cri =


0, while µCr ≤ 0õr Cri < 0
1, if Cri > 1
Cri, otherwise

(23)

D. POPULATION SIZE REDUCTION STRATEGY
A novel platform based linear population size reduction strat-
egy is also proposed in the PaDE-NPC algorithm. Population
size reduction strategy [47] has been shown to be powerful
in improving DE performance. However, the quick reduction
of population size at the beginning of the evolution usually
lead to bad perception of the landscape of most objective
functions. Therefore, in our PaDE-NPC algorithm, the popu-
lation at the early stage of the evolution is kept fixed and the
linear reduction begins when the current number of function
evaluation is bigger than plat · 100% maximum number of
function evaluation, i.e. nfe > plat · nfemax . The detailed
equation of the novel population size reduction scheme is
presented in Eq. 24:

psg+1=b
nfe− plat · nfemax
(1− plat) · nfemax

· (psmin − psmax)+psinic (24)

where psini and psmin denote the initial and minimum value of
population size, nfemax and nfe denote the maximum number
of function evaluation and current number of function evalua-
tion respectively, floor[·] denotes the operation that rounding
down to the nearest value. The pseudo code of the PaDE-NPC
is presented in Algorithm 1.

V. EXPERIMENT ANALYSIS
Generally, it is difficult to determine how ‘‘good’’ an opti-
mization algorithm is because of the lack of related the-
oretical knowledge, and benchmark functions play a very
important role in performance evaluations of different evo-
lutionary algorithms. Thus, here in this paper, 58 benchmark
functions in CEC2013 [48] and CEC2017 [49] test suit are
employed in verifying the proposed PaDE-NPC algorithm.
Functions in CEC2013 test suit fall into three major types:
there are five uni-modal functions (f1−f5), fifteen basicmulti-
modal functions (f6 − f20) and eight composition functions
(f21− f28); Functions in CEC2017 test suit can be categorized
into four major types: there are three uni-modal functions
(f ′1 − f

′

3), thirteen basic multi-modal functions (f ′4 − f
′

16), five
hybrid functions (f ′17 − f

′

22) and eight composition functions
(f ′23 − f ′30). In our conducted experiments, the maximum
number of function evaluations (nfemax) for these compared
algorithm are all set to 10000 ∗ D, where D is the dimen-
sions of the benchmark function. Moreover, the mean and
standard deviation of fitness errors 1f = fi − f ∗i of these
benchmark functions are collected, compared, and analyzed
in the conducted experiment. The overall performance of a
certain algorithm under 51-run is evaluated under Wilcoxon
Signed Rank test with the significant level α = 0.05 in
comparison with our PaDE-NPC algorithm on a PC with
Intel(R) Core(TM) i7-9700k CPU @ 3.6GHz on Windows
10 Professional Edition Operating System with 16GB of
RAM, and all these algorithms are implemented in Matlab
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Algorithm 1 Pseudo Code of PaDE-NPC

Input: Bound constraints [RDmin, R
D
max], the fixed maximum

number of function evaluations nfemax ;
Output: Best individual Xgbest , Best fitness value fXgbest ,

number of function evaluations nfes;
1: Initialize the population size ps = psini, all individuals
X = X1,X2, . . . ,Xps, k = 4, A = ∅, µF = 0.3,
µCr1 = µCr2 = · · · = µCrk = 0.8, p = 0.11, rarc = 1,
rhrc = 3, P(1) = P(2) = · · · = P(k) = 1

k , G = 1;
2: while nfe ≤ nfemax do
3: for i = 1; j ≤ ps; i++ do
4: Generate Xpbest,g, Xr1,g, X̃r2,g and X̃r3,g;
5: end for
6: if G > 2 then
7: Adjust the individuals of the population;
8: Adjust storage A and B according to Eq. 16 ;
9: end if

10: Categorize ps individuals into k groups by stochastic
universal selection in ALgorithm 1;

11: for j = 1; j ≤ k; j++ do
12: Generate F and Cr of individuals in the jth group:

F ∼ C(µF , 0.1), Cr ∼ N (µCrj , 0.1);
13: Readjust F and Cr into the bound constrains if

necessary;
14: end for
15: for I = 1; i ≤ ps; i++ do
16: Generate Xr1,g, Xr2,g and Xr3,g;
17: Generate donor vector Vi,g and trial vector Ui,g;
18: Calculate fitness value f (Ui,g);
19: end for
20: nfe = nfe+ ps;
21: for i = 1; i ≤ ps; i++ do
22: if f (Ui,g) ≤ f (Xi,g) then
23: Xi,g+1 = Ui,g;
24: else
25: Xi,g+1 = Xi,g;
26: end if
27: end for
28: if SF 6= ∅ then
29: Update µF according to Eq. 20;
30: Update P(·) according to Eq. 19 ;
31: Update µCridx according to Eq. 21 ;
32: end if
33: G++;
34: Update archive A and B;
35: Label Xgbest,g and the corresponding f (Xgbest,g);
36: Adjust population size according to Eq. 24 if neces-

sary;
37: end while
38: f (Xgbest ) = f (Xgbest,g), Xgbest = Xgbest,g;
39: return f (Xgbest ), (Xgbest ) and nfe;

2019aUnix version. The fitness errors that smaller than eps =
2.2204e− 16 are regarded as 0 here.

A. PARAMETER SETTINGS
Five recently proposed powerful DE variants including
LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE are
examined in comparison with the novel PaDE-NPC algo-
rithm. These DE variants all have close relationship with
our algorithm not only from the mutation strategy per-
spective but also from the parameter control. The set-
tings of these algorithms in the paper are the default ones
recommended by their authors, and they are summarized
in Table 1.
In SHADE algorithm, scale factor F and crossover rate

obey Cauchy distribution F ∼ C(µF , 0.1) and Normal dis-
tribution Cr ∼ N (µCr , 0.1) respectively. µF = 0.5 and
µCr = 0.5 are employed as the initial values at the beginning
of evolution, and they can be dynamically updated during
the evolution. A linear population size reduction scheme is
incorporated into LSHADE with the initial size psini = 15 ·D
and terminal size psmin = 4. Moreover, a H -entry memory
pool is employed to store the historical value of µF and
µCr , and H = 6 is the default value in LSHADE. The
ratio of top superior solutions p = 0.11 and the factor of
external archive rarc = 2.6 is employed in the mutation
strategy. In iLSHADE algorithm, the same distribution of
control parameter F and Cr are utilized, but the initial values
of µF and µCr are different to and LSHADE, µF = 0.8
and µCr = 0.5. The population size also decreased from
psinit = 12 · D to psmin = 4 in a linear way during the
evolution. Unlike LSHADE, the parameter p in iLSHADE
dynamically decreased from 0.2 to 0.1. For jSO, the distribu-
tion of control parameter µF , µCr and the archive factor rarc

are also the same as LSHADEwhile the values ofµF andµCr
are initialized to 0.3 and 0.8. Moreover, a different decreasing
interval of p is employed, p ∈ [0.25, 0.125]. The historical
pool size setting isH = 5 and population size decreases from
psinit = 25 · lnD ·

√
D to 4 in jSO. In LPALMDE algorithm,

control parameter F and Cr obey the same distribution with
the same initial µf and µCr values as LSHADE. Group
number K equals to 8, and population size is dynamically
decreased from psinit = 23 · D to psmin = K . The time
stamp T0 = 70 and the ratio of top superior individuals
p = 0.11 are the default values in LPALMDE algorithm.
In HARD-DE algorithm, scale factor F and crossover rate
Cr obey the same distribution as LSHADE while the initial
value of µF and µCr are set to µF = 0.3 and µCr = 0.8.
Moreover, the parameter p employs the same value, p = 0.11,
as LSHADE. The setting of initial population size psinit is
the same as jSO, psinit = 25 ln(D) ·

√
D, and a smaller

number of groups is employed in HARD-DE algorithm,
K = 4. For the factor of external archives, rarc = 1 and
rhrc = 3 is employed. In our PaDE-NPC algorithm, control
parameter F and Cr also obey semi-fixed distributions, F ∼
randc(µF , 0.1), Cr ∼ randc(µCr , 0.1) and the initial values
of µF and µCr are the same as HARD-DE algorithm. A fixed
p = 0.11 defining the ratio of top superior individuals is
employed in PaDE-NPC, and the factor rarc = 1.0 and
rhrc = 3.0 are the default values here. The number of groups
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TABLE 1. Recommended parameter settings of all these contrasted algorithms.

TABLE 2. Mean and standard deviation (Mean/Std) of fitness errors on 10D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2013 test bed.

TABLE 3. Mean and standard deviation (Mean/Std) of fitness errors on 30D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2013 test bed.

and the initial population size in PaDE-NPC are same as
HARD-DE.

B. OPTIMIZATION ACCURACY AND CONVERGENCE SPEED
We first examine the optimization performance under
CEC2013 test suite on 10D, 30D, 50D, 100D optimization,
and the results are presented in Table 2–Table 4 respectively.
Symbols ‘‘>’’, ‘‘≈’’ and ‘‘<’’ in the parentheses behind
the mean/std mean ‘‘Better Performance’’, ‘‘Similar Perfor-

mance’’ and ‘‘Worse Performance’’ of the total 51-run under
Wilcoxon signed rank test with the significant level α = 0.05.

For Table 2 on 10D optimization, we can find that all
these DE variants perform equally well on f1, f2, f4 and f5
which are all unimodal functions, and the global optima of
these functions can also be found by each independent run.
LSHADE, jSO, LPALMDE and PaDE-NPC can always find
the global optima on function f11 each run. The proposed
PaDE-NPC algorithm outperforms theseDE variants on func-
tion f7, f13, f20, f23 and f24. Moreover, it obtains 22 better
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TABLE 4. Mean and standard deviation (Mean/Std) of fitness errors on 50D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2013 test bed.

TABLE 5. Mean and standard deviation (Mean/Std) of fitness errors on 100D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2013 test bed.

or similar performance improvements out of 28 bench-
mark functions in comparison with LSHADE algorithm; it
obtains 23 better or similar performance improvements out
of 28 benchmarks in contrast with iLSHADE algorithm;
obtains 21 better or similar performance improvements in
contrast with jSO algorithm; obtains 21 better or similar
performance improvements in comparison with LPALMDE;
obtains 19 better or similar performance improvements in
comparison with HARD-DE algorithm. To sum up, the novel
PaDE-NPC algorithm secures overall better performance on
10D optimization under the tested benchmark functions.

For Table 3 on 30D optimization, we can find that all
these DE variants perform equally well on f1, f5 and f28,
and the global optima of f1 can be found during each run.
Furthermore, the proposed PaDE-NPC algorithm achieves 20
better or similar performance improvements out of 28 bench-
mark function in contrast with LSHADE algorithm; it also
achieves 21 better or similar performance improvements in

contrast with iLSHADE algorithm; achieves 23 better or sim-
ilar performance improvements in contrast with jSO algo-
rithm, 19 better or similar performance improvements in
contrast with LPALMDE algorithm, 20 better or similar per-
formance improvements in contrasted with HARD-DE algo-
rithm. In general, the proposed PaDE-NPC algorithm reveals
overall much better performance on 30D optimization under
the tested benchmark functions.

For Table 4 on 50D optimization, we can find that the
proposed PaDE-NPC algorithm outperforms the other DE
variants on f1 − f3, f5, f7, f20, f21, f26 and f27, and the
novel PaDE-NPC reveals 19 better or similar performance
improvements in contrast with LSHADE algorithm, it also
reveals 16 better or similar performance improvements in
contrast with iLSHADE algorithm; reveals 20 better or sim-
ilar performance improvements in contrast with jSO algo-
rithm, 19 better or similar performance improvements in
contrast with LPALMDE algorithm, 18 better or similar
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TABLE 6. Mean and standard deviation (Mean/Std) of fitness errors on 10D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2017 test bed.

TABLE 7. Mean and standard deviation (Mean/Std) of fitness errors on 30D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2017 test bed.

performance improvements in contrasted with HARD-DE
algorithm. In summary, the proposed PaDE-NPC algorithm
obtains overall better performance on 50D optimization under
the tested benchmark functions.

For Table 5 on 100D optimization, we can find that the
proposed PaDE-NPC algorithm outperforms the other DE
variants on f1, f3, f5, f6 and f9, and the novel PaDE-NPC
reveals 20 better or similar performance improvements in
contrast with LSHADE algorithm, it also reveals 17 bet-
ter or similar performance improvements in contrast with
iLSHADE algorithm and jSO; reveals 15 better or similar

performance improvements in contrast with LPALMDE algo-
rithm, 17 better or similar performance improvements in con-
trast with HARD-DE algorithm. In summary, the proposed
PaDE-NPC algorithm obtains overall better performance on
100D optimization under the tested benchmark functions.
We also examine our PaDE-NPC algorithm under the

CEC2017 test suite in comparison with these state-of-the-art
DE algorithms on 10D, 30D, 50D and 100D optimization.
The comparison results are presented in Table 6, Table 7,
Table 8 and Table 9 under the 51 independent runs with
the maximum number of function evaluation equalling to
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TABLE 8. Mean and standard deviation (Mean/Std) of fitness errors on 50D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2017 test bed.

TABLE 9. Mean and standard deviation (Mean/Std) of fitness errors on 100D optimization over 51 runs are presented here, and the symbols behind
Mean/Std denotes the results in comparison with the proposed PaDE-NPC algorithm under Wilcoxon signed rank test on CEC2017 test bed.

nfemax = 10000 · D, and it shows the competitiveness of our
PaDE-NPC algorithm in comparison with these state-of-the-
art DE variants.

Prof. Ali W. Mohamed reviewed our paper in the sec-
ond round of view, and he recommended us to take the
EBLSHADE algorithm [50] into comparison, therefore,
we add this algorithm in these tables and we can see that our
PaDE-NPC algorithm obtains 12 performance improvements,
15 performance improvements, 18 performance improve-
ments and 21 performance improvements on 10D, 30D,
50D and 100D optimization under CEC2013 test suite; it
also obtains 15 performance improvements, 15 performance

improvements, 17 performance improvements and 21 per-
formance improvements on 10D, 30D, 50D and 100D opti-
mization under CEC2017 test suite in comparison with
EBLSHADE. Again, our PaDE-NPC algorithm shows its
competitiveness.

Furthermore, we also examine the convergence speed
of our PaDE-NPC algorithm in comparison with these
five famous DE variants on 30D optimization under the
CEC2013 test suit, and these figures are plotted in Figs. 4- 7.
We can see from the graphs that our proposed PaDE-

NPC algorithm outperforms other advanced algorithms on
f2-f3, f6-f7, f12-f13, f20, and it still competitive and no worse
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FIGURE 4. Here presents the convergence speed comparison by employing the median value of 51 runs
obtained by each algorithm on 30D optimization. There are total 28 comparison figures and the first
8 figures are presented here.
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FIGURE 5. As a continued part from Fig. 4, comparisons on benchmarks f9-f16.

than other advanced algorithms on f1, f4-f5, f8, f10-f11, f14,
f17, f21-f22, f24-f28. We also summarize the best performance
and the tier best performance obtained by a certain algo-

rithm in Table 10, and from this perspective of view, our
PaDE-NPC algorithm is also competitive with the contrasted
algorithms.
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FIGURE 6. As a continued part from Fig. 5, comparisons on benchmarks f17-f24.

C. NEW PARAMETERS IN OUR PaDE-NPC
There are three additional parameters, p, plat and DM .
In the proposed PaDE-NPC. p% is the percentage of top

superior individuals which is utilized to improve the explo-
ration capacity of mutation strategy in comparison with
the global best. According to the former study in JADE
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FIGURE 7. As a continued part from Fig. 6, the last comparisons are figured out here for analysis.

TABLE 10. Convergence speed comparison by employing the median
value of 51 runs obtained by each algorithm on 30D optimization.

and LSHADE algorithm, the value of p is generally close
to 0.10. In this part, several potential values of p, p ∈
{0.08, 0.09, 0.10, 0.11, 0.12, 0.13}, are selected to test which
one is suitable for the proposed PaDE-NPC algorithm. The
‘‘Mean’’ and ‘‘Standard Deviation’’ of fitness errors over
51 independent runs on each benchmark of the CEC2013 test
suit under different p settings are compared in Table 11 with
the maximum number of function evaluation equaling to
nfemax = 10000 · D. From the comparison results, we can
find that p = 0.11 is a good choice for our PaDE-NPC
algorithm, and p = 0.11 is taken as the default setting of
parameter p.
The parameter plat determines the percentage of the whole

evolution that employs fixed population size in our PaDE-
NPC algorithm, and we examine several different settings
of the parameter plat ∈ {0.00, 0.05, 0.10, 0.15, 0.20, 0.25}.
As we know, fixed population size usually performs poor in

optimization tasks especially for those multi-modal objec-
tives and complex systems. Meanwhile, a relative large pop-
ulation at the earlier stage of the evolution helps to get a
full perception of the landscapes of the objective or system.
Therefore the percentage plat should be a large value. The
first test case plat = 0 means that the platform based
reduction scheme of population size is actually degraded into
linear population size reduction in this case, moreover, the left
cases have different number of generations employing fixed
population size. Experiments results are presented in Table 12
with 51 independent runs under CEC2013 test suit. From the
table, we can find that plat = 0.15 is a good choice which
is taken as the default setting of parameter plat in our PaDE-
NPC algorithm.

The new parameter DM is employed as a threshold in the
choice of a certain mutation strategy among the combined
mutation strategies. In this part, we present a simple exper-
iment analysis of the value of DM . DM = 0 and DM = 1
are the boundary setting of the choice of mutation strategies:
mutation strategy in Eq. 15 is employed during the whole
evolution when DM = 0, and mutation strategy in Eq. 14 is
employed during the whole evolution whenDM = 1.We also
examine other different cases, i.e. DM ∈ { 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 } in

our experiment. and the experiment results of ‘‘Mean’’ and
‘‘Standard Deviation’’ of fitness errors over 51 independent
runs on 30D optimization under CEC2013 test suit are pre-
sented in Table 13.
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TABLE 11. Optimization results comparison of different p values under CEC2013 test suite.

TABLE 12. Optimization results comparison of different plat values under CEC2013 test suite.

TABLE 13. Optimization results comparison of different DM values under CEC2013 test suite.
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TABLE 14. Optimization comparison between fitness based adaptation scheme and the adaptations in the NPC under CEC2013 test suite on 30D and 50D
optimization.

From the table we can see that the PaDE-NPC with DM =
2/3 obtains best performance in compared with other DM
settings, and we take this value as the the default setting in
our PaDE-NPC algorithm.

D. THE NOVEL NPC VERSUS FITNESS BASED ADAPTATION
One of themain contributions in our Novel Parameter Control
(NPC) is that the adaptation schemes of control parameters
F and Cr are fitness independent, which is distinct from the
adaptation schemes in the recent proposed state-of-the-art
DE variants for single-objective real-parameter optimization.
In this part we present a simple experiment analysis between
these two adaptation schemes, and these two schemes in our
algorithm are denoted as PaDE-Fit and PaDE-NPC respec-
tively, and the experiment results are arranged in Table 14.

From the table we can see that the proposed PaDE-NPC
obtains superior performance in comparison with the algo-
rithm with fitness based adaptation schemes not only from
the ‘‘Best’’ perspective of view but also from the ‘‘Mean/Std’’
perspective. The proposed PaDE-NPC achieves 9 better and
13 similar performance improvements in comparisonwith the
PaDE-Fit on 30D optimization and achieves 16 better and
7 similar performance improvements on 50D optimization
from ‘‘Best’’ perspective of view. The proposed PaDE-NPC
obtains 18 better and 4 similar performance improvements
in comparison with the PaDE-Fit on 30D optimization and
achieves 19 better and 3 similar performance improvements
on 50D optimization from ‘‘Mean/Std’’ view. As a result, our
PaDE-NPC shows excellent performance and can tackle a
relative large optimization applications especially for those
that the fitness values are unavailable.

E. TIME COMPLEXITY ANALYSIS
Time consumption of basic arithmetic expressions in
CEC2013 competition recommendation is recorded as T0,
the time consumption of 200000 function evaluations for 30D
optimization on benchmark function f14 from CEC2013 test

suit is recorded as T1, and the overall cost of a certain
algorithm optimizing f14 is recorded as T2. 51 independent
runs are conducted to get the average T0, T1 and T2, and
then, T̂2−T1T0

is collected for complexity evaluation. The time
complexity comparisons among these DE variants are pre-
sented in Table 15, and we can see that the proposed PaDE-
NPC consumesmore time in comparison with other advanced
DE variants because the calculation of location is more time
consuming in comparison with the fitness-error based DE
variants, but it is tolerable for the optimization applications
especially the exact fitness value is unavailable e.g. the exam-
ple shown in Fig. 3.

TABLE 15. Algorithm time complexity comparison on 30D optimization
under CEC2013 benchmark f14.

VI. CONCLUSION
In this paper, we proposed a novel PaDE-NPC algorithm
for real-parameter single objective optimization. In the
PaDE-NPC algorithm, combined mutation strategies were
employed in the generation of trial vectors, and this can
make better use of the advantages of each mutation strat-
egy regarding a novel proposed population diversity indic-
tor. Furthermore, Novel Parameter Control (NPC) schemes
were also proposed: 1) different from the recently proposed
state-of-the-art DE variants, fitness independent parameter
control schemes for crossover rate CR and scale factor F
were proposed in the PaDE-NPC algorithm. These tech-
niques can broaden the domain and improve the optimization
performance of DE, because the PaDE-NPC algorithm was
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verified to be able to obtain better performance under the
test suite and it also can tackle optimization applications
with unknown fitness value. 2) A platform based population
size reduction was also proposed in the NPC, which can
make a balance between the exploration and exploitation
capacity while getting a better perception of the landscape
at the early stage of the evolution. Moreover, the calculation
of positions of the individuals in the adaptations of control
parameters usually cost more time in comparison with the
fitness difference based adaptations for control parameters in
the recently proposed state-of-the-art DE variants, and this
can be tolerable because it broadens the range of optimization
applications that the DE algorithm can tackle and improves
the performance of DE as well.
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