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ABSTRACT Extreme LearningMachine improved the iterative procedures of adjustingweights by randomly
selecting hidden neurons besides analytically determining the output weights. In this paper, the basic ELM
neural network was enhanced with a simplified network structure to achieve regression performance. Next,
to solve the pattern classification, a hybrid system was proposed which integrated the ELM neural network
and MAS models. A MAS model is then designed with a novel trust measurement method to combine
ELM neural networks. Firstly, ELM hybrid with Single Input Rule Module (SIRM-ELM) was designed.
There was only a single input connected to the rules, where the rules were the hidden neurons of ELM
and each represented a single input fuzzy rules. Results showed that the SIRM-ELM model was better
than Support Vector Machine and traditional ELM. Secondly, an extreme learning machine based multi
agent systems (ELM-MAS) was designed to improve ELM’s capability. Its first layer was made up of at
least one ELM where ELM acted as an individual agent, whereas another layer was made up of a single
ELM acting as the parent agent. Lastly, Certified Belief in Strength (CBS) method was applied to the ELM
neural network to form ELM-MAS-CBS, using the reputation and strength of individual agents as the trust
measurement. The assembly of strong elements related to the ELM agents formed the trust management that
allowed the improvement of the performance in MAS using the CBS method. Both of the developed models
were evaluated on its application on the power generation system. The test accuracy rate of both models
for circulating water systems was shown to be comparable to other algorithms. In short, the developed
models had been verified using benchmark datasets and applied in power generation, where the results were
satisfactory.

INDEX TERMS Certified belief in strength, extreme learning machine, multi agent system, single input rule
module, power generation system.

I. INTRODUCTION
Feedforward Neural Networks (FNNs) is the most common
approach for Artificial Neural Networks (ANNs) which is
being used to recognize patterns. They are capable of han-
dling non-linear as well as noisy data (e.g. data gathered from
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actual environments). Unfortunately, the downside of FNNs
is its learning speed, due to:
(i) The slow error back-propagation (BP) and other

gradient-based learning algorithms [1]–[3] being
employed to train the neural networks, and

(ii) Its parameters are adjusted repeatedly using gradient-
based learning algorithms.

In terms of pattern recognition, Multilayer Percep-
tron (MLP) [4], [5] and Radial Basis Function (RBF)
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networks [4], [6] are both superior. The MLP network was
made up of a non-linear transformation of combined sigmoid
functions of hidden neurons and can be used to recognize
patterns. In the case of the RBF network, it solved prob-
lems by combining non-linear semi-parametric functions, for
instance, the Gaussian kernel function. Nevertheless, trial-
and-error or a set of cross validation is needed to pre-
define the number of kernel functions of RBF and hidden
neurons of MLP, which might very well be a lengthy pro-
cess. The training process was also lengthened due to the
need to train the datasets so that it was compatible with the
network.

Based on literature, RBF-based sequential learning model
is fast becoming favored in terms of pattern recogni-
tion. Examples included the Resource Allocation Network
(RAN) [7], Growing and Pruning RBF (GAPRBF) [8],
Minimum Resource Allocation Network (MRAN) [9],
Generalized Growing and Pruning RBF (GGAPRBF) [10]
and Resource Allocation Network with Extended Kalman
Filter (RANEKF) [11].

There has been much work being done to improve BP
algorithms to eschew the local minima according to the
better selection of activation function, dynamic variation of
momentum and learning, and cost function. Simple Adap-
tive Momentum (SAM) can improve the convergence rate of
BP [12]. The momentum coefficient was scaled giving to the
likenesses shared between the changes in weights for the pre-
vious and current iterations, with lower computational over-
heads relative to conventional BP. Mitchell et. al. adjusted
the momentum coefficient differently by accounting for the
weights in the Multi-layer Perceptrons (MLP) in 2008. Such
an approach proved to be superior to that of SAM. In 2011,
Gradient Descent BP (GDAM) was proposed to increase its
overall efficiency [13].

Despite the reported improved versions of the BP
approaches, having to repetitively and iteratively adjust
weights during training to accurately model a specific
learning task of the training samples remains a challenge.
In order to circumvent this [14]–[16], Extreme Learning
Machine (ELM) is a new learning algorithm which was pro-
posed by Huang et al. (2006a). In ELM, a single hidden layer
feedforward neural network (SLFN) improved the iterative
procedures of adjusting weights by randomly selecting hid-
den neurons in addition to calculating the output weights of
SLFNs. Theoretically, ELM reported an excellent generaliza-
tion performance at exceptionally quick learning speeds.

Most users preferred that the input samples were accurately
classified. The output included an estimate of the classifica-
tion strength. The possibility that the prediction was accurate
compels the system that they can rely on it andmake informed
decisions [17]–[19].

Intelligent agents are regarded as a computer intelligence
paradigm. Multi-Agent Systems (MAS) are widely appli-
cable, namely in decision support [20], navigation [21],
industrial steel processing [22], and power systems [23].
In this paper, MAS was studied as an approach that can be

used to ensemble ELM networks, where each ELM acted as
individual agent, and MAS structure merged with the entire
predictions of ELM to create a classification system that
performed well.

In MAS, a number of models can be used to describe agent
links, such as Rasmussen, Pejtersen, & Goodstein (1994)’s
decision ladder model and Bratman (1987)’s Belief, Desire,
and Intention (BDI) model. In this paper, two models which
are Haider, Tweedale, Urlings, and Jain (2006)’s Trust, Nego-
tiation, and Communication (TNC), and Tweedale and Cutler
(2006) were examined to develop aMASmodel. The primary
element in the TNC model was trust measurement. Due to
the fact that trust was subjective, we need to investigate
methods that can be used for trust computations to render it
an objective quantity.

The main objective was to design, develop, and enhance
ELMbased neural networkmodels that capitalized the advan-
tage of ELM while avoiding their inherent limitation. The
sub-objectives of this work included:
(Case 1) Enhancement of the existing ELM neural network

for achieving regression performance with simpli-
fied network structures;

(Case 2) Propose of a hybrid system integrating the ELM
neural network and MAS models for solving pat-
tern classification; and,

(Case 3) Design of a MAS model with a novel trust
measurement method to combine ELM neural
networks.

A standard ELM is presented in this paper which hybrid
with a simplified network structure and MAS model. These
proposed models are the novel technique to aim to achieve
better results.

A. PROPOSED WORK
To achieve the main objective, the existing ELM neural net-
work was enhanced with a simplified network structure to
achieve regression performance. Next, to solve the pattern
classification, a hybrid systemwas proposedwhich integrated
the ELM neural network and MAS models. A MAS model
is then designed with a novel trust measurement method
to combine ELM neural networks. Each case is tested with
application to testing its capability.

II. METHODS
A. (CASE 1) EXTREME LEARNING MACHINE WITH SINGLE
INPUT RULE MODULE (SIRM-ELM)
To assess ELM, this section details the proposal of a novel
unprecedented technique in ELM ideology for regression
problems, which was ELM-based model using ELM hybrid
with Single Input Rule Module (SIRM), denoted as SIRM-
ELM. In SIRM-ELM, there was only a single input that
connected to rules, where each of the hidden neurons of ELM
represented a single input fuzzy rule. Hence, the number
of hidden neuron of ELM determines the number of fuzzy
rules.
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FIGURE 1. Overview of SIRM-ELM; (a) General of SIRM-ELM Model; (b) General details for each hidden neurons in Figure 1(a).

Conventionally, when the ‘‘if-then’’ rules of the fuzzy
inference method were used all the input and output items
were assigned to antecedent and consequent parts
respectively. Nevertheless, the major dilemma was that
the numbers of the fuzzy rules were kept increasing until
the system and arrangement of the rules became compli-
cated [24]. Therefore, Yubazaki [25]–[31] developed an
enhanced SIRM connected type fuzzy inference method that
consociates the fuzzy rules module outputs significantly.
The areas that SIRM method was applied to include the
control of anti-swing and positioning for the overhead trav-
eling crane [25], the control to stabilize inverted pendulum
systems [27]–[29], the control of the 1st and 2nd order
lag system with dead time [26], [31], non-linear function
identification [31], and others, of which decent results were
acquired [24].

The assumption is that a system consists of n input source
and one output source. However, the system can also be
extended with plural output sources. This is the basic, with

n input source for SIRM:

SIRM − 1 :
{
Rj1 : if x1 = Aj1 then 1u1 = C j

1

}mi
j=1
,

. . . . . .

SIRM − i :
{
Rji : if xi = Aji then 1ui = C j

i

}mi
j=1
,

. . . . . .

SIRM − n :
{
Rjn : if xn = Ajn then 1un = C j

n

}mn
j=1

(1)

In Equation (1), each SIRM independently corresponded
to n input sources. The SIRM-i, where the i refers to ith input
source, Rji is the jth rule in the SIRM-i, xi refers to the ith

input source variable in the preceding section, and 1ui is the
variable in the following part of the SIRM-i. Aji and C

j
i are the

membership functions of the xi whereas 1ui is the jth rule in
the SIRM-i. Additionally, i = 1, 2, . . . , n is the index number
of the SIRM whereby j = 1, 2, . . . ,mn is the index number
of the rules in the SIRM-i.
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Fig. 1 showed the structure of SIRM-ELM, with the steps
to train the data as shown below. Refer to Fig. 1 for the details
definition of variables and parameters.
Step 1: Haphazardly set the input weights aji, as well as

bias, bji (for i = 1, 2 . . . ,N whereas for j = 1, 2, 3) of hidden
neurons. Take into account that aji and b

j
i are parameters of

membership function for SIRM, Aji. The weights are gen-
erated based on αD − ω, where D is uniform distribution
function that randomly generates a number between 0 to 1,
α and ω are the parameters. By default, α = 2, ω = 1. As the
results, the aji and b

j
i are in the range of −1 to +1.

Step 2: For the training pair (xpi, tp) where xpi is ith

feature of pth training pair and tp is target output (for
p = 1, 2, . . . ,P). Determine the hidden layer output matrix
H using the membership function µ(xpi,A

j
i). For simplicity,

the membership function can be denoted as µjpi

µ(xpi, a
j
i, b

j
i)

=
1

1+ exp{−(ajixpi + b
j
i)}

(2)

H=


µ1
11 µ

2
11 µ

3
11 µ

1
12 µ

2
12 . . . µ

1
1N µ2

1N µ3
1N

µ1
21 µ

2
21 µ

3
21 µ

1
22 µ

2
22 . . . µ

1
2N µ2

2N µ3
2N

...
...

...
...

...
...

...
...

...

µ1
P1 µ

2
P1 µ

3
P1 µ

1
P2 µ

2
P2 . . . µ

1
PN µ

2
PN µ

3
PN


P×3N

(3)

Step 3: The output weights, β, were computed. Since it
is a high possibility that H is a non-symmetrical matrix,
the inverse matrix cannot be resolved. To circumvent this
problem, a Moore-Penrose pseudo inverse matrix method
is utilized, hence work out the output weights of β by the
formula below,

β = (HTH)−1HTT, (4)

where T is target output matrix, i.e.,T = [ t1 t2 . . . tN ]T

Step 4: After the output weights of SIRM-ELM were cal-
culated, prediction of a set of new and unlabeled samples z
can be computed, i.e., λ is the membership function, h is the
hidden layer whereby y is the prediction output.

λ(zqi, a
j
i, b

j
i)

=
1

1+ exp{−(ajizqi + b
j
i)}

(5)

h=


λ111 λ

2
11 λ

3
11 λ

1
12 λ

2
12 . . . λ

1
1N λ21N λ31N

λ121 λ
2
21 λ

3
21 λ

1
22 λ

2
22 . . . λ

1
2N λ22N λ32N

...
...

...
...

...
...

...
...

...

λ1Q1 λ
2
Q1 λ

3
Q1 λ

1
Q2 λ

2
Q2 . . . λ

1
QN λ

2
QN λ

3
QN


Q×3N

(6)

y= hβ (7)

where q = 1, 2, . . . .Q and Q is the number of test samples.

Step 5: After compute the output of ELM for testing sam-
ples, determine the root mean squared error (RMSE), i.e.,

RMSEtest =

√√√√∑Q
q=1 (yq − dq)

2

Q
(8)

where yq and dq were prediction and actual output respective
to zq.

The capability of SIRM-ELM was applied to the NOx
emission of power generation plant.

1) REAL-WORLD APPLICATION: NOX EMISSION OF POWER
GENERATION PLANT
Nitrogen occurred naturally in the atmosphere as an inactive
gas. In addition, our atmosphere contains just about 78% N2
by volume in the air. The NOx was referring to nitrogen
oxides but mostly include nitrogen monoxide, also identi-
fied as nitric oxide, NO as well as nitrogen dioxide, NO2.
There were also others in the family, including N2O, N2O4
and N2O5.
The presence of atmospheric NOx posed direct and indirect

effects on human health and ecosystems, i.e. animals and
plants, in the environment. NOx reacted with components
such as water, oxygen and other chemicals to form smog and
acidic pollutants which leads to the formation of acid rain.
In turn, acid rain, together with dry deposition and cloud, may
cause damages and deterioration to cars and buildings.

NOx is mainly released during the combustion process
of fossil fuels like coal, oil and natural gas. According
to European Environment Agency (EEA) technical report
(1990 - 2013), 21% of the NOx gas emissions in the European
Union were from energy production and distribution, which
was approximately 1,600 kilotonne. However, the growth of
power generation industries was expected to be increasing by
18.7 gigawatts (GW) in the coming years, 2016 - 2018, due to
the price and availability of natural gas. Hence, the prediction
of NOx emission is vital for the power generation sector and
the issue should be taken seriously.

For real-world application in this study, the NOx emis-
sion of an open cycle gas turbine in a power generation
plant (located at Port Dickson, Malaysia) had been investi-
gated [32]. The objective was the development of a neural net-
work model to predict NOx emission. There were 150 input
attributes taken from the parameters of the power generation
plant such as the loading of gas turbine, temperature, pres-
sure, etc. The quantity of NOx (in ppm) emitted from the gas
turbine was the targeted output.

B. (CASE 2) HYBRIDIZING ELM-MAS (EXTREME
LEARNING MACHINE AND MULTI AGENT SYSTEMS)
Extreme Learning Machine (ELM) has been well recognized
as a more effective learning algorithm with better general-
ization and faster learning speed, in comparison to the con-
ventional learning methods [33]–[39]. In addition, ELM is
well-known for its capability to produce universal approx-
imation using input weights and haphazard biases [40].
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In essence, the link among the output and hidden layers
are studied using primarily the input weights with optional
hidden neurons.

ELM is tremendously effective and inclined towards global
optimum in divergence to the CFNN (conventional feedfor-
ward neural network), according to Huang et al. [41], [42].
Moreover, ELM is capable to attain the utmost generalization
bound of the CFNN, in which each parameter is learned with
activation functions that are usually exploited [86]. In terms
of efficiency and generalization, ELM has shown enhanced
accomplishments compared to the traditional FNN [33]–[39].
Besides, ELM is applicable to other fields and not limited
to chemical processes [43], hyperspectral images [44], action
recognition [45], biomedical analysis [46], [47], power sys-
tems [48], system modeling [49], [50].

Currently, the focus of the research on ELM was to assim-
ilate each independent prediction of some ELMs to create an
optimum output using an ensemble model [51]–[55]. This
approach has been adopted as evidenced in Multi Agent
System (MAS) particularly [56]. MAS has been a center of
attention in modern years as it has been effectively func-
tional by researchers with extensive applications in different
sectors including health care [57]–[59], e-Commerce [56],
[60]–[62], military support [63], [64], knowledge manage-
ment [65]–[68], decision support [69]–[72], as well as control
systems [73]–[76]. Fig. 2 showed the common structure of
MAS, in which the ground platform consists of a group of
ELMs which are the individual agents. In general, the ulti-
mate combination module, which consisted of the outcomes
of ELM’s individual agents delivered to the corresponding
parent agent, formed the structure.

The common exercise for meta-learning is used to combine
the outcomes of various learners. It is interpreted as knowl-
edge is learned by at least a learner [77], [78]. The model was
developed by several ELMs which act as the hidden neurons,
and the outcomes of hidden neurons learned from meta-
learner. Experimental results and theoretical analysis based
on a number of studies using benchmark regression and arti-
ficial datasets which were trained by several ELMs, provide
good performance at the expense of a lower computational
rate [79]. TheMeta-ELM [79] was a special design with ELM
where ELMs as hidden neurons. Nonetheless, an ELM-MAS
was designed from another perception. In this section, ELM-
MAS had two layers of full ELMs: consisted of at least an
ELMs where every ELM was reflected as an individual agent
in the first layer; consisted of a single ELM and acted as
the parent agent in the second layer. Therefore, this double
layers’ arrangement of the proposed ELM-MAS resembled a
classic MAS as shown in Fig. 2.

As shown in Fig. 3, depending on the type of activation
function it utilized, an ELM can either be a feedforward
or RBF network with a sophisticated learning algorithm.
A series of N training samples (with an individual target
output vector as well as input vector), tj ∈ RC (C is the
number of classes) and (xj, tj), i.e. xj ∈ RM (M is the number
of input attributes), consisting ofL number of hidden neurons,

FIGURE 2. A general structure of MAS (Multi Agent System).

FIGURE 3. Architecture of an ELM (Extreme Learning Machine).

were utilized to train an ELM. Five ELMs acted as individual
agents in this case and had different random input weights
respectively. The output of every ELMk (for k = 1, 2, . . . , 5)
shown in Fig. 4, in response to xj is

ELMk (xj) =
L∑
i=1

βkicG(a
k
i , b

k
i , xj) = tj

for j = 1, . . . ,N and for c = 1, . . . ,C (9)

where aki is the bias and bki is input weights of the hidden
neurons, βki is the output weights, whereas G(aki , b

k
i , xj) is

the output of the ith hidden neuron given the input vector xj.

G(aki , b
k
i , xj) =

1

1+ exp{−(aki · xj + b
k
i )}
, bki ∈ R (10)

G(aki , b
k
i , xj) = exp{−bki

∥∥∥xj − aki
∥∥∥2}, bki ∈ R

+ (11)

Equations (10) and (11) respectively revealed the definition
of the G(aki , b

k
i , xj) for additive sigmoid hidden neuron as

well as RBF hidden neuron.
The training procedures were given as followed. Stage 1:

Assigned the input weights aki and bki randomly for
k = 1, 2, . . . , 5 and i = 1, . . . ,L.
Stage 2: Computation of the hidden layer output matrix for

ELMk , Hk, as follows where k = 1, 2, . . . , 5.

Hk
=

 G(ak1, b
k
1, x1) . . . G(akL , b

k
L , x1)

: . . . :

G(ak1, b
k
1, xN ) . . . G(akL , b

k
L , xN )


N×L

(12)
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FIGURE 4. Design of ELM-MAS with parent agent and several individual agents.

Stage 3: Calculation of the βk , output weights of ELMk .
As for the reason that H is probably a non-symmetrical
matrix, the inverse matrix can’t be solved. Therefore,
a Moore-Penrose pseudo inverse matrix technique was
embraced to evade this problematic, which was represented
by the following calculation,

βk =
(
(Hk )T (Hk )

)−1
(Hk )TT, (13)

where targeted output vectors are T = [t1, . . . , tN ]T .
Stage 4: After the output weights of ELMk were calcu-

lated, the outputs of ELMk were computed using the training
samples.

yk = ELMk (xj) =
L∑
i=1

βkicG(a
k
i , b

k
i , xj)

for j = 1, . . . ,N and for c = 1, . . . ,C, (14)

Stage 5: Randomly assigned the input weights for parent
ELM, i.e., qi and pi (i = 1, . . . ,L1), where L1 is the number
of hidden neuron of parent ELM.
Stage 6: Computation of the S, hidden layer output matrix

for parent ELM, shown as follow

S =

 G(p1, q1,w1) . . . G(pL1 , qL1 ,w1)
: . . . :

G(p1, q1,wN ) . . . G(pL1 , qL1 ,wN )


N×L1

(15)

where wj is the combined outputs of ELMk (for k =
1, 2, . . . 5) in response to xj, i.e., wj = [ y1j y2j y3j y4j y5j ],
ykj ∈ RC , and wj ∈ R5C .

Stage 7: Used the output of ELMk to compute the output
weights of parent ELM, α by the calculation beneath,

α =
(
(S)T (S)

)−1
(S)TT, (16)

whereT = [t1, . . . , tN ]T is the corresponding targeted output
vectors.
As soon as every sample were trained with Stage 1 until

Stage 7, the ELM-MAS can be utilized for validation of an
unknown z, input vector based on the ak , bk , βk , p, q and α
i.e.,

hk = [G(ak1, b
k
1, z) . . . G(akL , b

k
L , z) ]1×L (17)

yk = hkβk (18)

s = [G(p1, q1, v) . . . G(pL , qL , v) ]1×L1 (19)

y = sα (20)

where hk, hidden layer and yk, output layer of ELMk ,
v = [ y1 y2 y3 y4 y5 ] is the combined outputs of the
ELMk in response to z, whereas s and y are hidden layers
of final output of the validation respectively.

In addition to Equations (10) & (11), there were some
activation functions that had been used in this case, i.e.,

G(aki , b
k
i , xj) = exp{−

∥∥∥aki · xj + bki ∥∥∥2}, bki ∈ R (21)

G(aki , b
k
i , xj) = exp{−(aki · xj + b

k
i )}, bki ∈ R (22)

G(aki , b
k
i , xj) = exp{−bki

∣∣∣xj − aki
∣∣∣}, bki ∈ R

+ (23)

The proposed Meta-ELM [77] and ELM-MAS have simi-
lar comparable structure. Nevertheless, they had alterations
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FIGURE 5. The structure of CWS (Circulating Water System).

in the way they handled training datasets, and also subtle
distinctions in structural representation as shown below.

1) Meta-ELM partitioned the full training dataset into
some random subsets and each ELM (hidden neurons)
learned a subset. On the other hand, all ELMk (individ-
ual agent) of the proposed ELM-MAS trained by the
same full dataset (training).

2) The hidden neurons in Meta-ELM were ELMs.
Whereas for ELM-MAS, the individual agents were
ELMk .

3) A three layers’ neural network for the Meta-ELM.
However, parent ELM and ELMk of ELM-MAS had
six layers of neural network (a complete three layers
structure).

1) REAL-WORLD APPLICATION: NOX EMISSION OF POWER
GENERATION PLANT
Fig. 5 revealed a CWS (CirculatingWater System) in a power
generation plant belonged to TNB (Tenaga Nasional Berhad)
in Penang, Malaysia [80]–[82]. The system contained turbine
condensers between the outfall, the seawater’s inlet where the
water was directed back in the sea, drum strainer and piping.
In CWS, turbine condenser was the major component that

instantaneously functioned in the elimination of heat from
the LPS (Low-Pressure Steam) plus the conservation of the
turbine backpressure at the lowest possible yet constant level.

2) REAL-WORLD APPLICATION: GAST GOVERNOR
The gas turbine monitoring and control were frequently intro-
duced by the Energy Management Systems [83]. In addi-
tion, the energy control center was commonly utilized by
these computer-based systems [84], [85]. During steady-state
operation, gas turbine application software and other analysis
software were being presented into the Energy Management
Systems to examine and forecast the behavior of gas tur-
bines [86]. Even though this software was an influential
tool, it’s capabilities to support the operating engineers in
creating the finest judgments were restricted in the period
when unexpected otherwise unplanned approaches of 2 tasks
were discovered. The triggers of abnormal modes in the
system operation were network faults, frequency deviations
or either reactive and active power imbalances in most cases.
Therefore, system shutdown (complete or partial) can be
occurred in an unintentional task [86]. As a consequence,
experienced operation engineers will be the one who is mak-
ing the judgements for the restoration of the gas turbine
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FIGURE 6. GAST, The governor model.

under these emergency situations. Therefore, the knowledge
of experienced operation engineers as well as the conven-
tional application software are both essential for balancing
reactive and active power, efficiency in diagnosis of network
faults, and network restoration [86]. Hence, developments of
efficient and fast techniques of forecasting unusual system
behavior are essential.

From the record, Malaysia has experienced numerous
large-scale blackout occurrences for the past years [84], [85].
In 2005, a number of gas turbine plants were consecutively
tripped out unconsciously and followed with a frequency fall
of about 1.5 Hz which subsequently led to depletion in a
total of 5760 MW. Therefore, some studies were conducted
to witness how the combined cycle power plants react with
the drops in frequency [87], [88]. These gas turbine models
developed by Rowen [89] and Mello et al. [90] to replicate
the real-world plants, which were then used to determine
the reactions of the frequency variations. However, there has
not been a detailed analysis to study the behavior of plant
variables during frequency drops.

The vital dynamic structures of industrial gas turbines driv-
ing generators connected to electric power systems indicates
by the governor model (GAST). Speed variances from nom-
inal were planned to be minute (approximately five percent).
Fig. 6 showedGAST, which contained of a combustion cham-
ber’s time constant, T2, as well as a load-limiting feedback
path, in addition a forward path with governor time constant,
T1. The parameter that adjusted the gain of the load-limited
(AT) feedback path is the constant, KT. T3 indicated the time
constant of the exhaust gas measuring system. Lastly, the load
limit was susceptible to turbine exhaust temperature.

C. (CASE 3) IMPROVED HYBRIDIZING ELM BASED MULTI
AGENT SYSTEM USING CERTIFIED BELIEF IN STRENGTH
(ELM-MAS-CBS)
This section presented an application of ELM in the MAS.
This model is named ELM-MAS-CBS (Extreme Learning
Machine in Multi Agent Systems) where Certified Belief
in Strength (CBS) acted as a trust measurement technique.
The strength and reputation of the ELM neural network

FIGURE 7. Summary of ELM-MAS-CBS model.

(individual agents of MAS) are used by the CBS method
to develop the trust measurement. With this method, strong
elements that were linked to the individual agents (ELM)
were gathered to develop the trust measurement to improve
on MAS.

As the information in [53], rejection and recognition accu-
racy rates based trust measurement had been suggested. There
were 2 groups utilized where the primary consisted of three
modified FMM (Fuzzy min-max) agents whereby another
group consisted of three modified Fuzzy ARTMAP (FAM)
agents. Better performances were reported in the model as
compared to other tactics stated in. On the other hand, there
was one more trust measurement tactic suggested which
based on Bayesian formalismwith FMMMAS [91]. To attain
the trust measurement, the FMM in the model was used as
a learning agent in MAS and tailed by combination with
Bayesian formalism. The results in proposed model showed
improvement as compared to other tactics [91].

A technique called Certified Belief in Strength (CBS) is
the latest development of MAS model for trust measurement,
which was based on the reputation and strength of individual
FMM based agents [91]. Consequently, trust was the strong
element related to the FMM agents that enabled the CBS
technique to increase the performance of the MAS in the
training practice. The result showed that the improvement of
the accuracy rates of the individual agents [91].

Therefore, an extended version of CBS method by using
ELM (Extreme Learning Machine) based MAS (Multi
Agent System) (from now designated as ELM-MAS-CBS).
In Multi-Agent Classifier System for Certified Belief in
Strength (MACS-CBS), it used FMM of several hyperboxes.
In the proposed model, a ‘‘team’’ idea was employed with
individual ELM-based agents.

The Fig. 7 is shown that the ELM-MAS-CBS model con-
sisted of three levels. The bottom level contained a few
individual agents (ELM-based agents); the middle level con-
tained some teams of ELM-based. In addition, the new
approach which is applied the CBS technique into the indi-
vidual ELM-based agents. The final decision is on the last
level and is selected by the Manager from the peak CBS team
as the output. As for this section, the number of agents used
in a team was set as 5 (K = 5), whereby the number of teams
was set as 3 (T = 3). In addition, an ELM-based agent was
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FIGURE 8. The design of of ELM-MAS-CBS model.

designated as ELM tk (for k = 1, . . . ,K , for t = 1, . . . ,T ).
The design of ELM-MAS-CBS is shown in Fig. 8.

The stages of validation and training were as detailed
below.
Stage 1: Randomly allocated the input weights atki and btki .

In the training process, variables run for i = 1, . . .L (where L
is the number of hidden neuron of ELM), for k = 1, 2, . . . ,K ,
and t = 1, ..,T .
Stage 2: Calculated Htk , the hidden layer output matrix

for ELM tk as follows, where xj is the input vector, N is the
number of training samples and G is the activation function.

G(atki , b
tk
i , xj) = exp{−btki

∥∥∥xj − atki
∥∥∥2} (RBF) (24)

G(atki , b
tk
i , xj) =

1

1+ exp{−(atki · xj + b
tk
i )}

(Sigmoid)

(25)

Htk
=

 G(atk1 , b
tk
1 , x1) . . . G(a

tk
L , b

tk
L , x1)

: . . . :

G(atk1 , b
tk
1 , xN ) . . . G(a

tk
L , b

tk
L , xN )


N×L
(26)

Stage 3: Compute β tk , the output weights of ELM tk by
using the following equation,

β tk =
(
(Htk )T (Htk )

)−1
(Htk )TT, (27)

where the respective targeted output vectors,
T = [t1, . . . , tN ]T .
Stage 4: Compute the outputs ELM tk , i.e.,

ytk = ELM tk (xj) =
L∑
i=1

β tki G(a
tk
i , b

tk
i , xj)

where j = 1, . . . ,N (28)

Stage 5: After that calculate for accuracy rates of the
ELM tk as the following equation.

Atk =
N tk

N
× 100% (29)

where Atk and N tk are accuracy rate and number correctly
classified samples of ELM tk .

Stage 6: Calculate the output of ELM tk based on
Equation (28) by using the validation samples.
Stage 7: Set an initial bid coefficient (Cbid ) is 0.01 [91] and

initial strength of CBS for all team is 100 (S= [100 100 100])
[91]. In addition, the strength was in proportion to initial team
bid as follows [92],

Bt = CbidS t (30)

Stage 8: Calculate the trust element, C t by using the val-
idation samples as shown in Equation (31). Determine Ck

by using equation (29) in order to find the accuracy rate of
the agents in each team. After that, the peak accuracy rate of
ELM was selected (designated as ELM tw where the winner
of the team, w) and then indicating its team by inserting into
Equation (31) and then surrender it to the top level which is
the manager layer.

C t
= Cbid (S t + Atw) (31)

Stage 9:Giving to a proposed paper [91], the Equation (30)
act as the penalty and reward to revise the strength using
the Equation (32), where R is reward and P is penalty. If an
agent makes an incorrect prediction, P = Bt while R = 0;
otherwise P = 0 while R = Bt .

S t (new) = S t (now)− P+ R (32)

Stage 10: After S t was revised, therefore both the Bt and
the Atk were also revised using the Equation (30) and (29),
respectively.

The ELM-MAS-CBS can be used for prediction of a newly
arrived and unknown input vector z after all the samples were
trained using Stage 1 to Stage 10.
Stage 11: Load all the btki , a

tk
i , A

tk , β tk , S t , and C t from
the completed training process in Stage 1 till Stage 10. The
variables were ran for k = 1, 2, . . . ,K , for i = 1, . . . ,L, and
t = 1, ..,T in all stages / equations of validation process.
Stage 12: Calculate htk , the hidden layer output matrix for

ELM tk as follows.

htk = [G(atk1 , b
tk
1 , z) . . . G(atkL , b

tk
L , z) ]1×L (33)

Stage 13: Compute the outputs of ELM tk ,

ytk = htkβ tk (34)

Stage 14:The selection of the peak accuracy rates was from
each team (designated as AtU ), and then compute the trust
elements of teams using Equation (35).

C t
= Cbid (S t + AtU ) (35)

AtU = argmax
k

(
Atk
)

(36)

Stage 15: Determine the peak of the C t from all teams
(designated as CV ), where the winner from all teams, V , i.e.,

CV
= argmax

t

(
C t) (37)

Stage 16: Using the Equation (34) to find the final output
of ELM-MAS-CBS, where k = U (winning agent of the
winning team) and t = V (winning team).
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FIGURE 9. Arrangement of algorithm for ELM-MAS-CBS model.

Flowcharts were delineated in Fig. 9 to simplify the proce-
dures taken by the training phase and the validation phase.

The capability of ELM-MAS-CBSwas applied to the CWS
(circulation water systems) and GAST governor for power
generation.

1) REAL-WORLD APPLICATION: CIRCULATING
WATER SYSTEMS
The Circulating Water datasets was explained in (Case 2)
section. Despite the hybridization of ELM and MAS
as described, this section explored the enhancement of

ELM-MAS’s capability in dealing with CWS dataset after
the Certified Belief in Strength was applied on the ELM
neural network, i.e. individual agents of MAS. This means
that the trust measurement was achieved based on strength
and reputation of every agent. To form the trust management,
strong elements associated with the ELM agents were gath-
ered which let the CBS enhanced the capability in MAS.

2) REAL-WORLD APPLICATION: GAST GOVERNOR
The explanation of GAST governor dataset had been used in
the (Case 2, part 2) section.
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III. RESULTS AND DISCUSSION
A. (CASE 1) EXTREME LEARNING MACHINE WITH SINGLE
INPUT RULE MODULE (SIRM-ELM)
The applicability of the SIRM-ELM model was investigated.
Four benchmark regression datasets were obtained from UCI
machine repository, namely Abalone, Balloon, Strike and
Space-ga, to utilize for performance evaluation of SIRM-
ELM. Only addictive Sigmoid hidden neuron (SigAct) was
utilized in the analysis. Table 1 showed the details of the com-
puter and software specifications which was used to perform
all analysis in this paper. The specifications of the datasets
were shown in Table 2.

TABLE 1. Details of Personal Computer and Software Packages.

TABLE 2. Details of Benchmark Regression Datasets.

In all experiments, four benchmark regression datasets
with training and validation samples were calculated
using the train-validation-test technique as suggested by
literature [35].

The number of membership functions of an input attribute
is tested for 1, 2 or 3, (i.e., j = 1, 2, 3) for all the regression
datasets. In addition, the RMSE is based on default range
for aji and bji for all rules (i.e., i = 1, 2 . . . , 3N ). Note
that in SIRM-ELM, the number of fuzzy rule was equiva-
lent to number of hidden neuron of ELM. For each dataset,
the experiments were conducted for 50 times with random aji
and bji and the mean results are documented.
The outcomes of the proposed SIRM-ELMwere also com-

pared to the results of other ELM-based methods. As seen
from Table 3, the RMSE of SIRM-ELM is better when com-
pare with OS-ELM [19], SVM [19] and ELM [1].

TABLE 3. RMSE of SIRM-ELM, ELM, SVM, and OS-ELM.

1) REAL-WORLD APPLICATION: NOX EMISSION OF POWER
GENERATION PLANT
A total of 3,405 data samples had been collected for train-
ing and testing of SIRM-ELM. Out of 3,405 data samples,
2,270 were trained while the balances of 1135 were tested
(Table 4). An experiment is conducted on the testing datasets
for fifty rounds and the mean results were recorded. The
quantity of membership function of an input attribute was
tested for 1, 2 or 3, (i.e., j = 1, 2, 3) and the results (Table 5).

TABLE 4. Details of NOx Emission Datasets.

TABLE 5. Results for NOx Emission of SiRM-ELM Using Differences of
Number of Membership Function.

Based on the results of Table 5, the aji and b
j
i were in default

setting (in Step 1). After the number of membership function
of an input attribute was set as 1, the aji and b

j
i need to be tuned

in different ranges in order to get the lowest RMSE. All the
tuning results were shown in Table 6.

TABLE 6. Results for NOx Emission of SIRM-ELM Using Different Ranges
of Weights.

In the experiment of using ELM, two-third of the data
samples were trained while the remaining one-third were
tested through a validation process to calculate the utmost
applicable number of neurons for L (parent ELM). For the
sigmoid activation function, the training and validation pro-
cesses were set with L = fifty units and after that amplified
by an increase of fifty units. Table 7 showed the details of
the testing processes and the corresponding results based on
the sigmoid activation function. The results showed that the
greatest RMSE obtained was 0.027086.

In essence, this section presented a framework of Extreme
LearningMachine with Single Input RuleModule, whichwas
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TABLE 7. RMSE of NOx Emission for ELM.

deemed a significant innovation in ELM ideology (hereafter
denoted as SIRM-ELM). Adopting Single Input RuleModule
in the ELM hidden layer can be a good alternative to the
commonly used activation function, i.e., Sigmoid (SigAct).
SIRM-ELM had been tested with Sigmoid hidden neuron
using benchmark regression datasets, i.e. Abalone, Balloon,
Strike and Space-ga. The results in Table 3 demonstrated that
OS-ELM [19], SVM [19] and ELM [1] were better in the
proposed model.

Due to the exciting results in the benchmark studies, the
SIRM-ELM was used and applied to the NOx emission in
power generation plant.

B. (CASE 2) HYBRIDIZING ELM-MAS (EXTREME
LEARNING MACHINE AND MULTI AGENT SYSTEMS)
In the following section, the performance of the ELM-MAS
was tested using two benchmark datasets (namely Image
Segmentation and Satellite Image). The description of the
datasets was displayed in Table 8 [79].

TABLE 8. Description of two Benchmark Datasets.

Referring to the model proposed by Liang [79], the number
of hidden neuron of each L (i.e., ELMk ) was fixed to 180 for
Image Segmentation and 400 for Satellite Image. Two-third
of the training samples were used for training while the
remaining one-third were utilized to work out the most suit-
able number of neurons of the L1 (i.e., parent ELM) through
a validation process. For each type of the activation function
of ELM-MAS, validation and training processes were started
by setting L1 = 10 units and then amplified by an increment
of 10 units.

An experiment is conducted on the testing datasets for fifty
rounds and the mean results are documented. As an example,
Table 9 showed a summary of validation and training pro-
cesses based on sigmoid activation function. From Table 9,
the number of hidden neuronswith the greatest validation out-
come was chosen for ELM-MAS’s performance evaluation.

Table 10 defined the outcomes by means of ELM-MAS
in the context of the test accuracy, training time (seconds),

TABLE 9. Summary of Accuracy Rates (Validation) Using Sigmoid
Activation Function.

TABLE 10. Summary of Accuracy Rates (Test) of the ELM-MAS Using
Different Activation Function.

along with the number of hidden neurons for different kinds
of activation function. The best results in Table 10 are 89.96%
for satellite image used Laplace Act. and 95.39% for image
segmentation using Laplace Basis.

An evaluation was also made among other variants of
ELMs and the proposed ELM-MAS, such as ELM [93] and
ensemble ELM [52]. The test accuracy rates (ELM-MAS)
were comparable to ELM (Sigmoid) as well as ELM (RBF)
is shown in Table 11.
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TABLE 11. Comparison With Other ELM Network.

TABLE 12. Description of Benchmark CWS Datasets.

The capability of ELM-MAS was applied to the CWS
(circulation water systems) and GAST governor for power
generation.

1) REAL-WORLD APPLICATION: NOX EMISSION OF POWER
GENERATION PLANT
Based on Table 12, there were 2500 data samples collected
in total and then divided into validation, testing, as well as
training sets [94]. ELM-MASwas validated as well as trained

to decide on the optimum quantity of hidden neurons prior to
the commencement of the tests.

An experiment is conducted on the testing datasets for
50 runs and the mean results are documented. The test
accuracy’s results were shown in Table 13 and the peak
test accuracy of ELM-MAS was 96.96%, accomplished by
training with a Laplacian activation function. A comparison
was also made between the proposed model trained using
other classifiers and a Laplacian activation function, includ-
ing SVM [94] as well as FAM [95]. In Table 14, the test
accuracy rate of ELM-MAS was comparable to SVM [94]
as well as FAM [95]. The result for SVM is the highest is
because of the complexity of neurons.

TABLE 13. Summary of Accuracy Rates (Test) for Different Activation
Functions in CWS Description of Benchmark CWS Datasets.

TABLE 14. The Comparison of CWS Datasets.

2) REAL-WORLD APPLICATION: GAST GOVERNOR
For a standard operating gas turbine, all training data were
gathered on the output of the GAST block, i.e. the mechanical
power, Pmech [96]. As listed in Table 15, there were 630 data
in total were collected for all the 7 input features in the
GAST. These input features were varied within their oper-
ating range values [97]. The datasets shown in Table 16 were
pre-assigned into validation, test, along with training sets.
An experiment is conducted on the testing datasets for fifty
rounds and the mean results are documented.

Table 17 displayed the outcomes for using ELM-MAS in
the context of the number of hidden neurons, test accuracy,
as well as training time in seconds for all activation functions
in GAST. The greatest test accuracy rate in Table 17 was
76.79% in the Laplace Basis activation function. The result
is the highest due to the low complexity of neurons. On the
other hand, the results were also compared with SVM where
the SVM result is 77.68%.
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TABLE 15. The Overview of Gast Datasets.

TABLE 16. Information of the Validation, Testing, and Training, and Their
Respective Indications of the Gast Datasets.

TABLE 17. Accuracy Rates (Test) for Different Activation Function in GAST.

In the summary, this section described a new proposed
model with two layers of ELMs which is called ELM-MAS.
The ELM-MAS model was certified by using two bench-
mark datasets (satellite image and image segmentation). The
results of ELM-MAS were comparable to ELM (Sigmoid)
and ELM (RBF). Moreover, application on power generation
system containing governor model (GAST) as well as CWS
(circulating water systems) with this model was conducted
for assessment. Thus far, the results showed ELM-MAS for
CWS was comparable to other algorithms.

Even though outcomes attained from the applications in
power generation as well as benchmark studies were encour-
aging, further research should be conducted with application
in other fields for the validation of ELM-MAS

C. (CASE 3) IMPROVED HYBRIDIZING ELM BASED MULTI
AGENT SYSTEM USING CERTIFIED BELIEF IN STRENGTH
(ELM-MAS-CBS)
Throughout this section, the capability of ELM-MAS-CBS
is tested using three benchmark datasets (i.e. Wine, Pima
Indians Diabetes (PID) and Iris). Each team had 5 agents
(N1) based on ELM. The number of teams had been set as
3 (T = 3) for the experiment. Only Sigmoid and RBF were

TABLE 18. Details of Benchmark Datasets.

used in this experiment. Table 18 shown the information of
the datasets [54]. The experiments were run in MATLAB
(ver.2010) on a private computer equipped with Core(TM)
Intel(R) 8 G RAM 2.9 GHz CPU and i7.

Based on the [54], three benchmark datasets were valued
using the adopted train-validation-test method in the experi-
ment. An experiment is conducted on the testing datasets for
50 rounds and the mean outcomes are documented. The eval-
uation of the Wine was based on the tenfold cross-validation
method. The meaning is that each Wine dataset was divided
into ten subsets, where one is for validation, eight are for
training and the remaining is for testing. As for the case of
Iris, all of the data samples were used for training (10 % for
validation and 90% for training) as well as for testing. 20% of
the PID samples were used to determine the most appropriate
number of neurons (i.e., L) through a validation process
while 60% were used for training. All the experiments were
repeated 10 times.

Sigmoid activation function (SigAct) and Radial Basis
Function (RBFun) were the two types of activation functions
that were used in each benchmark datasets. The test accuracy
rates in Table 18 are based on SigAct for Iris, Wine and PID.
In addition, the test accuracy rates based on RBFun for the
three benchmark datasets shown in Fig 10. The number of
hidden neurons, L with the best test accuracy rate in both
Table 19 and Fig. 10 were selected for valuing the capabil-
ity of ELM-MAS-CBS. An experiment is conducted on the
testing datasets for 50 rounds and the mean outcomes are
documented.

The outcomes for using ELM-MAS-CBS in terms of the
number of hidden neurons and the test accuracy for both
activation function in the benchmark datasets is summarized
in Table 20. The results of RBFun have the peak test accuracy
rate as matched to the SigAct.

The ELM-MAS-CBS was matched with other approaches.
As for the comparison, MACS-CBS (Iris datasets) is the
highest compared with others but ELM-MAS-CBS (RBFun)
is the highest in PID and Wine. Therefore, Fig. 11 dis-
played that the test accuracy rates of ELM-MAS-CBS were
comparable.

The capability of ELM-MAS-CBSwas applied to the CWS
and GAST governor for power generation.

1) REAL-WORLD APPLICATION: CIRCULATING
WATER SYSTEMS
The test was conducted after the ELM-MAS-CBS was val-
idated and trained to discover the ideal number of hid-
den neurons. The outcomes of test accuracy were recorded
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TABLE 19. Details of Benchmark Datasets.

FIGURE 10. Accuracy rates (test) for ELM-MAS-CBS using RBFun.

TABLE 20. Summary of Accuracy Rates (Test) for ELM-MAS-CBS.

in Table 21 with the highest test accuracy of 96.92% using
Radial Basis activation function for training. Comparison to
other classifiers showed that ELM-MAS-CBS was compara-
ble to SVM [94] and FAM [95], as shown in Table 21. Due to
the complexity of hidden neurons in ELM, however, the test
accuracy of ELM-MAS-CBS is lesser than ELM-MAS.

2) REAL-WORLD APPLICATION: GAST GOVERNOR
Table 22 summarized the outcomes for using ELM-MAS-
CBS in the relation of the test accuracy and the number of
hidden neurons for different kind of activation function in
GAST. The finest test accuracy rate in Sigmoid activation
function was 83.04%. In addition, the comparison between

FIGURE 11. The comparison ELM-MAS-CBS with other approaches.

TABLE 21. Comparison ELM-MAS-CBS With Other Approaches Using
CWS Dataset.

ELM-MAS and ELM-MAS-CBS in Table 17 and Table 22,
the test accuracy was better for ELM-MAS-CBS as compared
to ELM-MAS.

TABLE 22. Test Accuracy Rates in GAST.

Lastly, an improved version of ELM-MAS model with
certified belief in strength was proven. The proposed model
was validated using Wine, Pima Indians Diabetes (PID) and
Iris. The results of ELM-MAS-CBS were comparable to
ELM (Sigmoid) and ELM (RBF). Moreover, the ELM-MAS-
CBS was applied to the governor (GAST) and circulating
water systems (CWS) for the power generation system. The
results showed that ELM-MAS for CWS was comparable
(if not superior) to other approaches.

Even though results were reassuring, further research with
the application on other fields are crucial to further validate
ELM-MAS-CBS.

IV. CONCLUSION
This paper presented a framework of ELM (Extreme Learn-
ing Machine) with Single Input Rule Module (SIRM-ELM),
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a fresh model (ELM-MAS) with two levels of ELMs and an
improved version of ELM-MAS model with certified belief
in strength (ELM-MAS-CBS) was established. All those pro-
posedmodels were validated by utilizing benchmark datasets.
The number of hidden neuron is based on trial and error
method [79], [98]. It required a tuning process to find a
reasonable number of hidden neurons. The experimental out-
comes demonstrated that the SIRM-ELMwas better thanwith
OS-ELM [19], SVM [19] and ELM [1], as shown in Table 3.
For CWS (circulating water systems), the test accuracy rates
of ELM-MAS was comparable (if not superior) to other
algorithms. Lastly, the comparison between ELM-MAS and
ELM-MAS-CBS in Table 17 and Table 22, the test accuracy
is better for ELM-MAS-CBS as compared to ELM-MAS.
Most importantly, a new development of the hybrid ELM
with MAS and SIRM is comparable (if not superior) to other
algorithms.

Even though outcomes attained from the applications in
power generation as well as benchmark studies were encour-
aging, further research should be conducted with applica-
tion in other fields for further validation of SIRM-ELM,
ELM-MAS, and ELM-MAS-CBS.
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