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ABSTRACT Due to the absence of historical data and the errors of measurement instruments, there may be
uncertainties in the distribution parameters of the random variables describing the uncertain fluctuations of
node power including renewable energy station output and load power in the combined cooling heating and
power (CCHP) campusmicrogrid. In this paper, intervals are used to describe the uncertainties of distribution
parameters of the random variables, and an interval probabilistic energy flow (IPEF) calculation model of the
CCHP campus microgrid is established. Introducing the interval arithmetic (IA) into the cumulant method,
an IA-based IPEF algorithm is proposed to obtain the analytical expressions of probability density function
or cumulative distribution function intervals of the state variables. Moreover, affine arithmetic (AA) is
introduced to address the interval extension problem in the calculation, and anAA&IA-based IPEF algorithm
is proposed. By constructing the correlation transformation matrixes, the correlation among different node
power is considered in the IPEF calculation. A case study on a CCHP campusmicrogrid demonstrates that the
results of the AA&IA-based IPEF algorithm are more accurate than those of the IA-based IPEF algorithm by
using the results of the double-layer Monte Carlo method as a reference. Moreover, the proposed algorithms
are more efficient than the double-layer Monte Carlo method.

INDEX TERMS CCHP campus micro-grid, interval probabilistic energy flow calculation, higher-order
uncertainty, cumulant method, interval arithmetic, affine arithmetic, correlation.

NOMENCLATURE
A. ACRONYMS
AA Affine arithmetic
CCHP Combined cooling heating and power
CDF Cumulative distribution function
CI Cumulant interval
CCHP-CMG CCHP campus micro-grid
DMC Double-layer Monte Carlo
IA Interval arithmetic
IPEF Interval probabilistic energy flow
PDF Probability density function
PEF Probabilistic energy flow
PPF Probabilistic power flow
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PT Photothermic
PV Photovoltaic

B. PARAMETERS
cw Specific heat capacity of water
s Mark of heating/cooling network,

1/−1 respectively represent heating/cooling
network

D Pipeline resistance coefficient
Gij, Bij Real and imaginary parts of the i-th row and j-

th column element of node admittance matrix
Cm Heat-to-power ratio
Z Ratio of thermal and electrical power change

of extraction condensing unit
PCON Electrical power generation of the extraction

condensing unit in full condensing mode
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ηE Conversion efficiency of multi-energy cou-
pling elements

APV/APT Area of PV panel and PT panels
ηPV/ηPT Conversion efficiency of PV/PT stations
rmax Maximum of solar irradiance in a period
θPV Power factor angle of PV station
µL/σ 2

L Mean and variance of load power
µ
L
/µ̄L Upper and lower bounds of interval [µL]

σ 2
L/σ̄

2
L Upper and lower bounds of interval [σ 2

L]
µPV/µPT Means of power output of PV/PT stations
α, β Shape parameters of β-distribution

C. VARIABLES
mh/c Flow rates of the heating/cooling pipe
Ts.h/c Supply temperature at nodes
Tr.h/c Return temperature at nodes
Φh/c Heating/cooling power
ΦL.h/c Heating/cooling load power
ΦPT Heating power output of the PT stations
mq.h/c Flow rates at nodes
Bh/c Loop-pipe correlation matrix
As.h/c Matrix related to the supply network

structure and flow rates
Ar.h/c Matrix related to the return network

structure and flow rates
bs.h/c Vector related to the supply network

structure and the supply water tempera-
ture at the source node

br.h/c Vector related to the return network
structure and the return water tempera-
ture at the load node

Pi, Qi Injected active and reactive power at
i-bus of the power network

PLi, QLi Active and reactive power of load at
i-bus of the power network

PPVi, QPVi Active and reactive power of PV stations
at i-bus of the power network

Ui Voltage magnitude at i-bus
δij Voltage phase angle difference between

i-bus and j-bus.
8CCHP, PCCHP Total wasted heat power and electrical

power of CCHP unit
8in, 8out Input/output power of energy conversion

components
W Injected power vector at buses or nodes
X State variable vector
F Augmented vector of injected power
W0, X0, F0 Reference value ofW/X/F
1W, 1X, 1F Random fluctuation ofW/X/F
S0 Sensitivity matrix
γ
(k)
1X, γ

(k)
1W k-order cumulants vectors of 1X and

1W
[γ (k)
1X],[γ

(k)
1W] k-order CI vector of 1X and 1W

[γ (k)
L.e/h/c] k-order CI vector of load power

[γ (k)
1L.e/h/c] k-order CI of load power fluctuation

[M (k)
r ] k-order origin moment interval of r

[γ (k)
r ] k-order CI of r

[γ (k)
PPV], [γ

(k)
QPV] k-order CI of active/reactive power of

PV station
[γ (k)

PV ], [γ
(k)
PT ] k-order CI of injected power of PV/PT

station
[γ (k)
1PV], [γ

(k)
1PT] k-order CI of PV/PT power fluctua-

tion
1FL, 1FS Random fluctuations of node power

augmented vectors of loads and
renewable energy stations consider-
ing the correlation.

1F’L, 1F’S Decorrelated random fluctuations of
node power augmented vectors of
loads and renewable energy stations

KL, KS Correlation conversion matrixes cor-
responding to the node power of loads
and renewable energy stations

D. SUBSCRIPTS AND SUPERSCRIPTS
(·)<k> Calculate the kth power of each element in

the matrix
(·)e/h/c Variables of electricity/heating/cooling

network

I. INTRODUCTION
CCHP technology can fully recycle the wasted heat of gas-
fired power generators for cooling and heating, which can
effectively increase the utilization rate and realize the cascade
utilization of energy. Thus, in recent years, CCHP technology
has beenwidely applied in emerging industrial campuses, and
many CCHP campus microgrid (CCHP-CMG) projects have
been established [1], [2]. The probability density functions of
random variables are usually used to describe the uncertain
fluctuation characteristics of the electrical/heating/cooling
load power and the power output of photovoltaic (PV) /
photothermic (PT) stations in the CCHP-CMG, and the
uncertain fluctuation characteristics of its operating state
can be obtained by probabilistic energy flow (PEF) calcu-
lation [3], [4]. However, due to factors such as the absence
of historical data and the errors of measurement instruments,
there may be uncertainty in the distribution parameters of the
PDFs of the random variables describing the uncertain node
power in the CCHP-CMG. This uncertainty can be classified
as higher-order uncertainty [5], [6]. In addition, the power
output of different renewable energy stations and the dif-
ferent types of load power in a CCHP-CMG always have
obvious correlation. Therefore, it is of great significance to
study the PEF calculation method of a CCHP-CMG consid-
ering the higher-order uncertainty and the correlation of node
power including renewable energy station output and load
power.
Many research articles have been published on the topic

of probabilistic power flow (PPF) / probabilistic energy
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flow (PEF) calculation in power systems or integrated energy
systems. In the PPF calculation of power systems, the fol-
lowing methods are mainly used: simulation method, approx-
imation method, and analytical method [7]. Among them,
the analytical method can simultaneously meet the require-
ments of calculation accuracy and efficiency and obtain
the analytical expressions of the probability density func-
tion (PDF) or cumulative distribution function (CDF) of
state variables, which has received the most attention. In
some studies, the analytical solution of the PPF calcula-
tion was obtained by convolution computation, but the cal-
culation process was complicated [8]–[10]. The cumulant
method can avoid the convolution computation of random
variables and improve the calculation efficiency. For exam-
ple, Zhang and Lee [11] and Fan et al. [12] applied the cumu-
lant method and Gram-Charlier expansion to solve the PPF
calculation problem. Cai et al. [13] used Cholesky decom-
position to deal with the correlation of random variables
in the cumulant method. For the PEF calculation of inte-
grated energy systems, the cumulant method was applied to
the PEF calculation of an electric-gas energy system in [3].
Khorsand and Seifi [4] studied the probability characteristics
of load power and failure and solved the PEF calculation of
electricity/gas/heating network based on the point estimation
method. Chen et al. [14] and Yang et al. [15] considered
the uncertainty of distributed generation and pipeline param-
eters, respectively, and proposed methods to solve the PEF
calculation problem based on Latin hypercube sampling and
Nataf transformation. In view of the nonlinear characteris-
tics of power networks and gas networks, Chen et al. [16]
applied multiple linearization methods to PEF calculation.
Hu et al. [17] modeled the uncertainty of pipeline parameters
as interval variables, modeled the uncertainty of electric/gas
load and renewable power generation as probability variables,
and proposed the probabilistic-interval energy flow analysis
based on the polynomial chaos expansion method. In [18],
wind speed and light intensity were defined as interval vari-
ables, load power of any node was defined as the random vari-
able, and an uncertain power flow model of hybrid stochastic
and interval variables was established and then solved by
the double-layer Monte Carlo method. However, none of
these studies considered the uncertainty of the distribution
parameters of node power random variables in the PPF/PEF
calculation, and it needs to be considered to reflect the uncer-
tain fluctuations of node power more accurately.

In addition, there have been several studies in recent years
on the analysis of power systems and integrated energy sys-
tems considering the higher-order uncertainty of node power.
Lubin et al. [19], Zhou et al. [20] considered the uncertainty
of the mean and variance of wind power in robust optimiza-
tion models of power systems and combined heat and power
systems, respectively. In [21], considering the uncertainty of
the probability distribution type of wind power, a distributed
robust coordinated scheduling model was proposed. Taking
into account the uncertain characteristics of randomness and
fuzziness, Wu et al. [22] proposed a random fuzzy power

flow calculation method for distribution networks. It can
be seen from the above studies that the existing research
mainly focuses on the analysis of power systems considering
higher-order uncertainty, whereas research on the analysis
of integrated energy systems considering higher-order uncer-
tainty is lacking. Moreover, there is still no literature on the
PEF calculation of a CCHP-CMG considering higher-order
uncertainty. Therefore, this paper focuses on the interval
uncertainties of the distribution parameters of node power
random variables in the CCHP-CMG and proposes an IPEF
calculation method for CCHP-CMG.

This paper makes three contributions: 1) To reflect the
uncertain fluctuations of node power including renewable
energy station output and load power more accurate, intervals
are used to describe the uncertainties of distribution param-
eters of node power random variables, and an IPEF calcu-
lation model of a CCHP-CMG is established considering the
interval uncertainties of distribution parameters. An IA-based
IPEF algorithm is proposed to solve this IPEF calculation
model, and an interval Gram-Charlier expansion method is
proposed to obtain the analytical expressions of PDF or
CDF intervals of the state variables. 2) An AA&IA-based
IPEF algorithm is proposed to address the interval extension
problem and obtain more accurate IPEF calculation results.
3) By constructing correlation conversion matrixes to con-
sider the correlation of load power and renewable energy
station output, an AA&IA-based IPEF algorithm considering
the correlation among different node power is proposed.

The rest of this paper is organized as follows. Section II
introduces the IPEF calculation model of a CCHP-CMG
considering the interval uncertainties of distribution param-
eters of node power random variables. Section III proposes
an IA-based IPEF algorithm based on IA and cumulant
method. Section IV proposes an AA&IA-based IPEF algo-
rithm based on AA. Section V introduces an AA&IA-based
IPEF algorithm considering the correlation among different
node power. Section VI presents the case study and analysis
of the results. Section VII offers the conclusions.

FIGURE 1. The structure and energy supply of a CCHP-CMG.

II. IPEF CALCULATION MODEL OF CCHP-CMG
CONSIDERING THE INTERVAL UNCERTAINTIES
OF DISTRIBUTION PARAMETERS
A. THE STRUCTURE OF A CCHP-CMG
The general structure and energy supply of a CCHP-CMG are
shown in Fig. 1.
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The CCHP-CMG contains gas generators, various cooling/
heating equipment, distributed PV/PT stations, and electricity/
heating/cooling networks. The gas is only the input energy of
the gas generators, which is an external variable of the CCHP-
CMG. In the proposed energy flow calculation, the CCHP
unit is always set as the swing bus, and the input gas power
can be calculated after obtaining the energy flow calculation
result. Thus, the gas network is not considered in the energy
flow calculation of this paper. In the energy station, there
are CCHP units (gas generators, heat exchange units, and
absorption chillers), heat pumps, and electric chillers. The
energy station supplies power to users through gas generators
and provides cooling and heating energy to users through
cooling equipment (such as absorption chillers) and heating
equipment (such as heat exchange units). Insufficient cooling/
heating energy is supplemented by electric chillers or heat
pumps. PV and PT stations can convert solar energy into
electrical energy and heating energy, respectively, to supply
power and heating users.

B. ENERGY FLOW CALCULATION MODEL OF CCHPCMG
1) HEATING/COOLING NETWORK
In the energy flow calculation, the state variables of the
heating/cooling network include the flow rates of pipelines
as well as the supply and return temperatures of the nodes,
which satisfy the following equations [23]:

Φh/c = cwmq.h/cs(Ts.h/c − Tr.h/c)
Bh/cDmh/c

∣∣mh/c
∣∣ = 0

As.h/cT s.h/c − bs.h/c = 0
Ar.h/cT r.h/c − br.h/c = 0,

(1)

where the first formula is the expression of the node power
of the heating/cooling network. For the pure heating/cooling
load nodes, Φh/c = ΦL.h/c, and for the heating load nodes
connected to the PT station, Φh = ΦL.h− ΦPT. The second
formula is the pressure balance equation of pipelines. The
third and fourth formulas are the balance equations for the
supply and return temperatures of nodes, respectively.

2) ELECTRICITY NETWORK
The state variables of the electricity network are the voltage
amplitude and phase angle of each bus, which satisfy the
following equations:Pi = Ui

∑n

j=1
Uj(Gij cos δij + Bij sin δij)

Qi = Ui
∑n

j=1
Uj(Gij sin δij − Bij cos δij),

(2)

where for the pure load bus, Pi = −PLi and Qi = −QLi; for
the load bus connected to the PV station, Pi = PPVi−PLi and
Qi = QPVi − QLi.

3) COUPLING ELEMENTS
CCHP units can be divided into two types: back pressure units
and extraction condensing units. The relationships between

power output and wasted heat are respectively expressed
as (3) and (4) [23]:

Cm = ΦCCHP/PCCHP, (3)

Z = ΦCCHP
/
(PCON − PCCHP). (4)

The wasted heat can be converted into cooling/heating
energy by the absorption chillers/heat exchangers, and the
insufficient cooling/heat energy can be supplemented by the
electric chillers/heat pumps. The above energy conversion
elements all use the efficiency coefficient to perform energy
conversion, as follows:

Φout = ηEΦin. (5)

According to (1)–(2), the energy flow equations can be
abbreviated as follows:

F = [W ; 0] = f (X) (6)

For W, the electrical/heating/cooling power at nodes of the
energy station can be calculated by (3)–(5).

Given the network structure parameters and node powerW,
equation (6) can be solved using the Newton-Raphson
method to obtain the state variable X of the CCHP-CMG,
which is the energy flow calculation of the CCHP-CMG.

C. REPRESENTATION OF HIGHER-ORDER UNCERTAINTY
OF NODE POWER
In the traditional PEF algorithm, the distribution parameters
in the PDF of the node power random variable are obtained
from historical data, and these parameters are deterministic
values. However, in practice, due to uncertain factors such as
data absence and measurement errors, there are also uncer-
tainties in the process of solving the distribution parameters
of random variables. To express these uncertainties accu-
rately, intervals are used to describe the uncertainties of
the distribution parameters of node power random variables.
Based on this concept, the IA-based IPEF algorithm of the
CCHP-CMG is proposed.

Assuming that the electrical/heating/cooling load power
WL follows a normal distribution, its PDF is expressed as (7).
Considering the uncertainties of µL and σ 2

L , they can be
expressed by intervals as shown by (8).

f (WL) =
1

√
2πσL

exp(−(WL − µL)2
/
2σ 2

L). (7){
[µL] = [µ

L
, µ̄L]

[σ 2
L] = [σ 2

L, σ̄
2
L].

(8)

According to [12], [24], in calculating the power output
of PV/PT stations, solar irradiance r is assumed to follow a
β-distribution and its PDF is as follows:

f (r) =
0(α + β)
0(α)0(β)

(r/rmax)α−1(1− r/rmax)β−1, (9)

where 0(·) is the Gamma function.
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Considering the uncertainties of the shape parameters α
and β, they can be expressed by intervals as follows:{

[α] = [α, ᾱ]
[β] = [β, β̄].

(10)

The relationship between the power output of a PV/PT
station and the solar irradiance r is as follows:

PPV = rAPVηPV
QPV = rAPVηPV tan θPV
ΦPT = rAPTηPT.

(11)

The above (1)–(5) and (7)–(11) constitute the IPEF cal-
culation model of the CCHP-CMG considering the interval
uncertainties of distribution parameters.

III. IPEF ALGORITHM BASED ON INTERVAL ARITHMETIC
A. PEF ALGORITHM BASED ON CUMULANT METHOD
In the PEF calculation considering the randomness of node
power, the given node power and unknown state variables are
represented by random variables. Equation (6) is expanded
by the Taylor series, and only the constant term and the
first-order term are retained to obtain the linearized energy
flow equations as follows:

F0 +1F = [W0; 0]+ [1W ; 0]

= f (X0 +1X) = f (X0)+ J1X . (12)

Each element of the Jacobian matrix J is the partial deriva-
tive of the energy flow equations with respect to the state
variables (i.e., J=∂f(X)/∂X).
After the steady-state reference value of energy flow F0 =

f(X0) is substituted into (12), equation (13) can be obtained.

1X = J−1[1W ; 0] = S0[1W ; 0] = S01F, (13)

where the sensitivity matrix S0 = J−1.
Applying the cumulant method to the PEF calculation of

the CCHP-CMG, the steps are as follows. According to the
PDFs and the distribution parameters of 1W, the cumulants
of 1W are obtained. These cumulants are combined with
the calculated S<k>0 and then substituted into (14) to obtain
the cumulants of 1X. Finally, the PDFs or CDFs of X are
obtained by the Gram-Charlier expansion [11].

γ
(k)
1X = S<k>0 [γ (k)

1W; 0]. (14)

B. IPEF ALGORITHM BASED ON INTERVAL ARITHMETIC
AND CUMULANT METHOD
In the PEF calculation, considering the distribution parameter
uncertainties, the distribution parameters of random variables
of node power are expressed as intervals. Then, the cumu-
lants of node power calculated according to the distribution
parameter intervals are also the intervals, called the cumulant
intervals (CIs). The CIs of 1X can be obtained from (14).
Finally, the analytical expressions of the PDF and CDF inter-
vals of state variables X are obtained by the proposed interval
Gram-Charlier expansion method.

1) CALCULATION OF THE CUMULANT INTERVALS OF NODE
POWER AND STATE VARIABLES
According to IA [25], given the intervals [x] = [x, x̄] and
[y] = [y, ȳ], we have:

addition:[x]+ [y] = [x + y, x̄ + ȳ], (15)

subtraction:[x]− [y] = [x − ȳ, x̄ − y], (16)

multiplication:

{
[x] · [y] = [min S,max S]
S = {xy, xȳ, x̄y, x̄ȳ},

(17)

division:

{
[x]
/
[y] = [minR,maxR]

R = {x
/
y, x

/
ȳ, x̄

/
y, x̄

/
ȳ}.

(18)

For the electric/heating/cooling load power that follows the
normal distribution, the first-order and second-order CIs are
their mean and variance values, respectively. Any CIs above
the second order are equal to zero, as shown in (19).

[γ (1)
L.e/h/c] = [µL]

[γ (2)
L.e/h/c] = [σ 2

L]

[γ (k)
L.e/h/c] = 0 k ≥ 3

(19)

The CIs of the power output of PV/PT stations can be
obtained from the CIs of the solar irradiance r . According
to the standard β-distribution, the recursive formula of the
origin moment intervals of r is as follows

[M (1)
r ] =

[α]
[α]+ [β]

[M (k)
r ] =

[α]+ (k − 1)
[α]+ [β]+ (k − 1)

[M (k−1)
r ] k ≥ 2

(20)

Each order CI of r is obtained from the origin moment
interval, as in (21).{
[γ (1)

r ] = [M (1)
r ]

[γ (k)
r ] = [M (k)

r ]+
∑k−1

i=1
C i
k−1[M

(i)
r ][γ (k−i)

r ] k ≥ 2
(21)

According to the relationship between the power output of
a PV/PT station and the solar irradiance r (i.e., (11)), from
the k-order CI of r (i.e., [γ (k)

r ]), the k-order CI of the power
output of PV/PT stations can be calculated as (22).

[γ (k)
PPV] = (APVηPV)

<k>[γ (k)
r ]

[γ (k)
QPV] = (APVηPV tan θPV)<k>[γ

(k)
r ]

[γ (k)
PT] = (APTηPT)

<k>[γ (k)
r ]

(22)

Based on the mean value, the CIs of the random fluctuation of
electric/heating/cooling load power and PV/PT station power
output can be calculated as follows:

[γ (1)
1L.e/h/c] = [γ (1)

L.e/h/c]− µL

[γ (k)
1L.e/h/c] = [γ (k)

L.e/h/c], (k ≥ 2)

[γ (1)
1PV] = [γ (1)

PV]− µPV

[γ (k)
1PV] = [γ (k)

PV], (k ≥ 2)

[γ (1)
1PT] = [γ (1)

PT]− µPT

[γ (k)
1PT] = [γ (k)

PT], (k ≥ 2),

(23)

where [γ (k)
PV] =

[
[γ (k)

PPV]; [γ
(k)
QPV]

]
.
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If the PV/PT stations are connected to the load buses/nodes
of the electricity/heating network, the CIs of the injected
power of these buses/nodes in the CCHP-CMG can be
obtained as follows:

[γ (k)
1W.e] = [γ (k)

1PV]− [γ (k)
1L.e]

[γ (k)
1W.h] = [γ (k)

1PT]− [γ (k)
1L.h]

[γ (k)
1W.c] = −[γ

(k)
1L.c].

(24)

Thus, the CIs of 1X can be obtained as follows:

[γ (k)
1X] = S<k>0

[
[γ (k)
1W]
0

]
, (25)

where [γ (k)
1W] =

[
[γ (k)
1W.e]; [γ

(k)
1W.h]; [γ

(k)
1W.c]

]
.

The reference values X0 calculated from the steady-state
energy flow calculation can be used to obtain the k-order CI
vector [ γ

(k)
X ] of state variables X, as follows:{

[γ (1)
X ] = [γ (1)

1X]+ X0

[γ (k)
X ] = [γ (k)

1X] (k ≥ 2)
(26)

2) INTERVAL GRAM-CHARLIER EXPANSION
After obtaining the CIs of X, this paper proposes an interval
Gram-Charlier expansion method based on the traditional
Gram-Charlier expansion method, which can expand the CIs
of X to obtain the analytical expressions of the PDF and CDF
intervals of X.
After the calculation of the CIs of state variables X, the

mean interval [µ] and standard deviation interval [σ ] of X are
known, and the random variable must first be standardized:

[x̃] = (x − [µ])
/
[σ ], (27)

where x is the value of the random variable X , and [x̃] is the
interval value of the standardized random variable X̃ .
Assuming that [yX̃ ] and [YX̃ ] are the PDF and CDF inter-

vals of X̃ , according to the Gram-Charlier expansion, the PDF
interval and CDF interval can be expanded into the series as
follows:

[yX̃ ] = [ϕ([x̃])]+
[g1]
1!

[ϕ(1)([x̃])]+
[g2]
2!

[ϕ(2)([x̃])]

+ · · · +
[gk ]
k!

[ϕ(k)([x̃])], (28)

[YX̃ ] = [Φ([x̃])]+
[g1]
1!

[Φ(1)([x̃])]+
[g2]
2!

[Φ(2)([x̃])]

+ · · · +
[gk ]
k!

[Φ(k)([x̃])]. (29)

Since [x̃] is an interval, the PDF and CDF calculated from
(28)–(29) are also intervals.

In (28)–(29), [ϕ([x̃])] and [Φ([x̃])] are the intervals
obtained from the PDF and CDF formulas of the standard
normal distribution; [ϕ(k)([x̃])] and [Φ(k)([x̃])] are the k-th
derivatives of [ϕ([x̃])] and [Φ([x̃])], respectively. These vari-
ables can be obtained by (30)–(31):{

[ϕ([x̃])] = 1
/√

2π exp(−[x̃]2
/
2) k = 1

[ϕ(k)([x̃])] = (−1)(k)[Hk ([x̃])][ϕ([x̃])] k ≥ 2,
(30)

{
[Φ([x̃])] = 1

/√
2π
∫ [x̃]
−∞

exp(−t2
/
2)dt k = 1

[Φ(k)([x̃])] = [ϕ(k−1)([x̃])] k ≥ 2 .
(31)

In (30), [Hk ([x̃])] is the k-order Hermite polynomial inter-
val, as follows:

[H0([x̃])] = 1
[H1([x̃])] = [x̃]
[H2([x̃])] = [x̃]2 − 1
[H3([x̃])] = [x̃]3 − 3[x̃]
[H4([x̃])] = [x̃]4 − 6[x̃]2 + 3
[H5([x̃])] = [x̃]5 − 10[x̃]3 + 15[x̃]
[H6([x̃])] = [x̃]6 − 15[x̃]4 + 45[x̃]2 − 15
[H7([x̃])] = [x̃]7 − 21[x̃]5 + 105[x̃]3 − 105[x̃]
...

(32)

According to equations (19)–(26), the k-th order CI [γ (k)
X ] of

X is obtained, and then each coefficient in (28)–(29) can be
obtained as follows:

[gk ] = [γ (k)
X ]

/
[σ ]k , (33)

where [σ ]k is the k-th power of [σ ].
Finally, the PDF and CDF intervals of X can be obtained

as follows:

[yX ] = [yX̃ ]
/
[σ ], (34)

[YX ] = [YX̃ ], (35)

where [yX ] and [YX ] are the PDF and CDF intervals of X .
It can be seen that equations (28), (30), (32), (33),

and (34) constitute the analytical expressions of the PDF
interval of X; equations (29), (31), (32), (33), and (35)
constitute the analytical expressions of the CDF interval
of X. The above (27)–(35) constitute the proposed interval
Gram-Charlier expansion method.

IV. AA&IA-BASED IPEF ALGORITHM FOR ADDRESSING
THE INTERVAL EXTENSION PROBLEM
Due to interval dependency, the interval extension problem
inevitably exists in the process of interval arithmetic [25],
which leads to an excessive fluctuation interval of the calcu-
lation result. To solve this problem, affine arithmetic (AA) is
introduced to the IA-based IPEF algorithm. According toAA,
the value of an uncertain variable x ∈ [x, x̄] is affected by
itself and the independent noises of the environment, which
is expressed as an affine form [26]:

x̂ = x0 + x1ε1 + · · · xkεk , (36)

where x0 is the central value (i.e., x0 = (x + x̄)/2), εi ∈
[−1, 1] is the i-th independent noise element, and the coeffi-
cient xi ∈ R is the i-th partial increment.
According to AA theory, the interval form and affine form

of an uncertain variable can be transformed to each other.
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Given an affine form as in (36), the corresponding interval
form is:

[x, x̄] = [x0 − ξ, x0 + ξ ], ξ =
∑k

i=1
|xi|. (37)

Given an interval form [x] = [x, x̄], let a = (x + x̄)/2 and
b = (x̄ − x)/2; then the corresponding affine form is:

x̂ = a+ bε1. (38)

Given two affine forms x̂ = x0 + x1ε1 + · · · + xkεk and
ŷ = y0 + y1ε1 + · · · + ykεk , the AA rules are as follows:

¬ x̂ ± ŷ = (x0 ± y0)+ (x1 ± y1)ε1 + · · · + (xk ± yk )εk

 x̂ · ŷ = x0y0 +
∑k

i=1
(x0yi + y0xi)εi

+(
∑k

i=1
xiεi) · (

∑k

i=1
yiεi)

® x̂/ŷ = x̂ · (1
/
ŷ). (39)

Compared with IA, the AA can consider the interval
dependency and identify itself in the computation, which
can effectively avoid the interval extension problem. How-
ever, the calculation of AA is more complicated than that
of IA, hence its calculation speed is slower, which has an
adverse effect on the solution of the IPEF. In addition, in the
IA-based IPEF algorithm, only part of the calculation process
will result in a large interval extension problem due to IA.
They are mainly in the following two calculation processes:
First, in the calculation of the CIs of solar irradiance, the
numerator and denominator of (20) contain the same inter-
val [α]. Since IA cannot identify itself, interval extension
will inevitably occur. Moreover, in (20), there is a recursive
process of intervals when calculating the k-th order origin
moment interval from the (k − 1)-th order origin moment
interval, so the interval extensionwill accumulate in the layer-
by-layer recursive process. Second, in the interval Gram-
Charlier expansion method, there is also the calculation of
the interval and itself in (32), which will also lead to interval
extension. Therefore, to further improve the IA-based IPEF
algorithm, an AA&IA-based IPEF algorithm is proposed.
In this algorithm, the AA is introduced to calculate the CIs of
solar irradiance and is applied in the interval Gram-Charlier
expansion, whereas the other calculation steps are still solved
with IA. This algorithm can address the interval extension
problem caused by IA and obtain more accurate analytical
expressions of the PDF and CDF intervals of X.

V. IPEF CALCULATION OF CCHP-CMG CONSIDERING THE
CORRELATION AMONG NODE POWER
In actual CCHP-CMGs, there is obvious correlation among
the power output of distributed renewable energy stations.
For example, the power output of different PV stations and
PT stations is affected by solar irradiance and has correla-
tion. Besides, the electrical/heating/cooling load power of
different buses/nodes may also be relevant. Therefore, in the
IPEF calculation of a CCHP-CMG, the correlation among the
load power of different buses/nodes and the power output of
different renewable energy stations need to be considered.

A. CORRELATION CONVERSION MATRIX K
If there are n elements in the vector F, it can be assumed that
m elements of F are relevant and form a vector V, and the
other elements are not relevant. The calculation steps of the
correlation conversion matrix K are as follows:

1) If the correlation coefficient matrix of each element in
V is known as Cr, and the standard deviation vector of each
element in V is known as σV, the covariance matrix Cv can
be obtained by the following:

Cv(i, j) = Cr(i, j) · σVi · σVj, (40)

where Cv(i, j) and Cr(i, j) are respectively the i-th row and
j-th column elements of matrixes Cv and Cr; σVi and σVj
are respectively the standard deviations of the i-th and j-th
variables in the vector V.

2) Apply the Cholesky decomposition to the covariance
matrix Cv to obtain the lower triangular matrix G [13].
3) The correlation conversion matrix K can be obtained

from (41):

¬ if (Fi→ Vk ) ∧ (Fj→ Vl) ⇒

{
Kii = Gkk ,Kjj = Gll
Kij = Gkl,Kji = Glk

 else

{
Kii = 1,
Kij = Kji = 0

(other elements in K except those in¬) (41)

where Fi → Vk and Fj → Vl mean that the i-th and j-th
elements in F are correlation variables and correspond to the
k-th and l-th elements in V, respectively. Additionally, k, l ∈
[1, 2, . . . ,m], i, j ∈ [1, 2, . . . , n].
Since the standard deviations of node power of different

buses/nodes are intervals, the covariance matrix is an interval
matrix [Cv]. However, the Cholesky decomposition of the
interval matrix can only find the interval matrix [G] to satisfy
(42) [27]. It can be seen that (42) is an inclusion relation rather
than a strict equality relation, so the interval matrix [G] will
cause the interval extension problem for subsequent calcula-
tions. The existing improved methods are very complicated,
have longer calculation time, or do not meet the requirements
of the solution in this paper [28], [29]. Therefore, this paper
considers using the central values of the standard deviation
intervals to constitute the ordinary covariance matrix Cv and
calculate the matrix K to consider the correlation problem.
The results of the subsequent case study show that this sim-
plified step does not cause obvious calculation errors.

[Cv] ⊆ [G][G]T . (42)

B. IPEF CALCULATION METHOD OF CCHP-CMG
CONSIDERING NODE POWER CORRELATION
In the IPEF calculation of a CCHP-CMG considering the
node power correlation, the random fluctuation of the node
power augmented vector 1F in (13) can be divided into the
following two parts:

1F = 1FS −1FL, (43)
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where 1FL and 1FS have the following relationship:{
1FL = KL1F′L
1FS = KS1F′S.

(44)

If the CIs of 1FL and 1FS are [γ (k)
1FL] and [γ (k)

1FS ], they
can be de-correlated by the following formula:{

[γ ′1FL
(k)] = (K<k>L )−1[γ (k)

1FL]

[γ ′1FS
(k)] = (K<k>S )−1[γ (k)

1FS].
(45)

Substituting (43)–(44) into (13):

1X = S01F = S0(1FS −1FL)

= S0KS1F′S − S0KL1F′L. (46)

Then, the CIs of the fluctuation of state variables 1X can
be obtained by the following equation:

[γ (k)
1X] = (S0KS)<k>[γ ′1FS

(k)]−(S0KL)<k>[γ ′1FL
(k)]. (47)

Therefore, by replacing (25) in Section III with (45) and
(47) in Section V, based on the original AA&IA-based IPEF
algorithm, an AA&IA-based IPEF algorithm considering the
node power correlation is proposed. The flowchart of the
algorithm is shown in Fig. 2. The shaded rectangular boxes
of solid and dotted lines are respectively calculated by IA
and AA.

FIGURE 2. Flowchart of the AA&IA-based IPEF algorithm considering the
node power correlation.

The calculation steps are as follows:
1) Initialization: Determine the probability distribution

models of electrical/heating/cooling load power and
solar irradiance, the intervals of the distribution param-
eters, and the correlation coefficient matrix Cr of the
relevant node power.

2) Calculate the steady-state energy flow of the
CCHP-CMG. The result is used as a reference.

3) Apply IA to calculate the CIs of electrical/heating/
cooling load power. Meanwhile, apply AA to calculate
the CIs of the solar irradiance, and apply IA to calculate
the CIs of the power output of PV/PT stations.

4) Calculate the CIs of the randomfluctuations of the node
power augmented vectors 1FL/1FS.

5) Calculate the correlation conversion matrixes KL and
KS of the node power of loads and renewable energy
stations.

6) The CIs of the state variable X are solved according
to (26), (45), and (47), and the analytical expressions
of PDF or CDF intervals of X can be obtained by the
interval Gram-Charlier expansion as (27)–(35).

VI. CASE STUDY
The structure of a CCHP-MCG is shown in Fig. 3, which is
divided into two energy supply areas with three energy sta-
tions. In this CCHP-MCG, the electricity network is a distri-
bution network of an actual industrial campus and the cooling
and heating networks are improved based on the heating net-
work in [23]. The energy coupling components in the energy
stations include CCHP units (gas-fired power generators, heat
exchange units, and absorption chillers), heat pumps, and
electric chillers. The cooling and heating networks have the
same structure, including 49 nodes and 49 pipelines. The
energy stations I/II/III are respectively located at the 49th,
48th, and 47th nodes of the cooling/heating network. Among
them, energy stations I and II are respectively assumed to be
the swing nodes of the heating network and cooling network.
The electricity network contains 91 buses. Energy stations
I/II/III are respectively located at the 90th, 89th, and 91st

buses of the electricity network. Generator buses in the energy
stations I/II/III are assumed to be PV buses. The 88th bus
connected to the public distribution network is set to be the
swing bus, and the remaining buses are all PQ buses. The
generated electric power values of the CCHP units in energy
stations I/II/III are determined by their wasted heating power.
The CCHP units in energy stations I and III are the back
pressure units, and the CCHP units in energy station II are
the extraction condensing units.

The PV and PT stations are respectively connected to the
load buses/nodes of the electricity and heating network. It is
assumed that the solar irradiance follows the β-distribution.
Using the historical data in Guangzhou City, Guangdong
Province, China (23◦6′ N, 113◦2′ E), the shape parameters of
the probability distribution of the solar irradiance are obtained
by fitting, the central values of [α] and [β] are taken as
0.6798 and 1.7788, respectively [30], and the interval radii
are 0.1% of the central values. The total power output of PV
stations accounts for 15% of the electrical load power, and the
total power output of PT stations accounts for 5% of the heat-
ing load power. In addition, the electricity/heating/cooling
load in the CCHP-CMG is assumed to follow a normal dis-
tribution. The central value of the mean interval [µ] takes the
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FIGURE 3. The structure of the case-study CCHP-CMG.

steady-state power flow state values, and the interval radius
of [µ] is 0.2% of the center value. The standard deviation
interval of electrical power is 10% [µ], and the standard
deviation interval of heating/cooling power is 5% [µ].

All of the numerical calculation tests are performed on
a PC with Intel(R) Core(TM) CPU i7-8700 3.20 GHz
and 32 GB RAM. The proposed algorithms are coded in
MATLAB programs, which use INTLAB toolbox for IA and
AA [31].

A. ANALYSIS OF CALCULATION RESULT
In addition to the affine arithmetic, another common
improved interval method to address the interval extension
problem is the interval subdivision method [25]. The inter-
val division method is applied to calculate the CIs of solar
irradiance and the interval Gram-Charlier expansion, and
the IPEF algorithm based on interval subdivision and inter-
val arithmetic (IS&IA-based IPEF algorithm) is proposed
as a comparison with the AA&IA-based IPEF algorithm.
Then, the IA-based IPEF algorithm, AA&IA-based IPEF
algorithm, IS& IA-based IPEF algorithm, and double-layer
Monte Carlo (DMC) method are each used to solve the IPEF
problem in the CCHP-CMG. In the DMC method, assuming
the distribution parameters follow a uniform distribution in
their uncertain fluctuation intervals, the distribution param-
eter values of node power random variables are obtained

by outer-layer sampling, and the sampling number is 1,000.
After determining the distribution parameter values to obtain
the PDFs of node power, the node power values are obtained
by inner-layer sampling, and the sampling number is 10,000.
Each sample of node power values is substituted into the
energy flow calculation to obtain the state variable values.
In the AA&IA-based, IS&IA-based and IA-based IPEF algo-
rithms, only the 1st–7th order CIs are calculated, and it can
ensure the results with sufficient accuracy for these algo-
rithms. In the IS&IA-based IPEF algorithm, the intervals are
divided into 100 subintervals.

With the calculation results of the DMC method as a
reference, the calculation accuracies of the proposed three
algorithms are compared and verified. Taking the voltage
phase angle and amplitude at bus-2 of the electricity network,
the flow rate of pipe-2, and the supply temperature at node-2
of the heating network as examples, the CIs obtained by dif-
ferent algorithms are shown in Table 1. Method I, Method II
and Method III refer to the AA&IA-based IPEF algorithm,
the IS&IA-based IPEF algorithm and the IA-based IPEF
algorithm. The above CIs are used to obtain the analytical
expressions of PDF or CDF intervals of state variables by
the interval Gram-Charlier expansion. Then, the upper and
lower bounds of the PDF or CDF curves of state variables
can also be obtained. For the above state variables, the upper
and lower bounds of the CDF curves are compared with the
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TABLE 1. Each order CI of several state variables.

results of the DMC method, and they are shown in Fig. 4.
For each state variable, the upper and lower bounds of its
CDF curves of DMC method are obtained as follows: for
each outer-layer sampling value of the distribution parame-
ters, a CDF curve is obtained, and the CDF curve cluster is
obtained by multiple outer-layer sampling values. The solid
red lines in the figure are the upper and lower bound lines
of the CDF curve cluster obtained by the DMC method. The
blue dashed lines, the yellow dash-dot lines and the green
dotted lines are the upper and lower bounds of the CDF curves
obtained by Method I, Method II and Method III.

To further compare the calculation results of Method I,
Method II and Method III, the cumulants of the state vari-
able obtained by the traditional cumulant method without
considering the uncertainties of the distribution parameters
(the parameters are all set as the central values of the inter-
vals) are used as base values. The per-unit interval widths
of the CIs in Table 1 are calculated, and then the average
per-unit interval width each order CI are calculated and
shown in Table 2. Obviously, the average per-unit interval
widths of 2nd–7th order CIs of the state variables obtained
by Method III are significantly larger than those obtained
by Method I. And the average per-unit interval widths of
CIs obtained by Method II are between those obtained by
Method I and Method III. As the order increases, the interval
extension of Method II and III increases rapidly.

The interval extension of the CIs will result in the interval
extension of the CDF interval. In Fig. 4, it can be clearly
seen from the CDF interval bounds obtained by Method III
that Method III has an obvious extension problem compared
to the DMC method, and it has larger errors than Method I.
The CDF interval bounds obtained by Method I are very
close to the results of the DMCmethod. In addition, although
Method II can also address the interval extension prob-
lem, it is less effective than Method I. Therefore, the inter-
val extension problem is well addressed by the proposed
AA&IA-based IPEF algorithm.

B. COMPARISON OF AVERAGE ROOT MEAN SQUARE
To quantify the calculation accuracies of the proposed algo-
rithms, the traditional average root mean square (ARMS)
index is improved, and the interval ARMS indexes suitable

for the IPEF algorithm are proposed, namely the lower bound
index ARMSL and the upper bound index ARMSU. The
calculation steps are as follows:

1) Apply the traditional cumulant method without consid-
ering the distribution parameter uncertainties to obtain
the mean µX and variance σX of the state variable X .

2) N equal division points are sampled in the interval [(µXi
−3σXi), (µXi + 3σXi)] of X , N = 40 in this paper.

3) The ARMSL and ARMSU of X can be obtained by the
following formulae.

ARMSL

=

√∑N

i=1
(CDFIPEF.L(i)− CDFDMC.L(i))2/N ,

(48)

ARMSU

=

√∑N

i=1
(CDFIPEF.U(i)− CDFDMC.U(i))2/N ,

(49)

where CDFIPEF.L(i) and CDFIPEF.U(i) are the i-th sampling
values of the lower and upper bounds of the CDF interval
obtained by the proposed IPEF algorithm. Obviously, i =
1, 2, 3 . . .N . CDFDMC.L(i) and CDFDMC.U(i) are the i-th sam-
pling values of the lower and upper bounds of the CDF curve
cluster obtained by the DMC method.

The ARMSL and ARMSU of the above four state variables
withMethods I, II and III are calculated from Fig. 4, as shown
in Table 3. Similarly, the ARMSL and ARMSU of all the state
variables in the CCHP-CMG with Methods I, II and III are
calculated, and the statistical results are shown in Table 4.
For the variables of the electricity network, the ARMSL and
ARMSU of Method I are very small: the mean values are
less than 0.3%, and the maximum is only 0.609%. For the
variables of the cooling/heating network, the ARMSL and
ARMSU of Method I are still small: the mean values are
less than 0.6%, and the maximum is only 0.879%. How-
ever, the ARMSL and ARMSU of Method III are obviously
larger than those of Method I: the mean values of errors are
2.5–6%, and the maximum error is 11.087%. The ARMSL
and ARMSU of Method II are between those of Method I
and Method III. Therefore, for each type of state variables
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FIGURE 4. CDF Intervals of several state variables.

in the IPEF calculation of the CCHP-MCG, Method I has
high calculation accuracy, whereas Method III has relatively
large errors. Method II is less effective than the Method I in
addressing the interval extension problem. To further improve

TABLE 2. The average per-unit values of the interval width of each
order CI.

TABLE 3. The ARMSL and ARMSU of several state variables in Figure 4.

TABLE 4. Statistics of the ARMS indexes of Methods I, II and III.

the calculation accuracy, the number of interval subdivisions
must be increased, but it will greatly increase the calculation
burden. Thus, Method I performs best in solving the IPEF
problems.

Meanwhile, compared with the electricity network,
the mean and maximum values of the error index of the
cooling/heating network are obviously larger than those of the
electricity network. This is because the energy flow equations
of the cooling/heating network are more complicated and
more nonlinear.

C. IPEF CALCULATION CONSIDERING THE CORRELATION
AND ANALYSIS OF THE RESULTS
In this section, the correlation of node power is considered,
and the calculation accuracy of the AA&IA-based IPEF algo-
rithm considering the correlation (i.e., Method IV) is verified.
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It is assumed that the correlation coefficients of different
node load power and different node solar irradiances are
0.6 and 0.8, respectively.Method IV and theDMCmethod are
applied to solve the IPEF problem. In the sampling process of
the DMCmethod, the Nataf method is used to obtain relevant
samples [14], [15]. With the results of the DMC method as a
reference, the errors of the results ofMethod IV are calculated
and shown in Table 5. It can be seen that all the mean values
of the errors of Method IV are less than 0.5%, and all the
maximum values are only about 1%. Therefore, the proposed
AA&IA-based IPEF algorithm considering the correlation of
node power has high calculation accuracy.

TABLE 5. Statistics of operation errors of Method IV.

D. INFLUENCE OF DIFFERENT PV/PT PENETRATIONS ON
THE ACCURACY OF IPEF CALCULATION
With the results of the DMCmethod as a reference, taking the
voltage phase angle and amplitude at bus-2 of the electricity
network, the flow rate of pipe-2, and the supply temperature
at the node-2 of heating network as examples, the calculation
errors of Method IV for the CCHP-CMG with different PV
or PT penetrations are shown in Tables 6 and 7.

TABLE 6. Errors in cases with different PV penetrations.

It is observed that with the increase of PV/PT penetration,
the calculation errors of Method IV also increase, but the
extent of increase is relatively small. When the PV pen-
etration reaches 50%, the calculation errors are still less
than 0.4%. The reasons for the increase in errors are as
follows: (1) The proposed IPEF algorithm is based on the
linearized energy flow equation, so the linearization error
will increase with the increase of PV or PT output fluc-
tuation; (2) Gram-Charlier expansion causes errors in the

TABLE 7. Errors in cases with different PT penetrations.

calculation of non-normally distributed random variables of
PV or PT power output, and the series expansion errors will
also increase with the increase of PV or PT output fluctuation.
Therefore, the higher the PV or PT penetration, the bigger
the fluctuation of PV or PT output, and the greater the
errors.

E. INFLUENCE OF DIFFERENT CORRELATIONS ON THE
ACCURACY OF IPEF CALCULATION
With the results of the DMC method as a reference, tak-
ing the same state variables in Section VI.D as examples,
the calculation errors of Method IV for the CCHP-CMG
considering different correlation coefficients of load power
and solar irradiance are shown in Table 8. It is shown that as
the correlation increases, the errors of Method IV are close.
When the correlation coefficients of load power and solar
irradiance both reach 0.9, the errors of voltage amplitude and
angle and pipeline flow rate are less than 0.25%, and the
temperature error is less than 0.5%. Combining the results in
Sections VI.D and VI.E, the proposed AA&IA-based IPEF
algorithm considering the correlation has high calculation
accuracy, and its calculation errors remain at a small value
with different correlations of node power.

TABLE 8. Comparison of errors in different correlations.
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TABLE 9. Comparison of computation time.

F. COMPARISON OF COMPUTATION TIME
The mean computation times of Methods I, II, III and IV
and the DMC method are calculated in the cases with differ-
ent PV/PT penetrations and different correlation coefficients,
and the results are shown in Table 9. Compared with
Method III, although the computation time of Method I
is slightly increased, it can effectively address the interval
extension problem in Method III and has higher calcula-
tion accuracy. Method II requires dividing the interval into
subintervals and repeating the interval calculation process.
Therefore, the calculation time of Method II is significantly
higher than those of Methods I, III and IV, and this method
is less effective in addressing the interval extension prob-
lem. The computation time of Method IV is a little higher
than Method I, since it considers the correlation of node
power. Moreover, the calculation time of Method IV is only
0.00081% of the calculation time of the DMCmethod, which
has much higher calculation efficiency.

VII. CONCLUSION
In this paper, an AA&IA-based IPEF algorithm of a
CCHP-CMG considering the interval uncertainties of distri-
bution parameters of node power random variables is pro-
posed. It uses AA to address the interval extension problem in
the IA-based IPEF algorithm and has good calculation accu-
racy. Moreover, by constructing the correlation conversion
matrixes, the correlation of node power can be considered
in the proposed IPEF algorithm. The calculation results of
the case study show that the proposed AA&IA-based IPEF
algorithm considering the correlation can obtain accurate
CDF curve fluctuation intervals of the state variables, with
the results of the DMC method as a reference. The algo-
rithm also has high calculation accuracy with different PV/PT
penetrations and different correlations of node power. It has
much higher calculation efficiency than the DMC method.
In addition, the proposed AA&IA-based IPEF algorithm can
also be applied to the traditional probability power flow
calculation of power grid considering the interval uncertain-
ties of distribution parameters of the node power random
variables.

The energy flow equations related to heating/cooling net-
works are highly nonlinear, which will bring certain errors to
the IPEF calculation results in cases with large fluctuations of
uncertain variables. Therefore, dealing with the highly non-
linear characteristics of heating/cooling networks to improve
the accuracy of the IPEF calculation of a CCHP-CMG is a
possible direction for future research.

TABLE 10. Parameters of pipes in heating/cooling network.

TABLE 11. Load power at nodes in the heating/cooling network.

TABLE 12. Load power at buses in the electricity network.

APPENDIX
The data of electricity network and heating/cooling networks
are shown in Table 10 to 13. The details and other parameters
of the energy flow calculation method of the network can be
referred to the [23].
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TABLE 13. Parameters of the branch in the electricity network.
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