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ABSTRACT Over the recent years, various deep learning-based embeddingmethods have been proposed and
have shown impressive performance in speaker verification. However, as in most of the classical embedding
techniques, the deep learning-based methods are known to suffer from severe performance degradation when
dealing with speech samples with different conditions (e.g., recording devices, emotional states). In this
paper, we propose a novel fully supervised training method for extracting a speaker embedding vector
disentangled from the variability caused by the nuisance attributes. The proposed framework was compared
with the conventional deep learning-based embedding methods using the RSR2015 and VoxCeleb1 dataset.
Experimental results show that the proposed approach can extract speaker embeddings robust to channel and
emotional variability.

INDEX TERMS Speech embedding, speaker verification, domain disentanglement, deep learning.

I. INTRODUCTION
Speaker verification is the task of verifying the claimed
speaker identity based on the given speech samples and
has become a key technology for personal authentication in
many commercial applications, forensics and law enforce-
ment [1]. Commonly, an utterance-level fixed-dimensional
vectors (i.e. embedding vectors) are extracted from the enroll-
ment and test speech samples and then fed into a scoring algo-
rithm (e.g., cosine distance, probabilistic linear discriminant
analysis) to measure their similarity or likelihood of being
spoken by the same speaker. Over the past years, the i-vector
framework has been one of the most dominant approaches for
speech embedding [2], [3]. The widespread popularity of the
i-vector framework in the speaker verification community can
be attributed to its ability to summarize the distributive pattern
of the speech with a relatively small amount of training data
in an unsupervised manner.

In recent years, various methods have been proposed uti-
lizing deep learning architectures for extracting embedding
vectors and have shown better performance than the i-vector
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framework when a large amount of training data is avail-
able [4]. In [5], a deep neural network (DNN) for frame-level
speaker identification was trained and the averaged activation
from the last hidden layer, namely, the d-vector, was taken
as the embedding vector for text-dependent speaker verifi-
cation. In [4], [6], a speaker identification model consisting
of a frame-level network and a segment-level network was
trained and the hidden layer activation of the segment-level
network (i.e. x-vector) was extracted as the embedding vector.
In [7], long short-term memory (LSTM) layers were adopted
to capture the contextual information within the d-vector,
and the embedding network was trained to directly optimize
the verification score (e.g., cosine similarity) in an end-to-
end fashion. The end-to-end d-vector framework was further
enhanced in [8] by applying different weight (i.e. attention)
to each frame-level activation while obtaining the d-vector,
which enables the embedding network to attend more on the
frames with relatively higher amount of speaker-dependent
information. In [9], a generalized end-to-end loss function,
which optimizes the embedding vector to move towards the
centroid of the true speaker while departing away from the
centroid of the most confusing speaker, was introduced to
train the end-to-end d-vector system more efficiently. In [10]
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and [11], a variational autoencoder (VAE)-based architec-
ture was trained in an unsupervised manner to extract an
embedding vector for short-duration speaker verification.
Despite their success in well-matched conditions, the deep
learning-based embedding methods are vulnerable to the
performance degradation caused by mismatched conditions
(e.g., channel, noise) [12].

In real life applications, numerous factors can contribute
to the mismatches in speaker verification [1]. Especially
in forensic situations, channel mismatch often occurs since
police officers usually acquire voice recordings using var-
ious recording devices (e.g., hidden microphones, mobile
phones) [13]. Such variation in recording devices is known
to cause variability to the speech distribution, which leads to
low speaker identification or verification performance.

Recently, many attempts have been made to extract an
embedding vector robust to mismatched conditions. Conven-
tionally, various researches focused on adapting the back-end
scoring model (e.g., PLDA) [14] or training the embedding
network with an augmented dataset containing various nui-
sance variability [15]. These methods are proven to be effec-
tive when the dataset for the target condition (e.g., noisy
evaluation domain) is scarce, but since these methods do not
intervene during the embedding extraction, their performance
may be bottlenecked by the speaker discriminative capabil-
ity of the embedding network. Unlike the aforementioned
domain adaptation techniques, there have been several meth-
ods which aim to directly disentangle the undesired variabil-
ity while extracting the speaker embeddings. In [12], [16],
inspired by the usage of gradient reversal strategy in image
classification [17], [18] and robust speech recognition [19],
[20], the embedding networks were trained to minimize the
speaker classification error while maximizing the error of the
subtask (e.g., noise or channel type classification) with the
use of gradient reversal layer. Although the gradient reversal
strategy has shown meaningful improvement in performance,
domain adversarial training using gradient reversal layer is
known to be very unstable and sensitive to hyper-parameter
setting [21]. In [22], the embedding network was trained to
maximize the error of a subtask (i.e. noise type classifica-
tion) by using an adversarial training strategy similarly to
the generative adversarial network (GAN) [23]. The speaker
embedding network and the noise classification network are
trained competitively; the noise classification network is
trained to discriminate the noise type correctly, and at the
same time the embedding network is trained to discriminate
the speaker while having high uncertainty on the noise type.
When training the speaker embedding network, bit-inverted
one-hot labels (i.e. anti-labels) were used for noise classifica-
tion, which would force the embedding network to output a
wrong noise label equally. Though the anti-label strategy has
proven its strength in noise-robust speaker embedding [22],
adversarial training is known to be extremely unstable and
difficult [24].

In this paper, we propose a novel approach to disen-
tangle the nuisance attribute information from the speaker

embedding vector without the use of gradient reversal
or adversarial training. The proposed method employs an
embedding network similar to the conventionalmethods (e.g.,
d-vector and x-vector). However, unlike the conventional
embedding networks, which produce a single embedding vec-
tor per utterance, the proposed embedding network simulta-
neously extracts a speaker- and nuisance attribute-dependent
(e.g., recording device-, emotion-dependent) embedding vec-
tors, hence we call the proposed technique joint factor embed-
ding (JFE). In the JFE technique, the embedding network
is trained in a fully supervised manner simultaneously with
the speaker and nuisance attribute (e.g., channel, emotion)
discriminator networks where each discriminator is trained
to take the embedding vector as input and identify their
respective targets. Analogous to the conventional speaker
embedding systems, the proposed embedding network is
trained to produce a speaker embedding vector with high
speaker discriminability. On the other hand, to disentangle
the non-speaker information from the speaker embedding
vector, we propose two different ways to increase the nui-
sance attribute uncertainty inherent in the speaker embedding
vector. One way is to train the embedding network to extract
a speaker embedding vector to maximize the entropy in nui-
sance attribute identification, and the other is to decrease the
relevancy between the speaker and nuisance embedding vec-
tors by minimizing the mean absolute Pearson’s correlation
(MAPC) [25].

In order to evaluate the performance of the proposed sys-
tem in a realistic scenario, we conducted a set of experiments
using two datasets:
• RSR2015 Part 3 dataset: a random digits strings
speaker verification corpus consisting of speech samples
recorded from 6 different hand-held devices [26], [27].

• VoxCeleb1 dataset: a text-independent speaker verifica-
tion corpus consisting of speech samples with 8 different
emotional states [28].

The experimental results show that the proposed method
outperforms the conventional disentanglement methods (i.e.
gradient reversal, anti-label) in terms of equal error rate
(EER). Moreover, the proposed system performed better than
the conventional x-vector on short duration speech samples,
which is likely to lack significant phonetic information.

The contributions of this paper are as follows:
• We propose a new method to train a speaker embedding
network robust to nuisance attributes, which can be done
easily without the use of adversarial training or gradient
reversal learning.

• We compared the proposed speaker embedding tech-
nique with conventional methods for multi-device and
emotional speaker verification.

• We experimented the proposed speaker embedding tech-
nique on speech utterances with various durations.

The rest of this paper is organized as follows: We first
briefly describe the conventional embedding network archi-
tecture and disentanglementmethods based on gradient rever-
sal and anti-label in Section II. In Section III, the newly
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proposed JFE scheme is presented. The experiments and
results are shown in Section IV. Finally, Section V concludes
the paper.

II. DEEP LEARNING-BASED SPEAKER EMBEDDING
A. DEEP EMBEDDING NETWORK
Two of the most widely used speaker embedding techniques
are the LSTM-based d-vector [9] and the TDNN (time-
delay DNN)-based x-vector system [4]. In both frameworks,
given a speech utterance X with T frames, a sequence of
frame-level acoustic features {x1, . . . , xT } extracted from X
is fed into the frame-level network. In the d-vector sys-
tem, one of most widely used technique for text-dependent
speaker recognition, the frame-level network is composed of
LSTM layers, which helps capture the temporal correlation.
On the other hand, the frame-level network of the x-vector
system consists of TDNN layers, which is often used for
text-independent speaker recognition. Once the frame-level
outputs {h1, . . . ,hT } are obtained, they are aggregated to
obtain an utterance-level representation. One way of aggre-
gating the frame-level outputs is to compute the weighted
average as

ω =

T∑
t=1

αtht (1)

where αt∈[0, 1] is a normalized weight, which is computed
by

αt =
exp(et )∑T
t=1 exp(et )

. (2)

In (2), the frame-level score (i.e. attention) et is computed as
follows:

et = vᵀt tanh(Wtht + bt ) (3)

where vt , Wt , and bt are trainable parameters and super-
script ᵀ indicates transpose operation. By using different
weight for each frame, speech frames with relatively higher
speaker-relevancy can contribute more to the embedding
vector.

The embedding network is trained by either minimizing
the speaker identification loss [5] or directly optimizing the
verification performance (i.e. end-to-end speaker verifica-
tion) [9]. In the first case (i.e. embedding network trained
for identification), as shown in Fig. 1a, a feed-forward neural
network for classifying the speakers in the training set is
trained jointly with the embedding network. The speaker clas-
sification network takes the utterance-level representation ω
as input and has anN -dimensional softmax output ỹ(ω) where
N corresponds to the number of training speakers. Given the
one-hot speaker label y, the embedding and classification
networks are trained to minimize the following cross-entropy
loss function:

Lspkr = −
N∑
n=1

ynlogỹn(ω) (4)

FIGURE 1. (a) LSTM-based d-vector system trained with softmax loss.
(b) LSTM-based d-vector system trained with end-to-end loss.

where yn and ỹn(ω) are the nth components of y and ỹ(ω),
respectively.

For training the end-to-end speaker verification system
(i.e. embedding network trained for verification), a mini-
batch of J×K utterances is fed into the embedding network
where the mini-batch is composed of J speakers, and each
speaker has K utterances. As depicted in Fig. 1b, the scaled
cosine similarity between each embedding vector and the
centroid of the embedding vectors from each speaker are
computed by

Sjk,i = a·cos(ωjk , ci)+ d (5)

where a and d are trainable parameters, and cos(ωjk , ci) is the
cosine similarity between the utterance-level representation
extracted from the k th utterance of the jth speaker ωjk and the
centroid of the ith speaker’s utterance-level representations
ci (1 ≤ j, i ≤ J and 1 ≤ k ≤ K ). For each utterance-level
representation ωjk in the mini-batch, the embedding network
is trained to maximize the following end-to-end loss function:

Le2e = Sjk,j − log
J∑

i=1,i6=j

exp(Sjk,i). (6)

The end-to-end system is known to outperform the soft-
max method when a large amount of dataset is used for
training [6], [7].

Once the embedding network is trained, the utterance-level
representation ω [9], or the hidden layer activation of the
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speaker classification network [4] can be used as the speaker
embedding vector.

B. CONVENTIONAL DISENTANGLEMENT METHODS
Recently, disentangling various non-speaker factors
(e.g., channel type, noise type, noise-level) from the embed-
ding vector has become an important issue in speaker verifi-
cation [12], [16], [22]. Most of the techniques developed to
address this issue are based on the multi-task learning (MTL)
approaches [29] where the embedding network is trained to
optimize in two tasks: main task (i.e. speaker classification)
and subtask (e.g., channel classification) as shown in Fig. 2a.
The objective of the MTL-based disentanglement technique
is to achieve the best performance in the main task while
degrading the performance in the subtask.

FIGURE 2. (a) Standard multi-task learning (MTL) architecture.
(b) Domain adversarial training via gradient reversal layer (GRL).

1) GRADIENT REVERSAL STRATEGY
One way to achieve this is the gradient reversal strategy,
which has shown meaningful performance in channel-robust
[16] and noise-robust [12] speaker verification. As shown
in Fig. 2b, the gradient reversal strategy adds a gradient rever-
sal layer (GRL) [17] between the subtask network and the
embedding network. Let θemb, θmain, θsub denote the parame-
ters for the embedding, main task, and subtask networks. The
GRL performs identity transformation on the input during
forward propagation and reverses the gradient by multiplying
a negative scalar −λ during backpropagation. When jointly
training the networks, the parameters are updated as

θemb ← θemb − l · (
∂Lmain
∂θemb

− λ
∂Lsub
∂θemb

), (7)

θmain ← θmain − l · (
∂Lmain
∂θmain

), (8)

θsub ← θsub − l · (
∂Lsub
∂θsub

) (9)

where l, Lmain, and Lsub are the learning rate, loss functions
for the main task and subtask, respectively. For extracting

a channel-robust embedding for speaker verification, Lmain
would be the speaker cross-entropy Lspkr defined in (4),
and Lsub would be the channel cross-entropy which can be
computed as follows:

Lchan = −
M∑
m=1

rmlogr̃m(ω) (10)

where M is the number of different channels (e.g., recording
devices) in the training set, rm and r̃m(ω) are the mth com-
ponent of the one-hot channel label r and channel classifier’s
softmax output r̃(ω), respectively.

2) ANTI-LOSS STRATEGY
Another way to achieve disentanglement is by training the
embedding network and the subtask network in a competitive
manner via adversarial training [22]. The subtask network is
trained to classify the channel identity correctly given the
embedding vector as in (10). On the other hand, the main
task and embedding networks are trained to discriminate the
speaker by minimizing (4) but not to perform well on the
subtask. In order to ensure high uncertainty on the subtask,
[22] introduces anti-label when computing the cross-entropy
for the subtask. The anti-label is obtained by flipping each
bit in the one-hot label vector. This indicates that for channel
disentanglement, the anti-loss can be computed as follows:

Lanti−dev = −
M∑
m=1

(1− rm)logr̃m(ω). (11)

By minimizing Lanti−dev and Lspeaker simultaneously,
the embedding networkwould be trained to produce a speaker
discriminative embedding vector which is robust to channel
variability.

III. JOINT FACTOR EMBEDDING
A. JOINT FACTOR EMBEDDING NETWORK ARCHITECTURE
Analogous to the conventional disentanglement techniques
[12], [16], [22], the proposed method is based on the MTL
framework. However, as depicted in Fig. 3, unlike the stan-
dard MTL embedding system, the embedding network of
the proposed framework extracts two different embedding
vectors simultaneously: speaker embedding ωspkr and nui-
sance embedding ωnuis. The speaker embedding vector ωspkr
is trained to be dependent solely on the speaker variability
while the nuisance embedding vector ωnuis is trained to be
dependent on the nuisance (e.g., channel, emotion) variability
only. When obtaining ωspkr and ωnuis, different weights are
used for aggregating the frame-level outputs as

ωspkr =

T∑
t=1

αspkr,tht , (12)

ωnuis =

T∑
t=1

αnuis,tht (13)

where αspkr,t and αnuis,t are the speaker and nuisance weights
for attention, respectively, which are obtained as in (2).
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FIGURE 3. The architecture of the proposed joint factor embedding system.

TABLE 1. Main tasks and subtasks for the embedding vectors of the joint
factor embedding scheme.

The reason why we use separate attention weights for obtain-
ing ωspkr and ωnuis is that we assume that frames with
high speaker-dependent information are not always guaran-
teed to have high nuisance attribute-dependent information.
For instance, speaker-dependent information will be high on
speech frames, while channel-dependent information will be
rather consistent across all frames since even non-speech
frames are affected by the recording channel. Once the
embedding vectors are extracted, both ωspkr and ωnuis are fed
into the speaker and nuisance classification networks.

B. TRAINING FOR JOINT FACTOR EMBEDDING
1) DISCRIMINATIVE TRAINING
As described in Table 1, the embedding vectors ωspkr and
ωnuis are trained with different main task and subtask spec-
ifications. In order to maximize the discriminability on their
main tasks, the following cross-entropy loss functions are
minimized:

Ls−s,CE = −
N∑
n=1

ynlogỹn(ωspkr ), (14)

Lc−c,CE = −
M∑
m=1

rmlogr̃m(ωnuis). (15)

By minimizing (14) and (15) simultaneously, the embedding
network is trained to produce ωspkr with high speaker-
dependent information andωnuis with high nuisance attribute-
dependent information. Moreover, the attention weights

αspkr,t and αnuis,t will be trained to focus on the frames with
more meaningful information on their main tasks.

2) DISENTANGLEMENT TRAINING
In this paper, we propose two types of loss functions to
perform disentanglement in the subtasks of the embedding
vectors ωspkr and ωnuis. One way for disentanglement is
to directly maximize the entropy (or uncertainty) on their
subtasks while training. Forωspkr andωnuis, the entropies [30]
on their subtasks can be computed as

Ls−c,E = −
N∑
n=1

ỹn(ωnuis)logỹn(ωnuis), (16)

Lc−s,E = −
M∑
m=1

r̃m(ωspkr )logr̃m(ωspkr ). (17)

By maximizing (16) and (17), the uncertainty of the outputs
in the subtasks will be maximized, leading the conditional
distribution of the subtask classes to approach uniform.

Another way to perform disentanglement is to regularize
the embedding vectors ωspkr and ωnuis so as to have low
correlation instead of directly maximizing the uncertainty
on their subtasks. This can be achieved by maximizing the
negative MAPC [25], which can be computed across the
mini-batch by

LnMAPC = −
1
F

F∑
f=1

|cov(ωspkr,f , ωnuis,f )|
std(ωspkr,f )std(ωnuis,f )

(18)

where cov is the covariance, std is the standard deviation,
and F , ωspkr,f , ωnuis,f are the dimensionality of the embed-
ding vectors, f th element of ωspkr and ωnuis, respectively.
Since zero correlation indicates that the two variables are not
related, by minimizing the MAPC between ωspkr and ωnuis,
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the relevancy between the two embedding vectors can be
reduced.

The proposed JFE system is trained by simultaneously
minimizing the discriminative losses (i.e. cross-entropy)
depicted in (14) and (15), while maximizing the disentangle-
ment loss in (16), (17), (18). In short, the embedding network
is trained to minimize the following loss function:

LJFE = Ls−s,CE + Lc−c,CE
−Ls−c,E − Lc−s,E − LnMAPC . (19)

By optimizing the JFE network, the speaker embedding vec-
tor ωspkr is trained to be speaker discriminative while having
high uncertainty on the nuisance attribute, and the nuisance
embedding vectorωnuis aims to be nuisance attribute discrim-
inative while having high uncertainty on the speaker.

IV. EXPERIMENTS
A. CHANNEL DISENTANGLEMENT EXPERIMENTS
1) DATABASE
In order to evaluate the performance of the proposed tech-
nique for a real-life application of speaker verification where
multiple recording devices are involved for enrollment and
testing, a set of experiments were conducted based on the
RSR2015 dataset [26], [27], which is a speaker verifica-
tion dataset recorded using 6 different hand-held devices
(i.e. 1 Samsung Nexus, 2 Samsung Galaxy S, 1 HTC Desire,
1 Samsung Tab, 1 HTC Legend). For training the embed-
ding networks, we used the background and development
subsets of the RSR2015 dataset Part 3, consisting of utter-
ances (recorded from all six devices) spoken by 194 speakers
(100 male and 94 female speakers).

The evaluation was performed according to the RSR2015
Part 3 (randomdigits string) protocol [27] where 106 speakers
(57 male and 49 female speakers) are involved. From the
RSR2015 Part 3 evaluation dataset, the 10-digits strings of
sessions 1, 4, 7 were used for enrollment and the 5-digits
strings of sessions 2, 3, 5, 6, 8, 9 were used for testing.

2) EXPERIMENTAL SETUP
To investigate the effects of the proposed JFE strategy on dif-
ferent embedding architecture, two types of frameworks were
used for embedding extraction: d-vector and x-vector. For the
d-vector-based systems, a single 512-dimensional unidirec-
tional LSTM layer with a projection layer [31] (projected to
256-dimension) was used. By aggregating the LSTM outputs
via a weighted average as described in (1), 256-dimensional
embedding vectors were obtained. Each classification net-
works (i.e. speaker and channel identifier) consisted of a
single 256-dimensional rectified linear unit (ReLU) hidden
layer and a softmax output layer where the output size
corresponds to the number of speakers or devices within
the training set (e.g., 194-dimensional softmax output for
speaker classifier and 6-dimensional softmax output for chan-
nel classifier). The acoustic features used in the d-vector-
based systems were 19-dimensional Mel-frequency cepstral

coefficients (MFCCs) and the log-energy extracted at every
10 ms, using a 20 ms Hamming window. Together with the
delta and delta-delta of the 19-dimensional MFCCs and the
log-energy, the frame-level feature used in our experiments
was a 60-dimensional vector.

For the x-vector-based systems, 5 TDNN layers were used
as the frame-level network as in the Kaldi x-vector recipe [4].
The frame-level output of the last TDNN layer were aggre-
gated via attention pooling (1) and followed by a ReLU layer,
resulting in a 512-dimensional embedding vector. The classi-
fication networks in the x-vector-based systems consisted of
a single 512-dimensional rectified linear unit (ReLU) hidden
layer and a softmax output layer. The acoustic features used
in the x-vector-based systems were 30-dimensional MFCCs
extracted at every 10 ms, using a 20 ms Hamming window.

The implementation of the embedding systems was done
via Tensorflow [32] and trained using the ADAM optimiza-
tion technique [33] with β1 = 0.9 and β2 = 0.999. All
the experimented networks were trained with learning rate
0.001 and batch size 32 for 12,000 iterations. Cosine simi-
larity was used for computing the verification scores in the
experiments.

In our experiments, EER was evaluated as the performance
measure. The EER indicates the error when the false alarm
rate (FAR) and the false reject rate (FRR) are the same.

3) COMPARISON BETWEEN DIFFERENT DISENTANGLEMENT
LOSS TERMS
In this experiment, we compare the performance of the
speaker embeddings obtained from the d-vector-based JFE
system trained with different disentanglement loss terms
discussed in Section III. The experimented methods are as
follows:
• Only discriminative: speaker embedding vector
extracted from the JFE network trained only with the
discriminative loss functions in (14) and (15) (which
is essentially a multi-task learning for the embedding
network to encode speaker and nuisance discriminative
information),

• Entropy: speaker embedding vector extracted from the
JFE network trained with the discriminative loss func-
tions in (14), (15) and the entropy-based disentangle-
ment losses in (16) and (17),

• nMAPC: speaker embedding vector extracted from the
JFE network trained with the discriminative loss func-
tions in (14), (15) and the negative MAPC-based disen-
tanglement losses in (18),

• Entropy+ nMAPC: speaker embedding vector extracted
from the JFE network trained with the discriminative
loss functions in (14), (15) and both the entropy-based
and the negative MAPC-based disentanglement losses
in (16), (17) and (18).

Table 2 gives the EER results obtained by using
these embeddings. As shown in the results, the embed-
ding extracted from the JFE networks trained with either
Entropy or nMAPC for disentanglement greatly improved the

VOLUME 8, 2020 141843



W. H. Kang et al.: Disentangled Speaker and Nuisance Attribute Embedding for Robust Speaker Verification

TABLE 2. EER (%) comparison between the speaker embedding vectors
extracted from the joint factor embedding networks trained with various
disentanglement losses.

performance compared to Only discriminative, which is
essentially a standard MTL embedding technique. This
implies that both nMAPC and Entropy are capable of train-
ing the embedding network to produce speaker embedding
vectors disentangled from non-speaker factors. Especially the
nMAPC showed relative improvement of 17.99% compared
to Only discriminative. The best verification performance
was achieved by using both disentanglement loss terms
(i.e. Entropy + nMAPC), yielding a relative improvement
of 25.27% in terms of EER. From this, we could assume that
nMAPC and Entropy are useful for disentangling the channel
variability from the speaker embedding. The DET curves are
depicted in Figure 4.

FIGURE 4. DET curves of the JFE systems trained with various
disentanglement losses.

4) TRAINING ANALYSIS
In order to check if the training scheme of the proposed JFE
system achieves our objective (i.e. maximizing the speaker
discriminability and channel uncertainty in ωspkr ), we ana-
lyzed the training loss described in (14)-(17) of the d-vector-
based JFE system. As shown in Fig. 5, due to the large
difference in the unique number of speakers and devices
(i.e. 194 speakers and 6 devices), the initial values forLs−s,CE
and Ls−c,E were higher than Lc−c,CE and Lc−s,E . The
cross-entropy losses (i.e. Ls−s,CE and Lc−c,CE ) decreased
quickly toward 0 when the training iteration increases. On
the other hand, the entropy losses (i.e. Ls−c,E and Lc−s,E )

FIGURE 5. The joint factor embedding training loss values on each
iteration.

stayed near at their initial values throughout the training.
This indicates that the proposed training scheme increases
the discriminability of the speaker and channel embeddings
on their main tasks while keeping their uncertainty on the
subtasks high as expected.

In Fig. 6, the t-SNE plots [34] of the speaker and channel
embedding vectors of 10 speakers and 3 devices are shown.
As can be seen in Figs. 6a and 6c, the speaker embedding vec-
tors ωspkr were well separated between different speakers but
were highly overlapped when it comes to different devices.
Meanwhile, as shown in Figs. 6b and 6d, the channel embed-
ding vectors ωchan were separately distributed in terms of

FIGURE 6. t-SNE plot of the speaker and channel embedding vectors
extracted from 10 speakers and 3 devices. The x and y axis indicates the
1st and 2nd dimension of the 2D T-SNE projection, respectively. (a) and
(c) are the t-SNE plots of the speaker embedding vectors, and (b) and
(d) are the t-SNE plots of the channel embedding vectors. Different colors
in (a) and (b) indicate different speakers, and different colors in (c) and
(d) indicates different devices.
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the device, while they were inseparable in terms of speakers.
This confirms that the embedding vectors extracted from the
proposed JFE system are discriminative on their main tasks,
but are invariant with respect to their subtasks.

Moreover, in Fig. 7, the attention weights for the utter-
ance speaking the sentence ‘‘only lawyers love millionaires’’
(i.e. 1st sentence of the RSR2015 Part1 dataset) are shown.
It is interesting to see that the difference between speaker
attention weights αspkr across the frames were quite dramatic,
which indicates that αspkr are likely to attend to certain
frames. On the other hand, the channel attentionweightsαchan
were relatively consistent across all frames. These results
strongly support our assumption that the frames with high
speaker-dependent information are concentrated on specific
frameswhile channel-dependent information is similar across
the speech segment.

FIGURE 7. Attention weights of d-vector (JFE) for utterances speaking the
sentence ‘‘only lawyers love millionaires.’’ (a) Attention weights for the
speaker embedding vector. (b) Attention weights for the channel
embedding vector.

5) COMPARISON BETWEEN THE JOINT FACTOR
EMBEDDING SCHEME AND CONVENTIONAL
DISENTANGLEMENT METHODS
In this experiment, we compared the embedding vectors
obtained from the proposed joint factor embedding scheme,
with those obtained from the conventional disentanglement
techniques discussed in Section II. The experimented training
strategies are as follows:
• Softmax: embedding extracted from an embedding net-
work trained with softmax objective in (4),

• Gradient reversal: embedding extracted from an embed-
ding network trained with gradient reversal strategy as
described in (7) where λ was set to be 0 in the beginning
and linearly increased every iteration, reaching 1 at the
end of the training as in [19],

• Anti-loss: embedding extracted from an embedding net-
work trained with anti-loss as described in (11) using the
same adversarial training strategy described in [22],

• JFE (proposed): speaker embedding extracted from the
proposed JFE system trainedwith the discriminative loss
functions in (14) and (15) and both the entropy-based as
shown in (16) and (17) and the negative MAPC-based
disentanglement losses in (18).

Table 3 show the performance of the d-vector and x-vector-
based systems trained with the methods described above.
Generally, the Anti-loss disentanglement strategy has shown
performance enhancement, achieving a relative improvement
of 35.39% in terms of EER in the d-vector-based experiment.
On the other hand, Gradient reversal method, showed only
slightly improved or worse performance over softmax. Mean-
while, the speaker embedding extracted from the proposed
JFE scheme yielded the best performance in all architectures
(i.e., d-vector and x-vector), achieving a relative improvement
of 18.39% in EER compared to that of d-vector (softmax).
This indicates that the proposed JFE system is capable of
disentangling complicated corruptions (i.e. corruption via
channel) introduced by different recording devices.

TABLE 3. EER (%) comparison between the speaker embedding vectors
extracted from the proposed joint factor embedding and the other
embedding techniques.

In addition, Table 4 show the performance comparison
between the state-of-the-art embedding techniques for ran-
dom digit strings speaker verification (i.e., DNN i-vectors
and Uncertainty normalized HMM/i-vector) [35] and the
x-vector-based embedding network trained with the proposed
JFE scheme. As shown in the results,Uncertainty normalized
HMM/i-vector performs better than the x-vector (softmax) by
a large margin. This is mainly attributed to the fact that the
Uncertainty normalizedHMM/i-vector is trained tomodel the
within-digit variability and scored with prior knowledge on
the set of digits being uttered within the test set. Therefore it
is not surprising that the x-vector (softmax) performs worse

TABLE 4. Gender-dependent EER (%) comparison between the speaker
embedding vectors extracted from the x-vector-based embedding
systems and the state-of-the-art i-vector-based systems.
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than the HMM/i-vector system, since it is trained and eval-
uated with no information on the context. However, despite
the innate disadvantage of the x-vector framework in ran-
dom digits strings speaker verification, the proposed x-vector
(JFE) outperformed the Uncertainty normalized HMM/
i-vector with an relative improvement of 46.05% in terms of
male trial EER.

6) DEVICE DISENTANGLEMENT IN DOMAIN-MISMATCH
SCENARIO
In this experiment, we compared the performance of the
conventional x-vector and the proposed JFE system in a
cross-domain text-independent speaker verification scenario.
More specifically, both embedding systems were trained
using the entire RSR2015 dataset and evaluated on the Vox-
Celeb1 evaluation subset, which is a dataset collected from
Youtube videos recorded from a wide variety of channel
and environmental conditions (e.g., videos shot on hand-held
devices, interviews from red carpets).

As depicted in Table 5, the embeddings extracted from
systems trained with RSR2015 showed severe performance
degradation. Such degradation was likely caused by the vast
variety of channel and environmental conditions within the
VoxCeleb1, which are known to cause high within-speaker
variability of the extracted speaker embedding vectors.
Although the RSR2015 dataset is recorded from multiple
different devices, the number of recording devices is lim-
ited (i.e. 6 devices) and the speech samples are relatively
noise-free since they were recorded in an office environment
[26], [27]. Therefore training the embedding system using
only the RSR2015 dataset may be insufficient to tackle the
challenging condition of the VoxCeleb1 evaluation set. Hence
the x-vector system trained only for speaker discrimination
using RSR2015 showed a relative decrement of 94.83% in
terms of EER compared to the network trained with the
VoxCeleb1 training set. On the other hand, the degredation
of the JFE system trained to disentangle the device factor
from the speaker embedding was 71.55%, which outper-
formed the x-vector trained with the same dataset with a
relative improvement of 11.95%. This indicates that even in
a domain-mismatch scenario, the proposed JFE is able to
alleviate the performance degradation caused by recording
device variability.

TABLE 5. EER (%) comparison between the speaker embedding vectors
extracted from the proposed joint factor embedding and the conventional
x-vector framework evaluated on the VoxCeleb1 evaluation set.

B. EMOTION DISENTANGLEMENT
Emotion variability can cause severe performance degrada-
tion in speaker recognition [36], but emotion disentanglement
has not been investigated asmuch as other nuisance attributes,

such as noise or channel distortion. This may be due to the
challenging nature of emotion disentanglement since unlike
noise or channel, emotional variability is caused by the
speaker’s vocal tract, which also creates speaker variability.
In this subsection, we apply the proposed JFE framework
for disentangling the variability induced by the speaker’s
emotional state.

1) DATASET
In order to evaluate the performance of the proposed tech-
nique for emotion disentanglement, a set of experiments
were conducted based on the VoxCeleb1 dataset [28] and
the emotion labels provided by the EmoVoxCeleb teacher
system [37]1. For training the embedding networks, we used
the development subset of the VoxCeleb1 dataset, consisting
of 148,642 utterances collected from 1,211 speakers. Accord-
ing to the emotion labels in EmoVoxCeleb, total 8 emotions
are observed in the VoxCeleb1 dataset (i.e., neutral, happy,
surprise, sad, angry, disgust, fear, contempt).

The evaluation was performed according to the original
VoxCeleb1 trial list, which consists of 4,874 utterances spo-
ken by 40 speakers. The duration of the trial utterances was
between 3.97 seconds and 69.05 seconds.

2) EXPERIMENTAL SETUP
The acoustic features used in the experiments were
30-dimensional MFCCs extracted at every 10 ms, using a
20 ms Hamming window. The embedding networks were
trained with segments consisting of 250 frames, using the
ADAM optimization technique.

For the baseline x-vector framework and joint fac-
tor embedding system, 5 TDNN layers were used as
the frame-level network according to the Kaldi x-vector
recipe [4]. The TDNN outputs are aggregated as described
in (1), and fed into the utterance-level classification network
(i.e. speaker and emotion identifier). Each utterance-level
classification network consisted of two 512-dimensional
LeakyReLU hidden layers and a softmax output layer where
the output size corresponds to the number of speakers or emo-
tions within the training set. All the experimented networks
were trained with learning rate 0.001 and batch size 256 for
74,321 iterations. Cosine similarity was used for computing
the verification scores in the experiments.

3) COMPARISON BETWEEN THE JOINT FACTOR
EMBEDDING SCHEME AND CONVENTIONAL EMBEDDING
TECHNIQUES
In this experiment, we compare the embedding vec-
tors obtained from the proposed joint factor embedding
scheme and the conventional x-vector framework along with
techniques reported in recent studies including VGG-M,

1The emotion labels provided by the EmoVoxCeleb teacher system can
be downloaded from here: http://www.robots.ox.ac.uk/ vgg/research/cross-
modal-emotions/.
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TABLE 6. EER (%) comparison between the speaker embedding vectors extracted from the proposed joint factor embedding and the conventional
methods. In the Data Augmentation column, X indicates embedding network trained with no augmentation and O indicates network trained with
augmented training set.

FIGURE 8. EER performance of the proposed joint factor embedding scheme and conventional x-vector on different duration utterances.

ResNet-34 and end-to-end verification systems [38], [39].
The experimented methods are as follows:
• i-vector [38]: the i-vector performance reported in [38],
• VGG [38]: the performance of the embedding extracted
from VGG-M, which is a CNN architecture known
to perform well on image and speaker classification,
reported in [38],

• Generalized end-to-end [39]: the performance of the
ResNet-34-based end-to-end speaker verification sys-
tem trained with the generalized end-to-end loss (6)
reported in [38],

• All-speaker hard negative mining end-to-end [39]: the
performance of the ResNet-34-based end-to-end speaker
verification system trained with the all-speaker hard
negative mining loss, which is a modified version of the
softmax loss for robust verification, reported in [38],

• x-vector (softmax) [38]: the x-vector performance
reported in [38],

• x-vector (our implementation): the performance of our
implementation of x-vector (softmax),

• CNN-embedding [38]: the performance of the embed-
ding extracted from a CNN-based architecture reported
in [38],

• x-vector (JFE): the performance of the speaker embed-
ding extracted from the proposed JFE system trained
to disentangle the emotional factor using loss func-
tions (14)–(18).

As shown in Table 6, the proposed JFE outperformed
the conventional methods with both cosine similarity and
PLDA backends. Especially when using PLDA as backend,
the JFE achieved a relative improvement of 8.16% com-
pared to the x-vector (our implementation) in terms of EER.
Moreover, training the JFE with augmented training data
described in [38] (i.e., noise and reverberation augmentation)
further improved the performance. The results demonstrate
that although the proposed JFE is composed of a simple
x-vector-like network, it can provide embedding with higher
speaker discriminative information than the systems with
more complicated architecture.

In addition, we evaluated the conventional x-vector frame-
work and the proposed joint factor embedding scheme on
short duration speech samples. Each evaluation was done
using randomly truncated trial utterances and the average
EERs computed over three evaluations for each duration
group are depicted in Fig. 8. As shown in the results, both
the performance of the joint factor embedding framework
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and the conventional x-vector were degraded as the dura-
tion decreased. This may be due to the lack of phonetically
informative frames since a critical amount of speaker relevant
information is contained in the phonetic characteristics [40].
However, the emotion disentangled speaker embedding
obtained by the proposed JFE outperformed the conventional
x-vector even with short duration speech segments.

V. CONCLUSION
In this paper, a novel approach for extracting an embedding
vector robust to variability caused by nuisance attributes
for speaker verification is proposed. In order to disentangle
the nuisance variability from the speaker embedding vector,
we introduce a JFE scheme where two types of embedding
vectors are extracted, each dependent solely on the speaker
or nuisance attribute, respectively. The proposed JFE net-
work is trained simultaneously with the speaker and nuisance
attribute classification networks where the speaker and nui-
sance embedding vectors are optimized to have good discrim-
inability for their main task while having high uncertainty on
their subtask.

To evaluate the performance of the embedding vector
extracted from the proposed system in a realistic scenario,
we conducted a set of speaker verification experiments using
the RSR2015 dataset, which is composed of utterances
recorded using multiple different hand-held devices, and
VoxCeleb1 dataset, which is composed of various emotional
speech utterances. From the results, it is shown that the pro-
posed JFE scheme is capable of obtaining speaker embedding
vectors with high speaker discriminability while showing
robustness to channel and emotional variability. Moreover,
we observed that the proposed embedding vector performs
better than the conventional embedding technique with short
duration speech segments.

Although the proposed technique showed great improve-
ment over the conventional methods, since the proposed JFE
is trained in a fully supervised manner, it requires labels for
not only the speakers but also the nuisance attributes. Thus
in our future study, we will expand the JFE technique to dis-
entangle the non-speaker variability without the supervision
of nuisance attribute labels. Moreover, we will improve the
disentanglement performance by using more sophisticated
methods for reducing the mutual information between the
speaker and nuisance embedding vectors, rather than using
a simple MAPC regularization.
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