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ABSTRACT Association analysis is critical in data analysis performed to find all co-occurrence relationships
(i.e., frequent itemsets or confident association rules) from the transactional dataset. An association rule can
improve the ability of users to discover patterns and develop corresponding strategies. The data analysis
process can be summarized as a set of queries, where each query is a real-valued function of the dataset.
However, unless restrictions and protections are implemented, accessing the dataset to answer the queries
may lead to the disclosure of the private information of individuals. In this paper, we propose an original
differentially private association rules mining (DPARM) algorithm, which uses multiple support thresholds
to reduce the number of candidate itemsets while reflecting the real nature of the items and uses random
truncation and uniform partition to reduce the dimensionality of the dataset. Both of these elaborated
approaches can aid in reducing the sensitivity of the queries, and this dramatically reduces the scale of
the required noise and improves the utility of the mining results. We significantly stabilize the noise scale by
adaptively allocating the privacy levels and bound the overall privacy loss. Through a series of experiments,
we prove that our DPARM algorithm outperforms the literature in the accuracy of data mining while
satisfying differential privacy. To the best of our knowledge, our work is the first DPARM algorithm to
adopt multiple support thresholds while using a set of elaborated approaches to bound the overall privacy
loss of the mining process.

INDEX TERMS Privacy-preserving data analysis, differential privacy, association analysis, association rules
mining, frequent itemset mining.

I. INTRODUCTION
With the development of information technology and the
popularity of smart devices, the volume of data generated
by humans has substantially grown in scale. International
Data Corporation [30] has forecasts that by 2025, the global
datasphere will grow to 163 ZB, which is approximately
10 times the 16.1 ZB of data generated in 2016. As Professor
Viktor Mayer-Schönberger [25] opined, ‘‘Data’s true value is
like an iceberg floating in the ocean. Only a tiny part of it is
visible at first sight, while much of it is hidden beneath the
surface.’’ Data analysis techniques, such as data mining and
machine learning, are powerful tools for exploring the ice-
berg. Decision-making is becoming increasingly automated
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and thus no longer relies on the subjective judgments of
individuals.

Data mining and machine learning are two common data
analysis techniques, but their application scenarios differ
somewhat: Data mining emphasizes the discovery of useful
knowledge, whereas machine learning focuses on predict-
ing unknown entities on the basis of associations. Associa-
tions, which are co-occurrence relationships in transactional
datasets, constitute an essential class of laws in data. Asso-
ciation analysis is a fundamental data mining task that was
first applied to analyze the contents of shopping baskets in a
market to discover purchasing habits. One of the most famous
examples is ‘‘diapers and beer.’’ Any relationship between
these two items is not readily apparent, but after analysis of
associations, the market manager determined that shoppers
who buy diapers are more likely to buy beer. On the basis of
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this result, themarket manager could adopt effective commer-
cial strategies; for example, themarketmanager could publish
promotional advertisements for diapers while increasing the
price of beer. Then, when customers come to buy cheap
diapers, they may not notice the increased in beer prices or
may not want to go to another market to find cheaper beer,
and thus, the market would profits.

Associations canmore specifically be divided into frequent
itemsets and association rules. By definition, the frequency
with which an itemset appears in a transactional dataset is
called support. If the support is larger than the minimum
support, then the item set is called a frequent itemset. An
association rule is represented as ‘‘{coronavirus disease 2019
(COVID-19)}→{fever, cough},’’ which means that if one
person gets the COVID-19, then the person ‘‘possibly’’ has
fever and cough. The support of the association rule is
equal to the support of the union {COVID-19, fever, cough}.
The possibility is portrayed through confidence concern-
ing the proportion of all individuals’ information containing
{COVID-19} that also contain {fever, cough}. The propor-
tion is equal to the ratio of the support of the association rule
to the support of {COVID-19}. If the confidence is higher
than the minimum confidence, then the association rule is
called a confident association rule.

Data analysis has made business more effective and is
changing many aspects of personal life. However, it is likely
that as the volume of data concerning all individuals contin-
ues to increase, the documentation of individual personalities
and behaviors will become increasingly detailed, an outcome
which entails risk to individual privacy if due caution is
not exercised. Members of the general public acting as data
providers thus face a tradeoff: they can enjoy more person-
alized services and a higher quality of life, but excessive
data collection and misuse threaten their privacy. Among
companies acting as data collectors and processors, those
that can collect massive amounts of data and extract more
information from them can gain a competitive advantage, but
the more data they hold and the more analysis they perform,
the greater is their data protection responsibility; otherwise,
they may violate regulations such as the European Union’s
General Data Protection Regulation [9].

Thus far, privacy-preserving data analysis has been
receiving increased attention by those pursuing the goal of
protecting individual privacy while maintaining data utility.
In the data analysis domain, there is an urgent need for a
reasonable and feasible definition of privacy as well as a need
to develop mechanisms satisfying this definition and address
various types of attack strategies (for different adversarial
targets).

An intuitively appealing privacy protection measure is
data anonymization, which specifies the form of datasets
to be released. However, data anonymization is consid-
ered a weak privacy definition because an adversary who
knows auxiliary information about certain individuals in the
dataset can initiate a re-identification attack. For instance,
the anonymizedNetflix dataset can be linkedwith the Internet

Movie Database (IMDb), and accordingly, almost all sub-
scribers in the Netflix dataset can be uniquely identified [28].

Many attempts have been made to refine anonymization,
such as k-anonymity [31] and its variants l-diversity [21]
and t-closeness [14]. An extreme approach is to release only
exact statistics for the dataset. However, an adversary can
exploit the relationships between certain pairs of statistics
to obtain private information of certain individuals through
a ‘‘difference attack.’’ For example, the difference between
the answers to ‘‘How many people have cancer?’’ and ‘‘How
many people have cancer and are not Alice?’’ can reveal A’s
cancer status. Note that a query audit is useless because such
malicious query pairs are usually difficult to discover.

In general, all the aforementioned privacy definitions are
syntactic (i.e., they specify how a privacy-preserving out-
put should look) and do not reflect the meaning of privacy
protection with respect to individuals. By contrast, semantic
security entails a semantic definition of privacy.

Semantic security compares the extent of change that
occurs when the adversary’s inferences about an individual
made before and after statistics are released, whereas dif-
ferential privacy compares the extent of change that occurs
when the adversary’s inferences about an individual made
when statistics containing and excluding the individual’s data
are released. Differential privacy is a mathematical defini-
tion tailored to data analysis and equipped with a metric of
privacy loss. The output distribution of a privacy-preserving
data analysis remains ‘‘stable’’ under any possible change
to a single individual’s data. In particular, differential pri-
vacy can (1) provide meaningful privacy protection against
adversaries with arbitrary auxiliary information and arbitrary
attack strategies, (2) bind the privacy risk of an individual
participating in data analysis, and (3) create a complex system
using several simple building blocks. Thus far, differential
privacy is considered the strongest privacy definition and has
become the formal privacy standard in both academia and
industry.

Many differentially private algorithms for frequent itemset
mining and confident association rule mining have been
proposed, such as the score perturbation-based FPM algo-
rithm [3], the PrivBasis algorithm [18], the DiffFIM algo-
rithm [41], and the HCRMine algorithm [26], [27]. Most
of these are based on the nonprivate Apriori algorithm [2].
However, these algorithms remain subject to the detrimental
effect of large or unstable noise. Large noise occurs when
high-dimensionality datasets are analyzed or too many candi-
date itemsets are generated in using a single support thresh-
old. Unstable noise results from improper allocation of the
privacy budget for each substep of the mining process. Both
compromise the utility of the mining results.

The key element that makes association rule mining prac-
tical is the support threshold, used to prune the search space
and limit the number of rules generated. However, using only
a single support threshold implicitly assumes that all items in
the data are of the same nature, have similar frequencies in
the database, or both. This is often not the case in real-life
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applications [13]. In many applications, some items appear
highly frequently in the data, whereas others rarely appear.

How to set one appropriate support threshold for all items
is a difficult question. In the retailing business, customers buy
some items very frequently but other items very rarely. Usu-
ally, the necessities, consumables and low-price products are
bought frequently, while the luxury goods, electric appliance
and high-price products infrequently. If the support threshold
is set too high, we might consider those luxury goods to be
less important items; however, those luxury goods represent
hundreds if not thousands of times more revenue to the store
than the commonly purchased low-price products do. By
contrast, if the threshold is too low, the computational cost
becomes expensive, and the mining result causes a combina-
tional explosion; the result is manymeaningless itemsets. The
same difficulty may occur whenwe are about to minemedical
records.Miningmedical records is a vital real-life application
because it can reveal which symptoms are related to which
diseases. However, many critical symptoms and diseases are
infrequent in medical records. For example, influenza (flu)
occurs much more frequently than does the recent coron-
avirus disease 2019 (COVID-19), and both have symptoms
of fever and persistent cough. If the value of the support
threshold is set high, the rule ‘‘flu→fever, cough’’ can be
found, but we would never find the rule ‘‘COVID-19→fever,
cough.’’ To find this COVID-19 rule, we must set the value
of the support threshold very low. However, this causes many
meaningless rules to be found at the same time.

The dilemma described in the preceding paragraph is
the ‘‘rare item problem.’’ In real-life applications, some
items tend to naturally have more weights than other items.
Researchers have addressed this problem by allowing users
to use ‘‘multiple support thresholds.’’ In brief, rare itemset
mining is a more advanced setting of frequent itemset mining
that allows user to apply different thresholds to each item.

These efforts motivated us to develop a novel association
rules algorithm to guarantee both privacy and utility by using
multiple support thresholds. In this article, we propose the
DPARM algorithm, which meets these challenges through
a group of well-elaborated techniques, namely the use of
multiple support thresholds, sensitivity control, and adaptive
allocation of privacy budgets. In particular, our major contri-
butions are as follows:
• We originally use multiple support thresholds and assign
the support threshold for each distinct item in both a
data-driven and differentially private manner.

• We dramatically reduce the noise scale through sensitiv-
ity control by lowering the dimensionality of the trans-
actional dataset and decreasing the number of candidate
itemsets.

• We significantly stabilize the noise scale through adap-
tive allocation of privacy budgets, which changes the
privacy budget in proportion to the query sensitivity.

• We perform formal privacy analysis and bound the
overall privacy loss through ex post differential pri-
vacy. We also verify utility and demonstrate that our

method outperforms the literature through a series of
experiments.

The remainder of the article is organized as follows.
Section II reviews the background knowledge concerning
association rule mining and differential privacy. Section III
presents the related work. Section IV formalizes the com-
putational model and key challenges. Section V describes
the DPARM algorithm in detail. Section VI proves that the
DPARM algorithm satisfies differential privacy. Section VII
presents the results of experiments in which the DPARM
algorithm is applied to five real-world datasets. Section VIII
presents the conclusion of the work.

II. PRELIMINARIES
In this section, we review the basic knowledge of association
rule mining and differential privacy.

A. ASSOCIATION RULE MINING
Let T = {t1, . . . , tn} be a transactional dataset where each
transaction tj is a subset of an item universe I = {i1, . . . , im},
i.e., tj ⊆ I . An association rule r is an implication of the
form X → Y , in which the itemsets X ,Y ⊆ I are called
antecedent and consequent, and X ∩ Y = ∅. The support of
r is the proportion of transactions containing X ∪Y , which is
the same as the support of the itemset X ∪ Y . The confidence
of r is the proportion of transactions containing X which also
contain Y .

When mining association rules, we must first specify the
support and confidence thresholds, which are the minimum
support and the minimum confidence that any output associ-
ation rules must reach. In the traditional setting [2], there is
only one minimum supportminsup and minimum confidence
minconf , and these are selected in advance. By contrast,
in the advanced setting [13], there are multiple minimum
supports. Each distinct item is specified a minimum item
support (MIS), and the minimum support of an association
rule is the lowest MIS among the items in it. A single mini-
mum confidence minconf is used in both settings. We apply
the advanced setting because it is superior in simulating the
real world and entails a less number of candidate itemsets.
Without losing generality, we define the minimum support in
terms of the itemset instead of the association rule.
Definition 1 (Minimum Support [13]): For ρ, λ ∈ [0, 1]

and an item j with support supT(j), the MIS of j is

MIS(j) = max{ρ × supT(j), λ}. (1)

For an itemset X ⊆ I , the minimum support of X is
minj∈X {MIS(j)}.

The constants ρ, λ ∈ [0, 1] are called the support relevance
and the lowest allowed MIS, which control the dependence
of MIS on support and the lower bound of MIS, respectively.
Note that when ρ = 0, all MISs converge to λ, equivalent to
the single minsup in the traditional setting.

In general, we want strong association rules both frequent
and confident. As in the Apriori algorithm, we can generate
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confident association rules from frequent itemsets. The fre-
quent itemsets and the confident association rules are defined
as follows.
Definition 2 (Frequent Itemset [41]): For an itemset X ⊆

I and a dataset T with n transactions, the support of X is

supT(X ) =
1
n
|{t : X ⊆ t}|. (2)

X is a frequent itemset if and only if its support is higher than
the minimum support, i.e., supT(X ) ≥ minj∈X {MIS(j)}.
Definition 3 (Confident Association Rule [13]): For an

association rule r : X → Y and a dataset T with n
transactions, the support and confidence of r is

supT(r) = supT(X ∪ Y ), (3)

confT(r) =
supT(r)
supT(X )

. (4)

r is a confident association rule if and only if its confi-
dence is higher than the minimum confidence minconf , i.e.,
confT(r) ≥ minconf .

B. DIFFERENTIAL PRIVACY
Let D = {d1, . . . , dn} be a dataset where each dj denotes
the data of a single individual and is an element of the data
universe D. Neighbors are a pair of datasets that differ only
with respect to the data of a single individual.
Lemma 1 (Neighbors): Datasets D and D′ are neighbors

if D′ can be obtained from D by removing or adding the data
of a single individual.

These neighbors are also called unbounded neighbors,
in contrast to bounded neighbors [12]. Differential privacy
that is constrained only by unbounded neighbors obtains
superior properties [19].
Definition 4 (Differential Privacy [5]): A randomized

mechanismM satisfies ε-differential privacy if for any neigh-
bors D and D′ and for any potential output q̂ ∈ range(M ) and
then we have

P[M (D, q) = q̂] ≤ eε · P[M (D′, q) = q̂]. (5)
The query q is a real-valued function of D. The constant

ε > 0 is called the privacy budget, which bounds the privacy
loss. Note that M must be randomized, and randomness
might come from adding noise (or resampling, etc.). When
answering q,M (D, q) [abbreviated asM (D) when q is fixed]
can be seen as a random variable, and we need to calibrate the
noise scale according to the global sensitivity of q.
Definition 5 (Global Sensitivity [5]): For any neighbors

D and D′, the global sensitivity of a query q ∈ R is

1q = max
D,D′
|q(D)− q(D′)|. (6)

The Laplace mechanism perturbs q by adding the noise
generated from the Laplace distribution. The probability den-
sity of the Laplace distribution is Lap(z|b) = 1

2b exp{−
|z|
b },

where the scale parameter b is related to both the global
sensitivity 1q and privacy budget ε.

Definition 6 (Laplace Mechanism [5]): For a transac-
tional dataset D, a query q ∈ R, and a privacy budget ε,
the Laplace mechanism MLap satisfies ε-differential privacy:

MLap(D) = q(D)+ Z , (7)

where Z is drawn from Lap(1q
ε
).

Definitions 5 and 6 can be extended to the vector form.
For q = [q1, q2 . . . , qJ ], the global sensitivity 1q =
maxD,D′ ||q(D)− q(D′)||1 = maxD,D′

∑J
j=1 |qj(D)− qj(D

′)|.
Similarly, the Laplace mechanism MLap(D) = q(D) + Z =
[q1+Z1, q2+Z2, . . . , qJ +ZJ ], where Zj is i.i.d . drawn from
Lap(1q

ε
).

Amechanism that analyzes the differentially private results
or consists of several differentially private building blocks
still satisfies differential privacy.
Definition 7 (Closure Under Postprocessing [7]): For any

algorithm A and a randomized mechanism M, if M
satisfies ε-differential privacy, then A ◦ M satisfies
ε-differential privacy.
Definition 8 (Sequential Composition [7]): For D and a

sequential mechanism Mseq(D) = [M1(D),M2(D), . . . ,
Ms(D)], if eachMj (1 ≤ j ≤ s) satisfies εj-differential privacy,
then Mseq satisfies (

∑s
j=1 εj)-differential privacy.

Definition 9 (Parallel Composition [7]): For a random
partition {D1,D2, . . . ,Dp} of D and a parallel mechanism
Mpar(D) = [M1(D1),M2(D2), . . . ,MK (Dp)], if each Mj (1 ≤
j ≤ p) satisfies εj-differential privacy, then Mpar satisfies
(maxpj=1 εj)-differential privacy.
Definition 10 (Privacy Loss [5]): The privacy loss of a

randomized mechanism M for any neighbors D and D′ and
for any potential output q̂ ∈ range(M ) is

Loss(q̂) = max
D,D′

log
P[M (D) = q̂]
P[M (D′) = q̂]

(8)

However, commonly, the privacy budgets cannot be fixed
a priori. For instance, in adaptive data analysis, the privacy
budgets may be a function of the outputs of previous compu-
tations. Nevertheless, we can obtain an a posteriori privacy
guarantee provided by ex post differential privacy.
Definition 11 (Ex Post Differential Privacy [7]): A ran-

domized mechanism M satisfies E(q̂)-ex post differential
privacy if for any potential output q̂ ∈ range(M ) and then
we have Loss(q̂) ≤ E(q̂).
Note that ex post differential privacy is equivalent to differ-

ential privacy once the outputs of the mechanism are known.
In other words, if E(q̂) ≤ ε for all q̂, then M is also differen-
tially private.

III. RELATED WORK
To ensure data security and user privacy, privacy-preserving
data mining (PPDM) has emerged as an increasingly
important concern. Approaches based on sanitization and
anonymity, such as those in [23], [31], [37], and [35],
were proposed to generate a protected dataset for gen-
eral purposes of data mining using privacy-preserving tech-
nologies, such as k-anonymization, differential privacy,
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and cryptograph-based technologies. These methods are
data-driven solutions and used to generate protected dataset
for statistic or machine learning analysis. Nevertheless,
the aforementioned workarounds were not designed for asso-
ciation rule mining of transactional datasets.

The problem of association rule mining was first iden-
tified in [1], which received widespread attention. Several
well-known algorithms for association rule mining have been
developed, such as Apriori [2], Eclat [39], FP-Growth [10],
and NR-HARs [22] algorithms. Some well-konwn studies
[15], [16], [33], [36], [38] have attempted to elaborate effi-
cient frequent itemset/pattern mining algorithms for transac-
tional datasets or the data from the Internet of Things. These
works focus on designing efficient algorithms for mining
frequent itemsets/patterns based on novel data structures and
mining techniques while maintaining high utility. However,
these methods do not focus on guarantee of data security and
user privacy. Thesemethods of dataminingwithout providing
protection of data security and privacy are orthogonal to our
work. We are more interested in PPDM.

As a specific type of PPDM, privacy-preserving asso-
ciation rule mining (PPARM) has been widely researched
in several areas, such as market basket analysis, e-health,
and wireless sensor networks. The purpose of PPARM is to
identify relationships of interest among sets of items in a
transaction database while protecting the data security and
user privacy. Reference [42] classified workarounds related
to PPARM into six categories of methods, namely those
based on data obfuscation, heuristics, reconstruction, meta-
heuristics, cryptographs, and secure multiparty computation.
However, knowing how to distinguish between sensitive and
insensitive information relies heavily on experience. Because
adversaries are assumed to have any auxiliary information,
meeting the requirements of privacy protection under such a
division is difficult.

Differential privacy [6] is a powerful semantic privacy
model that transforms a dataset through bounding the proba-
bility of an adversary learning whether a particular individual
is present in the dataset. Differential privacy has become
the de facto standard in the privacy-preserving release and
processing of sensitive data and has been considered in the
data mining domain.

Our work focuses on mining association rules in a dif-
ferentially private manner. The existing DPARM algorithms
can be roughly divided into two categories, one of which
needs to mine frequent itemsets as a fundamental step in
association rule mining; examples include the DiffFIM [41],
PrivBasis [18], and PrivSuper [34] algorithms. The other
category mines association rules directly, and examples of
such algorithms are the HCRMine algorithm [26] and its
variants the HCRBins and HCRPlus algorithmx [27]. These
algorithms are discussed in further detail in the subsequent
paragraphs.

The DiffFIM algorithm [41] smartly truncates T by a trun-
cation cardinality θ once Ck is generated, which limits the
maximum cardinality of transactions from m to θ . For each

transaction t ∈ T, the smart truncation first selects c, where
c ∈ Ck and c ⊆ t with the highest weight, and then updates
the weight of the remaining c ⊆ t and continues to select c
unless θ is reached. The initial weight of c is defined as the
summation of the noisy support of all its (k − 1)-subsets, and
the updated increment is the product of the average weight
and number of items that has already been selected. The
DiffFIM algorithm tries to estimate K through binary search
and averagely separates the overall privacy budget into K
parts. It first computes y = [y1, . . . , ym], where yj is the
maximum support among the itemsets with cardinality k .
It then finds the j? such that yj? is the smallest integer that
exceeds the support threshold λ through differentially private
binary search because y is nonincreasing. However, it cannot
offset the effect of 1q on noise because the privacy budgets
are allocated averagely.

The PrivBasis algorithm [18] projects T onto a λ-basis set
B = {B1,B2, . . . ,Bw}, where Bj ⊆ I and |Bj| < m, and
any itemset with support higher that λ is a subset of some
basis Bj. For each Bj, such projection means removing all
the items that are not in Bj from every transaction, which
is equivalent to generating 2|Bj| − 1 candidate itemsets. The
PrivBasis algorithm specifies K and only mines the most K
frequent itemsets rather than all frequent itemsets above a
single support threshold. Some of overall privacy budget is
used to construct the λ-basis set B = {B1,B2, . . . ,Bw}, and
the other is averagely separated into w parts for computing
the noisy support of each Bj. Nevertheless, it works well only
when the minsup is very large.
The PrivSuper algorithm [34] applies the concept of maxi-

mal frequent itemsets to detect the final results; consequently,
the corresponding subsets are added into the results with-
out privacy budget consumption. Furthermore, the sequence
exponential mechanism that combines the Laplace mecha-
nism and exponential mechanism is designed to extend the
current itemset. Specifically, the sequence exponential mech-
anism is applied to extend a given itemset S by adding one
more item x to S that maximizes the frequency of the resulting
itemset S ′ = S ∪ {x}. The sequence exponential mechanism
consumes zero privacy budget if the resulting itemset S ′

is no longer frequent; otherwise, the sequence exponential
mechanism consumes the same amount of budget as the plain
exponential mechanism.

Rather than truncation or projection, the HCRMine algo-
rithm [26] uses a novel representation of the association rule
space and voids to compute the support of c ∈ Ck for k > 1.
It only mines the set F1 of frequent 1-itemsets and sorts
them in descending order of noisy supports. Then, it uses a
sliding window of length l on the sorted F1 and directly gen-
erates all confident association rules in thewindow. Similarly,
the HCRMine algorithm only mines the most K confident
association rules and averagely separates the overall privacy
budget into K parts. However, if K is reached, then it still
can generate new association rules and uses weighted reser-
voir sampling wrapped with an exponential mechanism to
determine whether a new generated association rule should
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be retained by discarding a saved association rule. It isolates
items inside and outside the sliding window and hides the
sup(·) and conf (·) information.

In summary, all existing solutions are only suitable for
a single support threshold minsup, and some of them only
work well for the very large minsup. The average allocation
of privacy budgets after estimating K is not ideal because it
cannot offset the effect of the sensitivities on noise, and the
top-K methods may compromise the integrity of the mining
results because the original goal requires finding all strong
association rules.

Moreover, the HCRMine algorithm is problematic because
the items inside and outside the sliding window cannot
exist in the same association rule, and we cannot judge the
importance of the association rules because their confidence
and support are hidden by the exponential mechanism. The
HCRBins algorithm [27] tries to improve on the utility of
the HCRMine algorithm by using the parallel composition
theorem. It decomposes the item universe I into J disjoint
subsets, where each subset j ∈ J generates K

J confident
association rules by using the overall privacy budget ε. How-
ever, the HCRBins algorithm may violate differential privacy
because the parallel composition theorem should be applied
to disjoint subsets of a dataset (such as T) rather than to
disjoint subsets of a dictionary (such as I ). For simplicity,
we consider the case when J = 2 (i.e., I = I1 ∪ I2, where
I = I1 ∩ I2 = ∅). For a transaction t ∈ T s.t. t ∩ I1 6= ∅
and t∩I2 6= ∅, if some items are used to generate association
rules in I2, the rest of the items remain available for generating
association rules in I1. This is a reaccess ofT that causes more
privacy loss and fails to satisfy the precondition of the parallel
composition theorem.

Although the feasibility and efficiency of these methods
have been demonstrated, they were all designed based on
single support, which tends to suffer from the rare item
problem. By contrast, our proposed technique can extract
high-confidence rules with adaptive supports. To the best of
our knowledge, our work is the first DPARM algorithm to
adopt multiple support thresholds.

IV. COMPUTATIONAL MODEL AND KEY CHALLENGES
Before we describe the DPARM algorithm in detail,
we present the formalized computational model. We also
identify the key challenges to achieving the goal.

A. COMPUTATIONAL MODEL
The computational model is shown in Fig. 1. A trusted server
holds a transactional dataset T = {t1, t2, . . . , tn} of n individ-
uals. Each individual contributes a transaction tj ⊆ I , where
I = {i1, i2, . . . , im} is an item universe containing m distinct
items. Note that T can be seen as a compact representation
of a relational dataset R = [r1, r2, . . . , rn], where rj ∈
{0, 1}m. A data analyst who is also assumed to be an adversary
interacts with the trusted server by posing a statistical query
q ∈ [0, 1] to obtain information about T, and q is given a
response only through the randomization mechanismM .

FIGURE 1. Computational model.

B. KEY CHALLENGES
A DPARM algorithm mainly involves two steps:
• Mine all frequent itemsets from the candidate itemsets.
• Mine all confident association rules from the frequent
itemsets.

Two key challenges affect the first step. The first challenge
is that the high sensitivity of the queries leads to large-scale
noise. Let q = [q1, . . . , q|Ck |] be a vector of counting queries
where each qj computes the support of each candidate c ∈
Ck , and Ck is the set of candidate itemsets with cardinality
k . The sensitivity of q can be easily computed as 1q =
min{

(m
k

)
, |Ck |}/n because the addition or removal of a single

transaction can increase or reduce the support of
(m
k

)
itemsets

by at most 1
n simultaneously. Clearly, the dimensionalitym of

the transactional dataset and the amount |Ck | of the candidate
k-itemsets determine the sensitivity of the queries.
Consider an example. For the Laplace mechanism MLap,

if the maximum cardinalityK of frequent itemsets is 4 and the
overall privacy loss is bounded by 2, the scale of noise will
be unacceptably large relative to the support, which results
in no utility at all. When mining the frequent 1-itemsets with
m = 2000 and n = 50000, the scale parameter of Laplace
noise is 1q

ε
=

2000/50000
2/4 =

2
25 and the standard deviation is

√
2 × 2

25 ≈ 0.1131. However, the typical support threshold
λ is 0.01, which is one order of magnitude smaller than the
noise.

The second challenge is that the improper allocation of
privacy budgets leads to unstable noise. It is difficult to
know the maximum cardinality K of the frequent itemsets in
advance and in a differentially private manner because the
mining process utilizes the breadth-first search strategy; that
is, the algorithms first mine Fk from Ck and then constructs
Ck+1 according to Fk . Even if we can obtain K , it is also
difficult to allocate privacy budget for each submining pro-
cess with cardinality k because the sensitivity is significantly
changed for different k , which makes the noise severely vary.

V. DPARM ALGORITHM
In this article, we propose a DPARM algorithm that resolves
the challengesmentioned in Section IV-B by adopting a group
of techniques, namely random truncation and partition of a
transactional dataset and adaptive choice of privacy budgets.
Notation is listed in Table 1, and the bold letters are used to
denote both vectors and nested sets.

A. OVERVIEW OF THE DPARM ALGORITHM
We plot the flow of the DPARM algorithm in Fig. 2. The steps
requiring privacy protection are presented in red, and the steps
involving multiple support thresholds are shown in blue.
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TABLE 1. Notation.

We first randomly truncate the long transactions in T and
uniformly partition T into two disjoint subsets T(a) and T(b)

for different tasks. In particular, T(a) is used to obtain the
sorted item universe S, which stores the minimum support
i.MIS for each item i ∈ I in ascending order. T(b) is used
together with S to mine frequent itemsets and further strong
association rules through a breadth-first search strategy. Note
that we use purple (which can be made by blending red and
blue) to highlight this step because it should be not only
differentially private but also the basis for assigning multiple
support thresholds.

We must scan truncated transactional datasets many times
and obtain support information, and each time should be
differentially private.We only need to select the initial privacy
budget, which is used to count the support i.sup for each item
i ∈ I . When k ≥ 2 and counting the support c.sup for each
candidate itemset c ∈ Ck , the privacy budget is adaptively
computed after Ck are generated. Hence, we do not need to
estimate or specify the maximum cardinality K in advance.
We use multiple support thresholds to better simulate the

real world, which yields fewer frequent itemsets because the
concept of ‘‘frequent’’ is no longer absolute but is rather
related to the nature of the items in the itemset. This not
only makes the mining results more useful but also reduces
the number of candidate itemsets. As stated in [13], when
ρ = 0.25 and λ = 0.01, the number of frequent itemsets is
only 8.5% of the result yielded by algorithms using a single
support threshold, and the number of candidate itemsets is
further reduced to less than 4%. The utility of i.MIS is critical
because it determines the sorted item universe S and the
minimum support c.MS for each candidate itemset c ∈ Ck
(when k ≥ 2).

B. INITIALIZATION
Before beginning the mining process, we first need to ini-
tialize the transactional dataset. The algorithm, shown in

FIGURE 2. Flowchart of the DPARM algorithm.

Algorithm 1, can be divided into three parts: identifying
the distinct items, estimating the cardinality distribution, and
truncating and partitioning the transactional dataset.

In lines 4 to 8, the algorithm finds the item universe I from
the transactional dataset T, which is trivial but necessary for
all mining algorithms. The maximum cardinality of transac-
tions is equal to the number of distinct items m = |I |.

In lines 9 to 10, the algorithm computes the noisy car-
dinality distribution d. It divides T into m disjoint subsets
according to the cardinality j and counts the number dj of
transactions in each subset through the Laplace mechanism.
The privacy analysis is shown in Theorem 1. In line 11,
the algorithm computes the transaction cardinality θ through
d, and θ is the smallest integer that makes the summation
of dj for j = 1 to θ larger than a p-th percentile of n. The
typical value of p is 0.85 [41]. However, as shown in Fig. 3,
the true cardinality distributions of variant datasets (e.g.,
Retail, BMS1, BMS2, Action, and Kosarak) are different
when j ≤ 10. Therefore, we view p as a function of T with
range (0, 1) rather than a fixed value. Note that p can also be
optimized using the method introduced in [8].

In lines 12 to 16, the algorithm truncates the transactions
inT. For each transaction t ∈ Twith cardinality larger than θ ,
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Algorithm 1 Algorithm for Initializing the Transactional
Dataset
1 Input: Transactional dataset T, split rate r , and privacy

budget ε
2 Output: Item Universe I , truncation cardinality θ , and

truncated transactional dataset T(a), T(b)

3 Function(InitDataset (T, r, ε))
4 I = ∅
5 for each transaction t ∈ T do
6 for each item i ∈ t do
7 if i /∈ I then
8 I = I ∪ {i}

end
end

end
9 T = {T1, . . . ,Tm} // Tj contains
transactions with cardinality j

10 d = [d1, . . . , dm] = [n1 + Z1, . . . , nm + Zm]

// nj = ||Tj||1 and Zj
iid
∼ Lap( 1

ε
)

11 θ = The minimum θ such that
∑θ

j=1 dj ≥ p(T)× n
// p ∈ (0, 1)

12 T(a),T(b)
= ∅,∅

13 for (j = 1; j ≤ m; j++) do
14 for each transaction t ∈ Tj do
15 if |t| > θ then
16 t = Randomly select θ items from t

end
end

17 T(a)
j = Randomly select r × dj transactions from Tj

18 T(b)
j = Tj \ T

(a)
j

19 T(a)
= T(a)

∪ T(a)
j ; T(b)

= T(b)
∪ T(b)

j
end

20 return I , θ,T(a),T(b)

FIGURE 3. True cardinality distribution.

we randomly select θ items in t and remove other items.
In lines 17 to 19, the algorithm partitions T in a uniformly
random manner. Let r ∈ (0, 1) be the split rate of partitioning

T into two parts T(a) and T(b) with size r × n and (1− r)× n.
For j = 1 to m, we randomly pick r × dj transactions and put
them into T(a) and put the other transactions into T(b).

C. MIS ASSIGNMENT AND SUPPORT COUNTING
During the mining process, we need to repeatedly access
the transactional dataset to obtain support information. This
is done not only in MIS assignment but also in generating
the set C1 of candidate 1-itemsets from S and mining the
set Fk of frequent k-itemsets from Ck for k > 1. The
NoisyCount algorithm is shown in Algorithm 2, which is an
interface between T and the algorithms requiring the support
information.

Algorithm 2 Algorithm for Differentially Private Com-
putation of Supports

1 Input: Transactional dataset T, general set G, sensitivity
1, and privacy budget ε

2 Output: Set G of candidate itemsets

3 Function(NoisyCount (T,G,1, ε))4 for each
transaction t ∈ T do

5 for each itemset g ∈ G do
6 if g ⊆ T then
7 g.sup++

end
end

end
8 for each itemset g ∈ G do
9 g.sup = g.sup+ Lap(1

ε
)

10 g.sup = Round(g.sup)
end

11 return G

In lines 4 to 9, the algorithm computes the noisy support of
each element g ∈ G through the Laplace mechanism, where
G is a general set representing item universe I , sorted item
universe S, or the set of candidate k-itemsets Ck in different
scenarios. The privacy analysis is presented in Theorem 2. In
line 10, the algorithm normalizes the noisy supports through
the Round function. In brief, if the noisy support is smaller
than 0 or larger than 1, then we round it to 0 or 1. An
alternative method is to add or subtract a single standard
deviation [17].

At the start of the mining process, we need to assign the
MIS for each item i ∈ I . Rather than specifying the support
thresholds in advance, specification of MIS is closely related
to the support of i. The algorithm for assigning MIS is shown
in Algorithm 3. Each item i ∈ I has two attributes, i.e., i.MIS
and i.sup, which denote MIS and support of i.

In line 4, the algorithm calls the NoisyCount algorithm
and obtains the support information of each item i ∈ I .
In lines 5 to 7, the algorithm assigns MIS for each item
i ∈ I according to Lemma 1 and sorts I in ascending order
of i.MIS.
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Algorithm 3 Algorithm for Assigning MIS

1 Input: Transactional dataset T, item universe I , support
relevance ρ, lowest allowed MIS λ, sensitivity 1,
and privacy budget ε

2 Output: Sorted item universe S

3 Function(AssignMIS (T, I , ρ, λ,1, ε))
4 I = NoisyCount(T(a), I ,1, ε) // Update i.sup
5 for each item i ∈ I do
6 i.MIS = max{ρ × i.sup, λ}
end

7 S = Sort(I ) // Sort I in ascending order
of i.MIS

8 return S

D. MAIN ALGORITHM
Now we are ready to explain our main algorithm, DPARM,
which is shown in Algorithm 4. The DPARM algorithm
consists of the following steps.
(1) For T and the privacy budget ε1, initialize T and obtain

the item universe I , the truncation length θ , and the
truncated and partitioned transactional datasets T(a)

and T(b).
(2) For T(a) and the privacy budget ε(a), assign the MIS

and obtain the sorted item universe S with support
information.

(3) For T(b), k = 1, and the privacy budget ε(b)1 :
a) Generate the set Ck of candidate k-itemsets from

S (if k = 1), Ck−1 (if k = 2), or Fk−1 (if k > 2).
b) Adaptively select the privacy budget ε(b)k (if k ≥

2).
c) Mine the set Fk of frequent k-itemsets from Ck .

IfFk is not empty, then go back to (3-a) with k+1.
Otherwise, publish all the frequent itemsets with
their noisy support.

We use multiple support thresholds to improve simulation
of the real world, which results in fewer frequent itemsets
because the concept of ‘‘frequent’’ is no longer absolute but
is related to the nature of the items in the itemset. This not
only makes the mining results more useful but also reduces
the number of candidate itemsets. As stated in [13], when
ρ = 0.25 and λ = 0.01, the number of frequent itemsets is
only 8.5% of the number of results yielded by the algorithms
using a single support threshold, and the number of candidate
itemsets is further reduced to less than 4% of the number
yielded by the other algorithms. Note that the utility of MIS is
critical because it determines the sorted item universe S and
the minimum support of candidate itemsets.

We refer to the random truncation in [41] to reduce the
dimensionality m of T, but differ from [55] in implementing
the step of uniformly random partition, which is a follow-up
work of random truncation without any privacy consumption.
Before completing such partition, we must assign the MIS
with the same privacy budget as mining C1 and F1, which

Algorithm 4 The DPARM Algorithm

1 Input: Transactional dataset T, split ratio r , support
relevance ρ, lowest allowed MIS λ, maximum
support difference ϕ, and privacy budgets
ε1, ε

(a), ε
(b)
1

2 Output: The set F of frequent itemsets and the privacy
loss E

3 Function(DPARM (T, r, ρ, λ, ϕ, ε1, ε(a), ε
(b)
1 ))

4 I , θ,T(a),T(b)
= InitDataset(T, r, ε1)

5 1(a)
= θ/n(a) // n(a) = |T(a)

|

6 S = AssignMIS(T(a), I , ρ, λ,1(a), ε(a))
7 1

(b)
1 = θ/n

(b) // n(b) = |T(b)
|

8 C1,F1 = Mine1(T(b), S,1(b)
1 , ε

(b)
1 )

// Algorithm 5
9 for (k = 2;Fk−1 6= ∅; k ++) do

10 if k == 2 then
11 Ck = GenCandidate2(C1, ϕ)

// Algorithm 6
end

12 else
13 Ck = GenCandidate(Fk−1, ϕ)

// Algorithm 7
end

14 1
(b)
k = min{

(
θ
k

)
, |Ck |}/n(b)

15 ε
(b)
k = ε

(b)
1 ·1

(b)
k /1

(b)
1

16 Fk = MineFrequenter(T(b),Ck ,1
(b)
k , ε

(b)
k )

// Algorithm 8
end

17 F = ∪kFk
18 return F

may compromise the utility of the MIS. However, after parti-
tioning the dataset uniformly at random, we can use the same
privacy budget as the entire mining process and also obtain
almost the same MIS as the result in the original dataset.

We also adaptively select the privacy budgets to stabi-
lize the noise scale. The intuition is to maintain the scale
parameter of Laplace noise, which requires the privacy
budget be changed synergistically with the sensitivity, i.e.,
1

(b)
1

ε
(b)
1

= . . . =
1

(b)
K

ε
(b)
K

. By utilizing the notation of ex post

differential privacy [20] and sequential composition theorems
under adaptive settings [29], we can finally bound the overall
privacy loss.

E. MISCELLANEOUS
The algorithm for generating the setCk of candidate itemsets
does not entail privacy concerns because its seed is already
produced through a differentially private approach. The only
exception is when k = 1 because C1 is mined from S, which
relies on support information. In addition, the algorithm for
mining the set Fk of frequent itemsets also needs support
information, which is obtained by calling the NoisyCount
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Algorithm 5Algorithm for Mining Candidate 1-Itemsets
and Frequent 1-Itemsets

1 Input: Truncated transactional dataset T(b), sorted item
universe S, sensitivity 1(b)

1 , and privacy budget
ε
(b)
1

2 Output: Set C1 of candidate 1-itemsets and set F1 of
frequent 1-itemsets

3 Function(Mine 1(T(b), S,1(b)
1 , ε

(b)
1 ))

4 S = NoisyCount(T(b), S,1(b)
1 , ε

(b)
1 )

5 C1 = ∅
6 for each item i ∈ S do
7 if C1 == ∅ then
8 if i.sup ≥ i.MIS then
9 γ = i.MIS
10 C1 = C1 ∪ {{i}}

end
end

11 else
12 if i.sup ≥ γ then
13 C1 = C1 ∪ {{i}}

end
end

end
14 F1 = ∅
15 for each itemset {i} ∈ C1 do
16 {i}.MS = i.MIS; {i}.sup = i.sup
17 if {i}.sup ≥ {i}.MS then
18 F1 = F1 ∪ {{i}}

end
end

19 return C1,F1

algorithm. To avoid duplication, we simply list the algorithms
separately in Algorithms 5, 6, 7, and 8. Note that each itemset
c ∈ Ck has two attributes, i.e., c.MS and c.sup, which denote
the minimum support and the support of c.

VI. PRIVACY ANALYSIS
In this section, we analyze the proposed method for
privacy-preserving data mining that combines the Laplace
mechanism of differential privacy. Specifically, we show that:
(i) the proposed method of computing the noisy cardinality
distribution d that satisfies ε-differential privacy, (ii) the pro-
posed method of computing the supports of all g ∈ G that
satisfy ε-differential privacy, and (iii) for the maximum cardi-
nality K of all the candidate itemsets, the DPARM algorithm
satisfies E-ex post differential privacy.
Initially, our algorithm needs to compute the noisy car-

dinality distribution d. It divides T into m disjoint subsets
according to the cardinality j and counts the number dj of
transactions in each subset through the Laplace mechanism.
To prove the noisy cardinality distribution d that satisfies
ε-differential privacy, we analyze it as follows:

Algorithm 6 Algorithm for Generating Candidate
2-Itemsets
1 Input: Set C1 of candidate 1-itemsets and maximum

support difference ϕ
2 Output: Set C2 of candidate 2-itemsets

3 Function(GenCandidate 2(C1, ϕ))4 C2 = ∅
5 for each itemset {i} ∈ C1 do
6 if {i}.sup ≥ {i}.MS then
7 for each itemset {j} ∈ C1 after {i} do
8 if |j.sup− i.sup| ≤ ϕ then
9 C2 = C2 ∪ {{i, j}}

end
end

end
end

10 return C2

Algorithm 7 Algorithm for Generating k-Itemsets for
k > 2
1 Input: Set Fk−1 of frequent (k − 1)-itemsets and

maximum support difference ϕ
2 Output: Set Ck of candidate k-itemsets

3 Function(GenCandidate (Fk−1, ϕ))4 Ck = ∅
5 for each pair of itemsets f1, f2 ∈ Fk−1 do
6 // f1 = {i1, . . . , ik−2, ik−1} and
7 // f2 = {i1, . . . , ik−2, jk−1} such that
8 // ik−1 ≤ jk−1 and |jk−1.sup− ik−1.sup| ≤ ϕ
9 c = {i1, . . . , ik−2, ik−1, jk−1}
10 Ck = Ck ∪ {c}
11 for each (k − 1)-subset s of c do
12 if i1 ∈ s or i2.MIS == i1.MIS then
13 if s /∈ Fk−1 then
14 Ck = Ck \ {c}

end
end

end
end

15 return Ck

Theorem 1: Compute the noisy cardinality distribution d
that satisfies ε-differential privacy.

Proof: Let q = [q1, . . . , qm] where each qj counts the
number nj of transactions inTj. We can compute that1q = 1
because the addition or removal of a single transaction can
increase or decrease a single nj by at most 1. Therefore,
for a privacy budget ε, answering q through the Laplace
mechanism with the scale parameter 1

ε
satisfies ε-differential

privacy. �
During the mining process, we need to repeatedly access

the transactional dataset to obtain support information. For
protecting the privacy of the transactional dataset, our algo-
rithm accesses the noisy support of each element g ∈ G
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Algorithm 8 Algorithm for Mining Frequent k-Itemsets
for k > 1
1 Input: Truncated transactional dataset T(b), sorted item

universe S, sensitivity 1(b)
k , and privacy budget

ε
(b)
k

2 Output: Set Fk of frequent k-itemsets

3 Function(MineFrequenter (T(b),Ck ,1
(b)
k , ε

(b)
k ))

4 Ck = NoisyCount(T(b),Ck ,1
(b)
k , ε

(b)
k )

5 Fk = ∅
6 for each itemset c ∈ Ck do
7 c.MS = mini∈c{i.MIS}
8 if c.sup ≥ c.MS then
9 Fk = Fk ∪ c

end
end

10 return Fk

through the Laplace mechanism. The privacy guarantee can
be proven as follows:
Theorem 2: Compute the supports of all g ∈ G that satisfy

ε-differential privacy.
Proof: Let q = [q1, . . . , q|G|], where each qj computes

the support of g ∈ G in T. We can compute that 1q =
1
n min{

(
θ
k

)
, |G|} because the addition or removal of a single

transaction can at most increase or decrease the support of(
θ
k

)
itemsets by 1

n simultaneously. Therefore, for a privacy
budget ε, answering q through the Laplace mechanism with
the scale parameter 1

εn min{
(
θ
k

)
, |G|} satisfies ε-differential

privacy. �
We conclude this section by resulting from Theorems 1

and 2. Here, we prove that for the maximum cardinality K
of all the candidate itemsets, the DPARM algorithm satisfies
E-ex post differential privacy.
Theorem 3: For the maximum cardinality K of all the

candidate itemsets, the DPARM algorithm satisfies E-ex post
differential privacy for E = ε1 + max{ε(a), ε(b)}, where
ε(b) =

∑K
k=1 ε

(b)
k .

Proof: After the mining process is finished, both the
maximum cardinality K of all the candidate itemsets and
the total privacy loss E are fixed. For T and the privacy
budget ε1, InitDataset satisfies ε1-differential privacy
according to Definition 7 and Theorem 1. For T(a) and the
privacy budget ε(a), AssignMIS satisfies ε(a)-differential
privacy according toDefinition 7 and Theorem 2. ForT(b) and
the privacy budget ε(b)k , 1 times call of Mine 1 and k−1 times
call of MineFrequenter satisfies ε(b)-ex post differential
privacy for ε(b) =

∑K
k=1 ε

(b)
k according to Definitions 7 and 8.

{T(a),T(b)
} is a random partition of T because T(a) is uni-

formly sampled fromT, andT(a)
∩T(b)

= ∅ andT(a)
∪T(b)

=

T. Therefore, steps (2) and (3) satisfy max{ε(a), ε(b)}-ex post
differential privacy such that the DPARM algorithm satisfies
E-ex post differential privacy for E = ε1 + max{ε(a), ε(b)}
according to Definitions 7 and 8. �

VII. EXPERIMENTS
A. ENVIRONMENT AND DATASETS
We implemented the DPARM algorithm in Python 3.6, and
conducted experiments on a computer running Windows 10
with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of RAM.
Each experiment was run 10 times, and themean and standard
deviation are reported. Because [13] is a nonprivate algorithm
using multiple minimum supports to mine high-confidence
association rules, it was assigned to be the ground truth in
our experiments.

We ran the DPARM algorithm on the following datasets.
• The Retail dataset [32] contains the basket records
provided by an anonymous Belgian retail supermarket.
Each item is a stock-keeping unit (SKU), and each trans-
action contains all the SKUs that a customer purchased
during an instance of shopping.

• The BMS-WebView-1 and BMS-WebView-2 [40] (abbre-
viated as BMS1 and BMS2) datasets contain several
months of click-stream records from two e-commerce
sites. Each item is a web page with product details, and
each transaction contains all the web pages that a visitor
viewed in one session.

• The Action dataset contains all the five star–rated action
movies screened from theMovieLens 10MDataset [11].
Each item is an action movie, and each transaction con-
tains all the action movies to which an audience gave
five stars.

• The Kosarak dataset [4] contains click-stream records
of a Hungarian online news portal. Each item is a news
page, and each transaction contains all the web pages
that a visitor viewed from the news portal.

The characteristics of these datasets, particularly the
number of transactions, number of distinct items, average
cardinality of transactions, andmaximum cardinality of trans-
actions, are summarized in Table 2.

TABLE 2. Characteristics of datasets.

B. UTILITY METRICS
We measured the performance of the DPARM algorithm
according to the following utility metrics.
Definition 12 (Mean Error [18]): For all frequent itemset

f ∈ F, the mean absolute error (MAE) measures the mean
error between the noisy truncated support and the original
support:

MAE =
1
|F|

∑
f ∈F

|nsupTθ (f )− supT(f )|. (9)
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FIGURE 4. Split rate vs. utility.

Similarly, the mean relative error (MRE) measures the mean
error between the noisy truncated support and the original
support relative to the original support:

MRE =
1
|F|

∑
f ∈F

|nsupTθ (f )− supT(f )|
supT(f )

. (10)

Definition 13 (F Score [34]): For the set F′ of frequent
itemsets mined by the DPARM algorithm and the set F of

frequent itemsets mined by the nonprivate algorithm that
serves as a ground truth in this paper, precision and recall
are the proportions of common frequent itemsets F′ ∩ F in F′

and F, respectively:

precision =
|F′ ∩ F|
|F′|

, (11)

recall =
|F′ ∩ F|
|F|

. (12)
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FIGURE 5. Maximum support difference vs. utility.

The F Score is the harmonic mean of precision and recall and
is defined as

F-score = (
precision−1 + recall−1

2
)−1

= 2×
precision× recall
precision+ recall

. (13)

C. SPLIT RATE VERSUS UTILITY
The experimental results are shown in Fig. 4. We bounded
the overall privacy loss E to 2 and fixed the support relevance
ρ = 0.25, the lowest allowed MIS λ = 0.01, and the
maximum support difference ϕ = 0.5.

We evaluated the effect of the split rate r on utility by
varying the split rate r from 0.05 to 0.5 with a step length
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FIGURE 6. Privacy vs. utility.

of 0.05, which entails the number of transactions in T(a)

increasing until it equalsT(b). The larger the r , the lower is the
utility of the mining results; this is because we must involve
as many transactions as possible in the mining process. How-
ever, r cannot be set too low. This is because even if T(a) is a

uniform sample of T, some items with extremely low support
may still be missed. We compensated for this by setting the
MIS of the missing items to the lowest allowed MIS λ. When
r is too small, most of the items are missing, and thus, the use
of multiple support thresholds is meaningless.
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D. MAXIMUM SUPPORT DIFFERENCE VERSUS UTILITY
The experimental results are shown in Fig. 5. We bounded the
overall privacy loss E to 2, and fixed the split rate r = 0.05,
the support relevance ρ = 0.25, and the lowest allowed MIS
λ = 0.01.
We evaluated the effect of the maximum support differ-

ence ϕ on utility by varying ϕ from 0.1 to 1 with a step length
of 0.1. The utility of the mining results for most datasets did
not significantly fluctuate as a consequence of changes in ϕ
and always remained at a relatively high level. This indicates
that the DPARM algorithm can perform well for mining
frequent itemsets containing not only items whose support
lies in a certain interval but also both low- and high-support
items.

E. OVERALL PRIVACY LOSS VERSUS UTILITY
We then evaluated the effect of privacy parameters, i.e., over-
all privacy loss E , on utility. We fixed the split rate r = 0.05,
the support relevance ρ = 0.25, the lowest allowed MIS λ =
0.01, and the maximum support difference ϕ = 0.5. We also
fixed the privacy budget ε1 = 0.05 and varied ε(a) from 1 to 5
with a step length of 0.5. The experimental results are shown
in Fig. 6. Similar to most differentially private algorithms,
with an increase in the overall privacy loss, the utility of the
mining results improved. When the overall privacy budget
was small, e.g., approximately 2, the utility of the mining
results was still acceptable.

F. COMPARISONS
Our work is closest to the literature PrivBasis [18], which
focuses on generating frequent itemsets in a differentially
private way. Using the noisy frequent itemset counts, they
could in theory determine high confidence rules, but only
rules with very high frequency are retained, whereas numer-
ous moderately-frequent rules are discarded. In contrast, our
proposed technique is able to extract high confidence rules
that have adaptive supports. As shown in Figs. 7 and 8,
we evaluated the effect of the privacy loss on precision and
MRE by varying ε(a) from 1 to 5 with a step length of 0.5,
in which the different values of k are set according to the
size of each dataset and used to mine frequent itemsets. The
experimental results are the average results after 10 runs.
Our DPARM algorithm can outperform PrivBasis for mining
frequent itemsets. Notably, using the accurate frequent item-
sets, we can further determine high confidence rules.

In Fig. 7, for example, the values of precision for DPARM
on Action, Retail, Kosarak, BMS2, and BMS1 are about
0.841, 0.956, 0.997, 0.949, and 0.998, respectively, while
the values of precision for PrivBasis are about 0.694, 0.388,
0.996, 0.375, and 0.543 at privacy loss = 2.5. In Fig. 8, for
example, the values of MRE for DPARM on Action, Retail,
Kosarak, BMS2, and BMS1 are about 0.098, 0.091, 0.104,
0.070, and 0.080, respectively, while the values of MAE for
PrivBasis are about 0.112, 0.048, 0.002, 0.111, and 0.221 at
privacy loss = 2.5. Generally, the higher the k , the more
frequent itemsets are mined. After almost all frequent

FIGURE 7. Effect of the privacy loss on precision.

FIGURE 8. Effect of the privacy loss on MRE.

itemsets in the ground truth are hit, the remaining mined
itemsets that are not hit to the ground truth will increase
the value of MRE. In contrast, when the frequent itemsets
are not fully excavated, the higher the k , the more frequent
itemsets are excavated. Under this situation, themore hits will
be achieved. As a result, the value ofMRE can be low.

As shown in Table 3, when privacy loss is 2.5, Privbasis
using single support greater than or equal to MIS (= 0.01)
results in mining the number of frequent itemsets (which
is 561 from Action dataset), while DPARM using multiple
supports results in mining the number of frequent item-
sets (which is 288 from Action dataset). Compared with
Privbasis, DPARM uses less number of frequent itemsets, but
it can still achieve higher accuracy of data mining. Intuitively,
because the number of frequent itemsets mined by DPARM
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TABLE 3. Privbasis using a single support greater than or equal to MIS ( = 0.01) to mine the number of frequent itemsets, while DPARM using multiple
supports to mine the number of frequent itemsets at privacy loss = 2.5.

is less than Privbasis, in terms of runtime and memory usage,
DPARM can be superior to Privbasis to use the generated
frequent itemsets for association rule mining.

VIII. CONCLUDING REMARKS
Herein, we proposed an original differentially private asso-
ciation rule mining algorithm — the DPARM algorithm,
which meets the challenges that had not been solved in
existing works. More precisely, we dramatically reduced
the noise scale by adjusting two aspects closely related
to the sensitivity; in particular, we lowered the dimension of
the transactional dataset as well as reducing the number
of candidate itemsets. The lowering of the dimension was
achieved through random truncation and uniform partition of
the transactional dataset, whereas the number was reduced
through a benefit achieved through the multiple support
thresholds. When assigning the MIS, we applied the par-
allel composition theorem of differential privacy to obtain
more utility. We also significantly stabilized the noise scale
through adaptive allocation of the privacy budgets and used
the sequential composition theorem of differential privacy to
compute the overall privacy loss of the mining process, which
is bounded by ex post differential privacy. Through a series of
experiments, we verified the utility of the DPARM algorithm
and demonstrated that our method outperforms the literature
over several typical datasets in the real world.
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