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ABSTRACT Medical image fusion techniques primarily integrate the complementary features of different
medical images to acquire a single composite image with superior quality, reducing the uncertainty of
lesion analysis. However, the simultaneous extraction of more salient features and less meaningless details
from medical images by using multi-scale transform methods is a challenging task. This study presents
a two-scale fusion framework for multimodal medical images to overcome the aforementioned limitation.
In this framework, a guided filter is used to decompose source images into the base and detail layers to
roughly separate the two characteristics of source images, namely, structural information and texture details.
To effectively preserve most of the structural information, the base layers are fused using the combined
Laplacian pyramid and sparse representation rule, in which an image patch selection-based dictionary
construction scheme is introduced to exclude the meaningless patches from the source images and enhance
the sparse representation capability of the pyramid-decomposed low-frequency layer. The detail layers are
subsequently merged using a guided filtering-based approach, which enhances contrast level via noise
filtering as much as possible. The fused base and detail layers are reconstructed to generate the fused
image. We experimentally verify the superiority of the proposed method by using two basic fusion schemes
and conducting comparison experiments on nine pairs of medical images from diverse modalities. The
comparison of the fused results in terms of visual effect and objective assessment demonstrates that the
proposedmethod provides better visual effect with an improved objective measurement because it effectively
preserves meaningful salient features without producing abnormal details.

INDEX TERMS Medical image fusion, guided filtering, sparse representation, salient features, meaningless
details.

I. INTRODUCTION
Owing to advancements in imaging technologies, medical
images have been essential to clinical investigation and
disease analysis. However, medical images from a single
imaging modality provide limited organ/tissue information.
For instance, computed tomography (CT) imaging provides
clear visualization of dense bone structures, and magnetic
resonance imaging (MRI) exhibits an evident advantage in
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capturing soft tissues and neurovascular structures with high
spatial resolution. In medical imaging, the fusion of CT and
MRI images enables the simultaneous visualization of bony
structures and soft tissues, and thus, facilitates clinical diag-
nosis and treatment [1]. Single-photon emission computed
tomography (SPECT) and positron emission tomography
(PET) are two widely used functional imaging techniques
with low resolution but can provide 3D observation of the
body’s metabolism information. The fusion of PET/SPECT
and MRI images enables the clear observation of func-
tional information and structural features from source images.
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Therefore, by using a medical image fusion technique to
obtain a single composite image with superior quality, medi-
cal professionals will no longer be required to separately ana-
lyze medical images from a single imaging device, reducing
the uncertainty of lesion analysis and clinical diagnosis [2].

According to [3], the general fusion algorithm can be
roughly divided into four categories: the multi-scale decom-
position (MSD)-based methods, the sparse representation
(SR)-based methods, the spatial domain-based methods, and
the hybrid transform-based methods. In MSD-based fusion
methods, multi-scale transform (MST) and spatial-filtering
are two widely used fusion schemes. The MST [4]–[10]
are popular techniques because of their excellent perfor-
mance in extracting salient information. However, no single
transform domain can completely represent all the infor-
mation of the source images. Moreover, some significant
features of the source images are lost during the inverse
transform [11], resulting in quality degradation, such as ring-
ing effect, contrast decreases, color distortion, or artificial
edges [12]. In contrast with MST methods, the other scheme
forms a fused image by using a spatial-filtering decompo-
sition scheme. A typical approach is the guided filtering-
based method [13] in which the weight average strategy
captures the edge information of details layers and large
intensity variations of base layers. However, similar to con-
ventional spatial domain-based methods, spatial filtering-
based methods also easily cause low contrast. SR-based
methods are generally time-consuming because they rely on
the training and optimization of the dictionary [14]. In gen-
eral, single transform schemes with simple fusion strate-
gies cannot always identify salient features from different
decomposed coefficients. Hybrid transform-based methods
simultaneously employ more than one transforms in the
fusion process, aiming to combine the merits of different
transforms [15], [16]. A representative hybrid transform-
based example was reported in [17]. In particular, the com-
bination of the Laplacian pyramid and sparse representation
(LP-SR) was proposed to overcome the limitations of tradi-
tional MST-based and SR-based methods in medical image
fusion, achieving favorable fused results. Nevertheless, this
method suffers from spectral distortion and visual artifacts in
medical image fusion.

In medical images, no salient features exist in flat areas,
such as bone regions. However, the complementary image
that joins the fusion procedure generally has abundant but
meaningless details in the same region, and thesemeaningless
details are easily distinguished as salient features [18]. Thus,
most MST-based fusion methods are prone to extracting
meaningless details from these regions to the fused images,
leading to an inferior visual effect of the fusion results. The
motivation to work with this two-scale framework is based
on the fact that MST approaches have failed to identify
meaningful and salient features of medical source images.

To address the aforementioned limitation and achieve per-
ceptually good results, the current study presents a two-scale
image fusion method that utilizes guided filtering and sparse

representation. The main advantages of this paper can be
summarized as follows:

(1) This work proposes a two-scale fusion method for mul-
timodal medical images. This method can capturemeaningful
and salient information without producing abnormal details.
In particular, two different schemes under the same frame-
work are presented and performed on nine pairs of medical
images from different modalities to verify the performance of
the proposed framework.We theoretically analyze the signifi-
cant difference between the two aforementioned schemes and
conduct experimental verification to identify the best scheme
in terms of both visual perception and objective assessment.

(2) The proposed method uses the guided filtering for a
simple structure-texture decomposition of the source images
to obtain the base and detail layers, which enhances the edge
information of the fused image.

(3) Considering the extraction of salient features and less
meaningless details, two different fusion rules are exploited
for the base and detail layer to preserve the spatial consistency
at each layer. Overall, most strong structural features are
found in the base layer, and the rest of the texture details are
located in the detail layer. Thus, the LP-SR rule is used to
retain most of the structural information in the source images,
and the guided filtering-based strategy is utilized to reduce
noise sensitivity and improve the contrast level.

(4) In particular, a spatial degraded dictionary using
an image patch selection-based scheme is learned by the
K-singular value decomposition (K-SVD) algorithm from
two source images. In this phase, the mean value of image
patches determineswhether an image patch is fit for selection,
which is capable of excludingmeaningless image patches and
improving sparse representation capability for the pyramid-
decomposed low-frequency layer.

The rest of this paper is organized as follows. In Section II,
the recent works that are related to our methods are intro-
duced. Section III describes the details of the proposed
two-scale image fusion method using guided filter and sparse
representation. Experimental results and related discussions
are provided in Section IV. Finally, Section V concludes the
paper and discusses future works.

II. RELATED WORK
In this section, we provide the recent researches, which
have the similar work or relate to our medical image
fusion framework, that is, the decomposition-based meth-
ods, the dictionary learning-based methods. Besides, several
deep learning-based methods are briefly introduced. Finally,
the main considerations of the proposed framework are illus-
trated in detail.

A. DECOMPOSITION-BASED METHODS
Unlike the MST methods, spatial filtering-based decompo-
sition methods have become a hot topic in image fusion in
the last decades. These methods tend to use edge-preserving
filters to accurately extract the edge information and details
at different scales, helping maintain the shift-invariance and
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achieving better preservation performance of edge features;
they utilize discriminative fusion strategies that consider the
characteristic of each decomposed image to generate a fused
image. Jian et al. proposed an image fusion method for via
rolling guidance filter-based decomposition [19]; this method
can better preserve valid structural information and details.
Ma et al. utilized a Gaussian filter to achieve the two-scale
decomposition of source images and applied different fusion
rules to integrate the layers, preserving the thermal radiation
and details of source images [20]. Zhu et al. proposed a
hybrid multi-scale decomposition scheme with guided image
filtering [21] and introduced three diverse fusion rules for
different scales [22]. The details of source images can be
assigned to different scales by setting the parameters in the
guided filter.

In the past few years, the total variation (TV) has been
introduced in image decomposition. Since then, a variety
of TV decomposition models have been proposed in image
fusion field due to their inherent denoising ability. These
methods directly employ the original TV or other enhanced
TV models to obtain the multiscale decomposition of source
images and adopt complicated fusion rules to pursue good
fusion performance. In [23], the total variation (TV-L1)
model was applied to the two-scale decomposition of source
images and a particle swarm optimization (PSO)-based adap-
tive weighted scheme was introduced to form a fusion image,
which effectively preserves image energy. Similarly, Liu et al.
proposed the total-variational transform into moving least
squares scheme (TV-MLS) and designed different strate-
gies [24]. Furthermore, in multi-focus image fusion, a novel
TV and quad-tree based decomposition scheme was pro-
posed to get the focus region to represent the source image
completely [25].

Recently, a variety of novel image decomposition schemes
have also been introduced for image fusion. Xing et al. uti-
lized the Taylor expansion theory to decompose the source
image into a deviation component and several energy compo-
nents, which supresses the information loss caused by limited
image descriptions [26]. In medical image fusion, Du et al.
applied the intrinsic image decomposition for the two-scale
decomposition of medical source images and employed three
fusion rules to fuse these decomposed images [2]. It has
been proven that the framework using the principle compo-
nent analysis (PCA) rule achieves the best performance as
it realizes the enhancement of structural information with-
out color distortion. The PCA scheme also can be used in
dimensionality reduction of hyperspectral image [27], [28].
Maqsood et al. introduced two gradient operators to obtain a
two-scale representation of source images and then combined
contrast enhancement, feature extraction algorithm and SR
rule to form a fused image [29]. However, this method is
prone to abnormal edges. A decomposition method based
on structure tensor was introduced in [30]. The method can
effectively capture gradient to distinguish individual edge
information from detail information, which achieves compet-
itive fusion performance. For decomposition-based methods,

the simple fusion rule cannot always effectively identify the
principal information of each decomposed image [31], caus-
ing quality degradation of the fused image. Thus, designing
discriminative fusion strategies that consider the characteris-
tic of each decomposed image is important.

B. DICTIONARY LEARNING-BASED METHODS
The sparse representation model has also been widely used in
several image fusion applications [32]–[35]. A comprehen-
sive review of this group is given in [36]. In particular, con-
structing an adaptively trained dictionary by using a learning
method has been proven to provide adaptive sparse represen-
tation compared with other methods that use fixed dictionary
models, (e.g., DCT and wavelet); it is also highly effective for
improving the flexibility of dictionary. For medical images,
image patches that are divided from source images possess
redundant information that generates unvalued and uncertain
information during sparse coding. That is, local overlapping
image patches from source images appear simple and exhibit
unstable structures; they cannot be used directly as a training
set for dictionary learning.

To solve this problem, a novel dictionary learning approach
was proposed in [37]. This approach calculates the Euclidean
distance between each image patch divided from medical
source images to select informative patches and uses a clas-
sification method with a clustering algorithm based on local
density peaks to learn several sub-dictionaries. The dictionary
trained using this scheme appears complete and informa-
tive and can effectively describe source images. Kim et al.
proposed a multimodal image fusion method based on a
joint patch clustering-based dictionary learning scheme [38].
In this scheme, all patches from different source images are
clustered together with their structural similarities. The afore-
mentioned method achieves remarkable fusion performance
because the learned dictionary enables the complete descrip-
tion of images details. Yin et al. proposed a novel SR-based
multi-focus image fusion method [39] that adopts the K-SVD
algorithm to learn a joint dictionary and merges sparse coeffi-
cients by utilizing amaximumweightedmulti-norm rule. The
joint dictionary does not require any prior knowledge and can
provide adaptive representation to source images. A separable
dictionary learning-based method was proposed in [40]. This
method combines separable dictionary optimization with a
Gabor filter to solve the spatial inconsistency problem in flat
regions. A novel dictionary learning scheme based on sparse
and low-rank component decomposition was proposed for
medical image fusion in [41]. This scheme performs well
regardless of whether the source images are clear or corrupted
by noise. In [42], a novel discriminative dictionary learning
method is performed on the coarse-scale and fine-scale com-
ponents to recover the structural information of coarse com-
ponents and fine details corrupted by noises. In noisy image
fusion, a novel discriminative dictionary learning method
was presented to realize noise suppression and detail reten-
tion [43]. The discriminative ability of learned dictionaries
is improved since the linear correlation between the sparse
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coding coefficients is considered. In [44], the discrimination
ability of dictionaries is enhanced by minimizing the corre-
lation between the dictionaries of different components and
a novel decomposition method using analysis-synthesis dic-
tionary pair learning scheme was proposed to preserve image
information and maintain the contrast. In brief, conducting
a good dictionary plays an important role in these sparse
representation-based methods.

C. DEEP LEARNING-BASED METHODS
Deep learning techniques have received extensive attention
and have been successfully applied to image fusion in recent
years. In [3], the authors reviewed the recent deep learning-
based fusion methods. We present only several typical exam-
ples in the current study. Liu et al. first introduced the
deep convolutional neural network (DCNN) to address the
multi-focus fusion problem [45]. This method uses a DCNN
model to learn a direct mapping between source images
and weight maps, overcoming the difficulty of designing
activity-level measurement and fusion rule. A novel medi-
cal image fusion method that combines the advantages of
MST and the DCNN model was proposed in [46]. However,
this method cannot sufficiently extract details from source
images. Ma et al. introduced a novel method based on an end-
to-endmodel of a generative adversarial network (GAN) [47];
this method was successfully applied to the fusion of infrared
and visible images. Similarly, Huang et al. introduced a
Wasserstein generative adversarial networks to color medical
image fusion [48], in which a generator and two discrim-
inators are employed to form a fused image. This method
enhances the structure information and prevents the func-
tional information from beingweakened. Liu et al. proposed a
convolutional neural network (CNN)-based multimodal med-
ical image fusion method [49] under the Laplacian pyra-
mid domain to enhance details and preserve image energy.
Besides, most methods are not a unified network for image
fusion and thus they are only applicable for specific fusion
tasks. Aiming to overcome this limitation, some effective
fusion networks [50], [51] are presented, which is capable
of obtaining high-quality fusion images in various image
fusion tasks. However, such deep learning-based methods
generally take a long time to adjust the parameters of the
framework [14].

D. THE MAIN CONSIDERATIONS OF THE PROPOSED
FUSION FRAMEWORK
The proposed framework mainly combines three aspects:
spatial filtering decomposition, dictionary learning, and two
predesigned fusion strategies to extract more significant and
salient information with less meaningless details from med-
ical source images. The proposed method is primarily based
on the following considerations: MST-based decomposition
methods generally require a long time and can easily intro-
duce visual artifacts; thus, our method uses a guided fil-
ter to obtain a two-scale representation, i.e., the base and

detail layers. Given the edge-preserving characteristic of
the guided filter, the base layer includes structural infor-
mation containing most of the edge features, and the detail
layer includes the remaining texture features and noises.
This decomposition scheme can effectively enhance the edge
information of the fused image and reduce computation com-
plexity. LP-SR is an effective hybrid transform-based rule;
it has been proven to preserve most of the image energy
but is also prone to capturing meaningless details of source
images. Thus, the LP-SR rule is suitable for the fusion of the
base layers as the base layer contains most of the structural
information and fewer details. In addition, most of the texture
information with noises lies in the detail layer. A guided
filtering-based strategy is conducted to simultaneously main-
tain spatial consistency and exclude the meaningless details
by noise filtering. Intuitively, the combination of the two
aforementioned models indicates that edge features can be
preserved while filtering out abnormal texture details. Further
discussion will be provided to explain the proposed frame-
work in detail.

III. PROPOSED METHOD
This section summarizes the overall implementation steps.
The proposed framework utilizes the guided filtering-based
decomposition scheme and two fusion strategies: LP-SR
and guided filtering-based weighted average. A diagram of
our framework is shown in Fig. 1. The primary implemen-
tation process has the following steps: two-scale decom-
position, base layer fusion, detail layer fusion, and image
reconstruction. First, we obtain two-scale representations
of source images by applying a guided filter and a differ-
ence operator. Then, the LP-SR and guided filtering-based
weighted average strategies are applied to fuse the base and
detail layers corresponding to pixel characteristics. Lastly,
the fused image is obtained by reconstructing the fused base
and detail layers. Furthermore, to identify the best scheme
under this framework, two schemes, namely, Scheme 1 and
Scheme 2, are provided. Here, we use Scheme 1 as an exam-
ple to discuss the detailed implementation of our framework
and then explain the significant difference between the two
schemes.

A. TWO-SCALE DECOMPOSITION
In this subsection, two-scale decomposition is performed on
each of the pre-registered source images into a base layer that
captures large-scale of structural information, and a detail
layer containing the texture details and noises. As shown
in Fig. 1, a pair of registered CT andMRI images is denoted as
I1 and I2, respectively. Let GFr,ε(a, b) represents the guided
filtering operation, where r and ε are the local window radius
and regularization factor of guided filter, respectively; a and
b are considered as the input image and guidance image,
respectively. Then, the guided filtering is applied to each
source image serving as input image and guidance image
simultaneously to obtain the base layers B1 and B2 as shown
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FIGURE 1. Schematic diagram of the proposed image fusion method.

FIGURE 2. Schematic diagram of the base layer fusion.

in (1). The absolute values of the difference between the
source images and the base layers are calculated to generate
the detail layers D1 and D2, as shown in (2).

B1 = GFr1,ε1 (I1, I1)

B2 = GFr1,ε1 (I2, I2) (1)

D1 = |I1 − B1|

D2 = |I2 − B2| (2)

where | · | is the absolute value operator. Thus, large-scale
information containing edge features in source images is
retained in the base layers and the texture information is
retained in detail layers.

B. BASE LAYER FUSION
The diagram of the base layer fusion framework is shown
in Fig. 2, and the major process is presented in detail in this
subsection.
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FIGURE 3. Schematic diagram of the dictionary construction method.

1) LAPLACIAN PYRAMID DECOMPOSITION
The Laplacian pyramid exhibits the advantages of effective
structure, simple implementation, and high calculation effi-
ciency. In this phase, the Laplacian pyramid is adopted for
the multiscale representation of base layers. A source image
can be transformed into a low-frequency layer and a series of
high-frequency layers. First, we apply the Laplacian pyramid
to divide B1, B2 into low-frequency layers L1, L2 and high-
frequency layers {H i

1,H
i
2}(H

i
s = {H

1
s ,H

2
s , · · · ,H

m
s }s=1,2),

wherem is the decomposition level of the Laplacian pyramid.
Then, the high-frequency layers are selected in accordance
with the pixel-wise maximum rule of {H i

1,H
i
2}, for each level

i with pixel location (x, y), which can be expressed as:

H i
f (x, y) =

{
H i
1(x, y) if H i

1(x, y) > H i
2(x, y)

H i
2(x, y) otherwise.

(3)

2) DICTIONARY CONSTRUCTING
For the low-frequency layer, considering the low-frequency
layer as a multi-filtered version of a source image is reason-
able. As shown in Fig. 3, we construct a spatial degraded
dictionary by integrating two informative column vector sets
from two filtered source images. A column vector is selected
when its mean value is larger than the default value. The
major steps of dictionary construction are as follows.

Step 1: The Gaussian low-pass filter with size 5 is used
to smooth source images and generate corresponding blurred
versions, denoted as G1 and G2.
Step 2: The sliding window technique with a step of one

pixel is used to divide G1 and G2 into overlapping image
patches with size 8 × 8. Then, all the image patches are
converted into corresponding column vectors through lexi-
cographic ordering. In particular, let pi1 and p

i
2 represent the

ith image patches in G1 and G2, respectively. Then, the cor-
responding column vectors are denoted as vi1 and v

i
2, and the

informative column vectors {v̂k1, v̂
l
2} are extracted, in which

the mean value of the corresponding column vector exceeds
the cutoff threshold, which can be described as:

v̂k1 =

{
Select vi1 if vi1 > 0.1× C
Ignore vi1 otherwise.

(4)

v̂l2 =

{
Select vi2 if vi2 > 0.1× R
Ignore vi2 otherwise.

(5)

where v̂k1 and v̂l2 refer to the selected column vectors with
sufficient energy from G1 and G2, respectively; C and R are
the mean value of G1 and G2, respectively; k and l are used
for each input image G1 and G2 to denote the kth and lth
informative column vector, respectively.

Step 3: The mean value of informative column vectors v̂k1
and v̂l2 is normalized to obtain ṽk1 and ṽ

l
2, which contain only

structural details

ṽk1 = v̂k1 − m
k
1

ṽl2 = v̂l2 − m
l
2 (6)

where mk1 and m
l
2 are the n× 1 vector, and all elements in the

vector are the mean value of v̂k1 and v̂
l
2, respectively.

Step 4: Steps 2 and 3 are repeated for all the image patches.
After all informative column vectors from the filtered source
images are extracted and normalized, these column vectors
are combined as a single matrix V1 = [ṽk1]

K
k=1 and V2 =

[ṽl2]
L
l=1. The joint matrix V is constructed by combining the

two aforementioned matrices as follows:

V = [V1,V2] (7)

Step 5: Lastly, the dictionary D can be learned from V by
applying the K-SVD algorithm [52].

3) FUSION OF LOW-FREQUENCY LAYERS
The fusion of low-frequency layers contains the following
steps:

Step 1: The sliding window technique is used to divide L1
and L2 into corresponding patches from the upper left to the
lower right with a step of one pixel.

Step 2: All the patches are transformed into column vectors

{cj1, c
j
2}
J

j=1, where J is the number of column vectors, and then

normalized vectors are obtained by subtracting their mean
value as follows:

c̃j1 = cj1 − m
j
1

c̃j2 = cj2 − m
j
2 (8)

VOLUME 8, 2020 140221



C. Pei et al.: Two-Scale Multimodal Medical Image Fusion Based on Guided Filtering and SR

Step 3: After the dictionary is obtained, we further compute

the corresponding sparse coefficients S1 = {s
j
1}
J

j=1 and S2 =

{sj2}
J

j=1 by orthogonalmatching pursuit (OMP) approach [53],

which has the following formulation

sj1 = argmin
s
‖s‖0 . s.t.

∥∥∥c̃j1 − Ds∥∥∥22 6 ε

sj2 = argmin
s
‖s‖0 . s.t.

∥∥∥c̃j2 − Ds∥∥∥22 6 ε (9)

where the parameter ε is used as the sparse approximation
error.

Step 4: Then, the sparse coefficients are determined by
applying the max-`1 rule, and the fused column vectors are
calculated

sjf =

{
sj1 if ‖sj1‖1 > ‖s

j
2‖1

sj2 otherwise.
(10)

cjf =

{
Dsjf + m

j
1 if sjf = sj1

Dsjf + m
j
2 otherwise.

(11)

Step 5: (8)-(11) are iterated for all patches in the low-

frequency layer to produce all the fused vectors {cjf }
J

j=1
. After

that, each cjf is reshaped into an image patch with size 8× 8,
and all the image patches are placed to their original positions.
In particular, each pixel’s value in the low-frequency layer
is averaged when patches are overlapped. The fused low-
frequency layer Lf is obtained after the iteration. Finally,
the fused low-frequency layer and several selected high-
frequency layers are reconstructed by the inverse Laplacian
pyramid to obtain the fused base layer Bf .

C. DETAIL LAYER FUSION
The detail layer contains the rest of the texture details and
noises. For the fusion of the detail layer, the guided filtering-
based weighted average strategy is used, which enhances the
contrast level by noise filtering as much as possible.

Generally, since the Laplacian operator achieves edge
detection by performing differentiation operations on images,
leading to its sensitivity to discrete points or noises. Hence,
Laplacian filtering is performed on images, and then Gaus-
sian convolution filtering is applied to the filtered image
for noise reduction, improving its robustness to noises [54].
Furthermore, the construction of the saliency map typically
considers the following important factors: detection accuracy
and computational complexity. However, widely used graph-
based methods [55], contrast-based methods [56], and recent
deep learning-based methods [57] require precise adjust-
ment of multiple parameters to achieve the desired results.
By contrast, the Gaussian function is only driven by fewer
parameters (i.e., filter size and blurred degree) to estimate
a more robust saliency map, which reduces the computa-
tional complexity. Considering the above-mentioned analy-
sis, the saliency maps of two detail layers are constructed
via a Laplacian filtering followed by Gaussian smoothing to

highlight the small-scale edge details and denoise the detail
layers. The detailed implementation is described as follows.

Step 1: The detail layers D1, D2 are obtained using the
image decomposition method mentioned earlier. First, Lapla-
cian filtering is applied toD1 andD2 to obtain the edge feature
map corresponding to detail layers

H1 = D1 ∗ L3×3
H2 = D2 ∗ L3×3 (12)

where L3×3 is a Laplacian filter with size 3× 3.
Step 2: The local smoothing of edge feature map is imple-

mented to construct the saliency map by applying a Gaussian
filter

S1 = |H1| ∗ Gα,σ
S2 = |H2| ∗ Gα,σ (13)

where Gα,σ is a Gaussian filter with size (2α + 1)(2α + 1)
and the σ represents the blurred degree. In this work, α and σ
were set as 5 and 2, respectively.

Step 3: The saliency maps are compared to generate the
initial weight map

W1(x, y) =

{
1 if S1(x, y) > S2(x, y)
0 otherwise.

(14)

W2(x, y) = 1−W1(x, y) (15)

where the initial weight map is actually a binary map
that corresponds to the ‘choose max’ strategy in the pixel
location (x, y).

Step 4: Guided filtering is applied to each initial weight
map, and its corresponding detail layer is regarded as the
guidance image for optimizing the initial weight map

Wf 1 = GFr2,ε2 (W1,D1)

Wf 2 = GFr2,ε2 (W2,D2) (16)

whereWf 1 andWf 2 represent the final weight maps ofD1 and
D2, respectively. To restore the remaining edge information
and obtain spatial consistency, small local window radius and
regularization factor are chosen in this phase.

Step 5: The following pixel-wiseweighted average strategy
is adopted to obtain the fused detail layer as follows:

Df = Wf 1D1 +Wf 2D2 (17)

D. IMAGE RECONSTRUCTION
Finally, we obtain the final fused image by combining the
fused base layer Bf and the fused detail layer Df

F = Bf + Df (18)

E. THE SIGNIFICANT DIFFERENCE BETWEEN
TWO SCHEMES
To effectively extract the salient features with less abnor-
mal details, we propose two fusion schemes under the same
framework. The difference between the two schemes is
primarily focused on Scheme 2 having a smaller pyramid
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FIGURE 4. Source images pairs of three types of multimodal medical image. (a)-(c) three pairs of CT and MRI
images; left: CT image; right: MRI image. (d)-(f) three pairs of MRI-T1 and MRI-T2 image; left: MR-T1 image; right:
MR-T2 image. (g)-(i) three pairs of SPECT image and MRI image; left: MRI image; right: SPECT image.

decomposition level and a different sparse coding phase.
We consider the following case for the first difference: The
base layer obtained by two-scale decomposition contains
large-scale structural information. However, a higher pyramid
decomposition level means that more salient information will
be transferred to the fused image, leading to the production
of abnormal artifacts in the flat regions, particularly for those
regions with high pixels. The second difference is the sparse
coding phase. Notably, Scheme 1 applies the normalization
procedure to the informative column vectors and dictionary
atoms (see the Step 3 in dictionary constructing and Step 2
in Fusion of low-frequency layers), theoretically making
the framework focus more on the extraction of structural
details and disregard the global features. Thus, two schemes
are adopted in comparison experiments to determine the
most suitable scheme under this framework. Compared with
Scheme 1, Scheme 2 has a lower pyramid decomposition
level and eliminates the normalization procedure in the dic-
tionary construction and sparse coding phases. Further exper-
iments will provide a detailed explanation between these two
schemes.

IV. EXPERIMENTS
A. SOURCE IMAGES
Experiments are performed on nine pairs of registered med-
ical images with size 256×256 from three different modali-
ties to verify the superiority of the proposed medical image
fusion method. Three groups of registered multimodal medi-
cal images, including three pairs of CT andMRI images, three
pairs of T1-weighted MR (MR-T1) and T2-weighted MR
(MR-T2) images, and three pairs of SPECT andMRI images,

were used in our experiments. All the source images were
selected from the website of Harvard Medical School [58]
and shown in Fig. 4. Relevant experimental results and dis-
cussions are presented in detail.

B. COMPARED METHODS
Eight representative image fusion algorithms including
GF [13], JPCD [38], CSR [59], LP-SR [17], SR-JD [39],
CSMCA [60], PAPCNN [18] and LP-CNN [49] were selected
for the comparison experiments. Among these compared
algorithms. GF is a spatial filtering-based method with opti-
mization by the guided filtering. JPCD and SR-JD are two
novel SR-based methods using different dictionary learning
schemes. CSR utilizes a novel SR model for multimodal
image fusion. LP-SR uses the Laplacian pyramid combined
with the SR rule. LP-CNN is a medical fusion method using a
CNNmodel in the Laplacian domain. CSMCA and PAPCNN
were just recently proposed in the past year and have achieved
good performance in medical image fusion. For parameters
of the aforementioned fusion algorithms, the recommended
values reported in their respective publications were adopted.

C. OBJECTIVE EVALUATION METRICS
To objectively evaluate of the performance of different meth-
ods, four widely recognized objective indexes were applied
in our experiments. These indexes are as follows: the feature
mutual information metric QFMI [61], the gradient-based
quality metric QG [62], the visual information fidelity metric
VIFF [63], and the standard deviation function SD. For these
four indexes, a high value indicates good performance.
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The metric QFMI measures global feature information
between the source images and the fused image. The con-
sidered feature information is represented by image features
such as gradients or edges. In [64], QFMI was proven to
surpass other information theory information-based indexes,
such as QMI and QNCIE , which employ the image histogram
to compute mutual information. This is mainly because the
image histogram only provides statistical features of specific
grayscale pixels of input images and neglects other signifi-
cant information that reflects structural features. The feature
mutual information QFMI with two source images a, b and a
fused image f , is defined as:

QFMI =
MĨa,̃f

Hf̃ + Hã
+

MĨb,̃f
Hf̃ + Hb̃

(19)

MĨa,̃f =
∑
i,j

P̃a,̃f (i, j)log
P̃a,̃f (i, j)

P̃a(i)P̃f (j)
(20)

MĨb,̃f =
∑
i,j

P̃b,̃f (i, j)log
P̃b,̃f (i, j)

P̃b(i)P̃f (j)
(21)

where ã, b̃, f̃ are the feature maps of a, b, f , respectively.
P̃a,̃f (i, j) and P̃b,̃f (i, j) are the joint probability density func-
tions between images a, b and f at pixel (i, j), respectively.
P̃a(i) and P̃b(i) are the edge probability density functions of
a and b, respectively.
The metric QG mainly calculates the amount of edge

information transferred from the input images to the fused
images. It considers the edge strength associated with the
human visual system (HVS), such that the quality of visual
information can be reflected. The gradient-based metric QG
is defined as:

QG=

∑I
i=1

∑J
j=1(Q

af (i, j)W a(i, j)+Qbf (i, j)W b(i, j))∑I
i=1

∑J
j=1(W a(i, j)+W b(i, j))

(22)

where Qaf (i, j) = Qafe (i, j)Qafo (i, j), Qafe (i, j) and Qafo (i, j)
denote the edge strength and orientation preservation
values at pixel (i, j). The definition of Qbf is the
same as that of Qaf . The weight coefficients W a(i, j)
and W b(i, j) indicate the importance of Qaf and Qbf ,
respectively.

The metric VIFF is a newly proposed index that measures
the visual information fidelity between the fused image and
each source image using the Gaussian scale mixture model
(GSM), the distortion model, and the HVS model. In the
calculation of VIFF , source images are decomposed into
blocks and visual information from each block is captured by
applying the three aforementioned models. Finally, the visual
information from each block is integrated to obtain an overall
quality measure. For more details about this metric, kindly
refer to [53].

The function SD is generally used to evaluate the overall
contrast of a fused image.

SD =

√√√√√ 1
I × J

I∑
i=1

J∑
j=1

(f (i, j)− m)2 (23)

where m is the mean value of a fused image.

D. ANALYSIS AND SETTING OF ALGORITHM PARAMETER
In the proposed framework, the parameter setups are deter-
mined through a series of experiments that are performed on
three types of medical images. The proposed framework has
three key parameters: the local window radius r1, the reg-
ularization parameter ε1 of the guided filter that is used in
two-scale decomposition, and the decomposition level m of
Laplacian pyramid. Here, we use Scheme 1 as an example to
comprehensively analyze the impacts on fusion performance
with three key parameters. In this subsection, three different
types of medical images, i.e., Group (a), Group (d), and
Group (g) are used as test images, and the four objective
indexes are adopted to evaluate the impact of three groups
of parameters on fusion performance. Fig. 5 shows the objec-
tive index value on the three types of source images when
parameters are changed.

In the first group of experiments, the regularization param-
eter ranges from 10−5 to 100. The first row displays the
impact of ε1 on fusion performance, and an inference can be
made that when ε1 is higher than 10−1, the metrics QFMI ,
QG and SD generally tend to decline. Notably, the metric
VIFF appears to increase for Group (d) and (g). Also, some
objective metrics exhibit a slightly increasing tendency when
ε1 increase from 10−5 to 10−1, such as the metric QFMI of
Group (a), the metric QG of Group (g) and the metric SD
of Group (a). Based on the preceding observation, we set
ε1 as 10−1.

In the second group of experiments, the local window
radius ranges from 5 to 40. The second row shows the impact
of r1 on fusion performance, and most metrics tend to be
stable as r1 increases. It should be noted that the scores of the
four indexes decrease slightly as r1 increases in Group (g).
Thus, we fixed the local window radius to 5.

The impact ofm on the four indexes is exhibited in the third
row. The decomposition level ranges from 1 to 5. Notably,
whenm increases, the metrics VIFF and SD increase substan-
tially since more spatial information are extracted, the met-
ric QFMI exhibits a slight tendency to decrease. Moreover,
the fused image suffers from deep artifacts and color distor-
tion when m is less than 2. When m exceeds 3, the metric
QG tends to increase except in Group (g). Balancing that case
by considering the preceding analysis is reasonable. Thus,
we set m as 4.
In conclusion, the local window radius 5, the regularization

parameter 0.1, and the decomposition level 4 were adopted
in our experiments. For the proposed method, the remaining
parameters were set as follows: the parameter r2, ε2 were set
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FIGURE 5. Objective performance of the proposed method with three parameters.

as 2, 1−6, respectively, the dictionary size was set as 64×256
with a sparse level of 6. The sparse approximation error ε was
set as 0.1, and the image patch of size 8×8 was adopted. For
Scheme 2, the pyramid decomposition level was set as 1, and
the other parameters are the same as those in Scheme 1.

E. EXPERIMENTAL RESULTS AND ANALYSIS
1) VISUAL QUALITY
The fusion of CT and MRI images can generate a single
image, in which the complementary features of the two types
of images are preserved well. The first experiment is con-
ducted on three pairs of CT and MRI images. Three sets
of the fusion results of the CT and MRI images are shown
in Fig. 6, and two representative regions are enlarged in each
image to make better comparisons. The fusion results of the
GF and SR-JD methods show serious artifacts, particularly
in the bone regions [see the right regions in Fig. 6 (a3), (b7),
(b3), (b7) and (c7)]. The fusion results of the JPCD and
CSR methods suffer from the loss of image energy [see the
enlarged region in Fig. 6 (a4), (a5), (b4), (b5), (c4) and (c5)].
The bone regions of the CT images seem to be blurred by
the CSMCA method [see Fig. 6 (a8), (b8) and (c8)]. The
salient features can be nearly preserved via the LP-SR and

LP-CNN methods, but these methods lose a few details and
introduce more meaningless details into bone regions [see
Fig. 6 (a6), (a11), (b6) and (b11)]. The PAPCNN method
achieves the best visual effect since it preserves nearly all
the soft tissue information fromMRI images. However, a few
artifacts are introduced into bone regions [see the right region
in Fig. 6 (a9) and (b9)]. Meanwhile, the result appears that
the PAPCNN method focuses more on the extraction of
details, leading to the spatial inconsistency problem [see
the left region in Fig. 6 (c9)]. Compared to other methods,
Scheme 1 and Scheme 2 show evident advantages in the
preservation of bone regions as they filter out more abnormal
details via noise filtering [see the enlarged region in Fig. 6
(a11), (a12), (b11), (b12) and (c12)]. However, Scheme 1 still
weakens the soft tissue information in theMRI image [see the
left region in Fig. 6 (a11), (b11) and (c11)]. Scheme 2 simul-
taneously extracts most of the salient information with less
meaningless details that exist in the MRI image. However,
a few details seem to be blurred by Scheme 2 [see the right
region in Fig. 6 (a12) and (c12)].

Soft tissues, such as adipose tissue, can be easily
observed in MR-T1 images. Blood vessels are clearer in
the MR-T2 images than in the MR-T1 images. Three sets
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FIGURE 6. Three sets of CT and MRI image fusion results. Two close-ups are provided in each set for better comparisons. (a1) CT. (a2) MRI.
(a3) GF. (a4) JPCD. (a5) CSR. (a6) LP-SR. (a7) SR-JD. (a8) CSMCA. (a9) PAPCNN. (a10) LP-CNN. (a11) Scheme1. (a12) Scheme2. (b1) CT.
(b2) MRI. (b3) GF. (b4) JPCD. (b5) CSR. (b6) LP-SR. (b7) SR-JD. (b8) CSMCA. (b9) PAPCNN. (b10) LP-CNN. (b11) Scheme1. (b12) Scheme2.
(c1) CT. (c2) MRI. (c3) GF. (c4) JPCD. (c5) CSR. (c6) LP-SR. (c7) SR-JD. (c8) CSMCA. (c9) PAPCNN. (c10) LP-CNN. (c11) Scheme1. (c12) Scheme2.

of fusion results of MR-T1 and MR-T2 images are shown
in Fig. 7.We can easily see that theGFmethod extracts almost
all the information of the MR-T2 image to the fused image,
but it achieves low contrast [see Fig. 7 (a3)] since it loses
a large amount of energy. Besides, some significant features
of MR-T2 cannot be completely retained in the fused image
[see the right region in Fig. 7 (b3) and (c3)]. The JPCD and
CSR methods fail to preserve the salient features, resulting

in a poor visual effect [see Fig. 7 (a4), (a5), (b4), (b5), (c4)
and (c5)]. The LP-SR, SR-JD, CSMCA, and LP-CNN meth-
ods do not perform well in preserving the important details
of the MR-T2 images to the fused image [see the right region
in Fig. 7, (a6), (a8), (a10), (b6), (b7), (b8), (b10), (c6), (c7),
(c8) and (c10)]. The PAPCNN method can transfer almost
all the salient features from the source image to the fused
image. As a result, more artifacts are introduced to the fused
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FIGURE 7. Three sets of MR-T1 and MR-T2 image fusion results. Two close-ups are provided in each set for better comparisons. (a1) CT.
(a2) MRI. (a3) GF. (a4) JPCD. (a5) CSR. (a6) LP-SR. (a7) SR-JD. (a8) CSMCA. (a9) PAPCNN. (a10) LP-CNN. (a11) Scheme1. (a12) Scheme2.
(b1) CT. (b2) MRI. (b3) GF. (b4) JPCD. (b5) CSR. (b6) LP-SR. (b7) SR-JD. (b8) CSMCA. (b9) PAPCNN. (b10) LP-CNN. (b11) Scheme1.
(b12) Scheme2. (c1) CT. (c2) MRI. (c3) GF. (c4) JPCD. (c5) CSR. (c6) LP-SR. (c7) SR-JD. (c8) CSMCA. (c9) PAPCNN. (c10) LP-CNN.
(c11) Scheme1. (c12) Scheme2.

image as it cannot distinguish the meaningful and signifi-
cant features [see the enlarged region in Fig. 7 (a9) and (c9)].
Scheme 1 also does not successfully extract the signifi-
cant features in the MR-T2 image [see the right region in
Fig. 7 (a11) and (b11)] and fails in completely preserving
textures [see the right region in Fig. 7 (a11) and the left region
in (c11)]. Comparedwith Scheme 1, Scheme 2 achieves better

performance in the extraction of significant features from the
MR-T2 image [see the right region in Fig. 7 (a12) and (c12)]
and some undesired details are excluded [see the bone region
in Fig. 7 (a12)]. But, Scheme 2 does not exhibit an advantage
in completely extracting textures [see Fig. 7 (c12)].

SPECT is a new imaging technology that can con-
struct a three-dimensional image of a tracer concentration
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FIGURE 8. Three sets of SPECT and MRI image fusion results. Two close-ups are provided in each set for better comparisons. (a1) CT.
(a2) MRI. (a3) GF. (a4) JPCD. (a5) CSR. (a6) LP-SR. (a7) SR-JD. (a8) CSMCA. (a9) PAPCNN. (a10) LP-CNN. (a11) Scheme1. (a12) Scheme2.
(b1) CT. (b2) MRI. (b3) GF. (b4) JPCD. (b5) CSR. (b6) LP-SR. (b7) SR-JD. (b8) CSMCA. (b9) PAPCNN. (b10) LP-CNN. (b11) Scheme1.
(b12) Scheme2. (c1) CT. (c2) MRI. (c3) GF. (c4) JPCD. (c5) CSR. (c6) LP-SR. (c7) SR-JD. (c8) CSMCA. (c9) PAPCNN. (c10) LP-CNN.
(c11) Scheme1. (c12) Scheme2.

within a body. The fusion of SPECT and MRI images aims
to facilitate the observation of soft tissue and functional
information. In this experiment, we considered the SPECT
image as a color image. Thus, YUV transform is performed
on the SPECT image to produce a three-dimensional color
space including a luminance component and two chromi-
nance components (U and V), considering human perception.

Then, the luminance component is extracted as a gray image
that continues to participate in the fusion process with the
MRI image. Finally, the fused luminance component, original
U component, and V component are integrated by performing
YUV inverse transform to obtain the fused image.

Fig. 8 shows three sets of fusion results of SPECT andMRI
images. Obviously, the fusion performance of the GF, JPCD,
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TABLE 1. Quantitative indices of fusion results.

CSR, LP-SR, SR-JD, and CSMCA methods in preserving
color fidelity are relatively low, causing serious visual incon-
sistency problem [see the right region in Fig. 8 (a3)-(a8)];
such condition is unsuitable for medical diagnosis. The
PAPCNN and LP-CNN methods generally perform well in
extracting functional information from the SPECT image
and also exhibit good visual effects; however, a few defects
still exist in terms of color distortion [see the right regions
in Fig. 8 (b9) and (c10)]. Additionally, some undesired arti-
facts exist in the region with a high pixel value [see the
white region in Fig. 8 (a9) and (a10)]. Scheme 1 also per-
forms well in color preservation. However, a few artifacts
are introduced into the fused image [see the right region in
Fig. 8 (a11)]. Scheme 2 has the best performance in pre-
serving color fidelity [see the right enlarged region in
Fig. 8 (a12)]; however, partial textures are lost [see
Fig. 8 (a12) and (c12)].

2) OBJECTIVE EVALUATION
The objective evaluation results of the eight fusion methods
and the two proposed schemes on three types of medical
image fusion are reported in Table 1, wherein the aver-
age value of each method on all the experimentally used
images in each fusion problem is listed. For all the ten
methods, the highest score of each metric is highlighted
in bold and the scores ranking second to third places are
underlined. Table 1 is visually presented in Fig. 9. Table 1 and
Fig. 9 clearly show that Scheme 1 always ranks in the top
three places for almost all the objective indexes, except for
the metric SD in the SPECT-MRI image fusion problem.
Also, Scheme 2 always ranks in the top three places for most

of the objective indexes, except for the metric VIFF in the
CT-MRI and SPECT-MRI image fusion problems. Compared
with the eight other fusion methods, the two fusion schemes
are not always the best, but they achieve stable performance
on all fourmetrics. Therefore, our fusion framework performs
comparably or even better than the compared methods.

In particular, compared with Scheme 1, Scheme 2 exhibits
obvious advantages on the metrics QFMI and SD, indicat-
ing that Scheme 2 obtains better performance in preserving
global features and energy of source images. For metric QG,
Scheme 2 outperforms Scheme 1 in MR-T1-MR-T2 and
SPECT-MRI image fusion problems. However, the metric
VIFF of Scheme 2 is lower than that of Scheme 1 for all the
three fusion problems.

The LP-SR method also demonstrates high objective per-
formance in CT-MRI and MR-T1-MR-T2 fusion problems,
but it shows inferior performance in the SPECT-MRI fusion
problem. Also, the LP-CNN method achieves higher per-
formance in the SPECT-MRI fusion problem and infe-
rior performance in the two other medical image fusion
problems.

The PAPCNN method performs well on the metric VIFF ,
this result also confirms that it achieves better visual effects.
However, it exhibits poor performance on the metrics QFMI
and QG because it focuses on the extraction of structural
details and cannot always successfully identify the important
salient features. Scheme 2 outperforms the PAPCNN method
on the aforementioned metrics on all three image fusion
methods, and shows a slight advantage on themetric SD in the
CT-MRI and SPECT-MRI image fusion problems, indicating
that Scheme 2 achieves better objective evaluation.
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FIGURE 9. Quantitative indices of fusion results.

F. DISCUSSIONS
Table 1 clearly shows that Scheme 1 and Scheme 2 achieve
better robustness in three different types of medical image
fusion problems compared with the other fusion methods.
Additionally, Scheme 2 exhibits higher performance over
metrics QFMI , QG, and SD, implying that this scheme
appears more comprehensive in extracting salient edge fea-
tures and image energy. Therefore, the images fused by
Scheme 2 appear more natural and are in accord with human
visual perception. By combining the objective evaluation
with the visual perception of the two schemes, Scheme 2 can
be considered better than Scheme 1.Moreover, Figs. 6-8 show
that the proposed framework can preserve the bone regions
well and nearly all the abnormal details in the same region of
the complementary images are filtered out. This fusion result
is also in accord with the good performance in preserving
salient information and less meaningless details.

In comparison to Scheme 1, Scheme 2 holds a small pyra-
mid decomposition level and eliminates the normalization
phase in the dictionary construction and sparse coding stages,
in which the mean value of atoms or patches is subtracted,
causing the sparse coding stage to merely process the struc-
tural details of low-frequency layers in terms of pixels. As a
consequence, Scheme 1 pays more attention to the extraction
of salient information and details, whereas Scheme 2 focuses
more on the preservation of global features. Therefore, we can
see from Figs. 6-8 that some artifacts exist in the fused
images obtained by Scheme 1 since this scheme cannot
identify the meaningful and significant features, resulting in

unsatisfactory fusion results. It also can be expected is that
Scheme 2 blurs some details, and this result agrees with
the inferior visual effect caused by the ignorance of salient
details.

Another notable problem is that the two schemes are eas-
ily prone to the loss of textures, especially for Scheme 2.
Fig. 10 shows a typical example used in experiments for this
defect. Clearly, the GF, LP-SR, SR-JD, CSMCA, LP-CNN
methods preserve most of the texture details from the
MR-T2 image, whereas the other fusion methods includ-
ing Scheme 1 and Scheme 2 achieve poor performance
in extracting the textures, which can be seen from left
close-up in Fig. 10. The edge information seems to be
strengthened by JPCD method, but it still loses textures. The
PAPCNN method introduces a few meaningless details of
MR-T1 image. Scheme 1 and Scheme 2 have flaws of textures
loss when referring to the MR-T2 image [see the left close-
up in Fig. 10 (k) and the right close-up in Fig. 10 (l)]. This
is mainly because almost all the texture details in the MRI
image are retained in the detail layer. Since the Laplacian
operator followed by the Gaussian filtering provides supe-
rior performance in highlighting edges or gradients. These
textures and noises are processed using a guided filter-based
scheme, which can be essentially considered the extrac-
tion of edge features and the smoothing of textures with
noises. Consequently, the areas with high gradient are pre-
served and the textures are blurred. Hence, our framework
can efficiently protect bone features from the introduction
of meaningless details at the sacrifice of a few textures.
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FIGURE 10. A typical example of the defect of our fusion framework. (a)-(l) refer to the source images and fusion results by different
methods: (a) MR-T1 image; (b) MR-T2 image; (c) GF; (d) JPCD; (e) CSR; (f) LP-SR; (g) SR-JD; (h) CSMCA; (i) PAPCNN; (j) LP-CNN;
(k) Scheme1; (l) Scheme2.

TABLE 2. Average time-consumption of different methods when fusing two images of size 256 × 256 pixels (Units:Seconds).

In particular, Scheme 2 focuses on preserving global features
and thus appears more serious than Scheme 1 in terms of
losing details, which in accord with a lower score over met-
ric VIFF . To address this disadvantage, applying effective
contrast enhancement schemes to the detail layer may be
helpful for enhancing texture details.

G. COMPUTATIONAL EFFICIENCY
The analysis of the computational efficiency of different
fusion methods is compared in this section. The experimental
environment is MATLAB R2014b on a computer equipped
with an Intel(R) Core (TM) i7-8750H CPU (2.20 GHz) and
8GB RAM installed on a Win 10 64-bit operating system.
All the source images in the fusion experiments are used
to compute the average running time. Table 2 provides the
average running time of ten different methods. As shown
in Table 2, the GF and LP-SR methods require less run-
ning time than the other fusion methods. The PAPCNN and
LP-CNNmethods also exhibit good computational efficiency
due to their simplicity of implementation. The JPCD method
uses a novel online dictionary learning method and takes

less time to form a fused image compared with the proposed
method. The SR-JD method has the lowest computational
efficiency because of its time-consuming joint dictionary
constructionmethod. TheCSMCAmethod achieves competi-
tive performance at the expense of running time. In particular,
the proposed method practically uses a pre-trained dictionary
that is required to construct a dictionary before the fusion
process. It requires more running time, which is primarily
attributed to the time-consuming dictionary learning process,
in which the sliding window scheme with the sliding length
of one pixel is used to divide source images into patches.
In conclusion, the proposed method produces superior fused
images at the cost of running time.

V. CONCLUSION
A two-scale multimodal medical image framework based
on guided filtering and sparse representation is presented
in this study. The proposed method utilizes a guided fil-
ter for two-scale decomposition to improve edge informa-
tion. Then, the LP-SR and guided filtering-based rules are
applied to merge the base and detail layers, respectively.
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To enhance the sparse representation performance for the
pyramid-decomposed low-frequency layer, a spatial degraded
dictionary is learned from patches of source images by using
a selection-based rule. The fused image is finally obtained by
integrating the fused base and detail layers. In particular, two
schemes under this framework are proposed to identify the
best scheme on the basis of preserving salient features and
retaining less meaningless details. Extensive experiments on
three different types of medical image pairs are conducted.
Compared with state-of-the-art fusion methods, the proposed
fusion framework shows strong robustness and achieves com-
petitive performance in the visual effect and objective eval-
uation of three types of medical images because it extracts
accurately salient information and less abnormal details.
We theoretically analyzed the significant difference between
the two schemes and verified by conducting compari-
son experiments, which indicates Scheme 2 is better than
Scheme 1 in terms of both the visual effect and objective
evaluation. However, these two schemes perform well at
the expense of losing textures due to the inherent denoising
process that is applied in the detail layer. In the future, we will
explore effective contrast enhancement methods to improve
the texture details. Another notable problem is that the pre-
sented framework is time-consuming due to the dictionary
learning process. Therefore, some online dictionary learning
scheme for medical images can be designed.
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