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ABSTRACT Vulnerable nature of price forecasts, such as an unpredictability of future and numbers of
socio-economic factors that affect market stability, often makes investment risky. Earlier studies in Finance
suggested that constructing a portfolio can promise risk-spread gains. While Fund Standardization improved
the traditional theories by reducing the computational complexity and by associating every interaction in the
portfolio, such a method still cannot become a winning strategy because it does not measure the current value
or the relative price of each asset. Inspired by the works of finding returns per risk, we attempt to design
an optimal portfolio by searching products that have potential to grow further. More specifically, we first
analyze risk-adjusted returns in the previous periods and use their inertia as a momentum. However, because
historic movements alone do not fully elucidate future changes nor guarantee positive returns, we scored the
relative values of each stock to make more informed estimations. Using the Capital Asset Pricing Model,
we measured the values of each stock and determined those undervalued. In this study, we applied a Genetic
Algorithm to optimize portfolios while incorporating the momentum strategy and the asset valuations. The
proposed GA model was tested in two separate markets, S&P500 and KOSPI200, and projected greater
profits than that from both the previous method with momentum method and the market indexes. From the
experimental results, the proposed CAPM+method was found to be very effective in financial data analysis
and to lay a groundwork for a sustainable investment execution.

INDEX TERMS Genetic algorithm, machine learning, portfolio optimization, modern portfolio theory,
investment strategy, Sharpe ratio, capital asset pricing model, security market line.

I. INTRODUCTION
Guessing what will happen in the future, or making
predictions always involve uncertainty. In the past, because
we can never guarantee what the future will be like, betting
on luck or simply praying has long been a way for predic-
tions. Afterwards people noticed that patterns may exist when
predicting the future, learned from previous mistakes and
used those lessons to calculate odds for specific events. As
a result, many started to make more informed estimations by
measuring the likelihood, andmany probability theories came
into play. However, predictions with optimization processes
or profit maximizations while calculating the chances make
simple statistics no longer effective or cause the problem to
be more complex.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

In finance, where many different factors affect the mar-
ket, investment decision is even more intricate. For exam-
ple, in equity markets, an annual net profit in cash flow
statement alone does not fully represent this year’s price
movements. In addition to business performances, many
externalities including market growths, geo-political issues,
international trends and many more reasons affect stock
prices.

Preferences for risk-margin ratio may differ with each
individual investor, but as a rational person, the investor wants
to win or maximize their risk-return tradeoffs. More exten-
sively and thoroughly theorized, the ideas of maximizing the
earnings in a given risk are compiled by researchers like
Harry Markowitz. In Portfolio Theory [1], [2], he high-
lighted the importance of constructing portfolios to optimize
expected return on an uncertainty.
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Markowitz’s Nobel Prize Winning theory is widely
acclaimed, but at the same time some studies [28] refuted its
practical usage. Researchers at National Chi Nan University
of Taiwan, for example, supported legitimacy of the portfolio
theory, but at the same time they highlighted its ineffec-
tive computational complexity as well as its unsatisfactory
representation of correlation among financial products in
the portfolio. Instead, they suggested Fund Standardiza-
tion methodology to improve the complexity from O(n2) to
O(1) and to consider every relationship between equities in
portfolio.

Studies of portfolio theory, risk analysis and many follow-
ing investigations deserve acclaim for their contribution to
analyze historic patterns and to measure volatility, but their
applications as an investment strategy in the actual financial
market is yet very limited. Technical analysis of historic
prices within portfolio can be integrated with Momentum
Strategy [10]–[14], where previous movement or positions
are assumed to continue their trajectory. Being successful
during the previous market period, however, does not always
guarantee a portfolio’s durability or continuity with respect
to both its profit size and risk rate: prices may have already
reached to its maximum point and be about to nosedive.
Another possibility is that the repeated downtrendmay finally
hit the bottom and make all-time highs on the very next
day. In that regard, technical analysis based on Momentum
Strategy alone is often not satisfactory as an educated forecast
or as an investment plan.

Therefore, we devised an investment strategy based on
equity allocations and portfolio designs, which can sort out
a list of sound assets in terms of rate of return on investment
with respect to its risk while considering undervalued assets
in the market that may retain growth potentials. More specif-
ically, a gap between the actual rate of return of a given stock
and the expected return from security market line in capital
asset pricing model is expected to evaluate the accuracy of
current market estimations through our research.

An ensemble of portfolio theory, risk-return analysis
[3]–[5] and Capital Asset Pricing Model [6], [7] is effective
only when they are actually calculated. Equity selection
or portfolio optimization in the financial markets, where
hundreds and thousands of different products exist, is often
burdensome. Using a genetic algorithm [16], [17], our study
attempts to examine the fitness of each individual in the
market to design optimal portfolio as a promising investment
initiative. Additionally, many previous studies [17]–[32]
insisted on their computational excellence and use in finance,
but not many of them have validated their applications in
dynamic environments. Here, we tested our methodology in
two different financial markets over a decade and intended to
prove its merit for pragmatic usage.

II. BACKGROUND
As the size of the market expands over time, numbers
of tradable products or indexes to be analyzed both in
domestic and international scales also dramatically increase.

Accordingly, investors, especially individual ones, and their
capabilities have become more limited compared to the
institutional investors. Many preceding attempts of trades and
studies in the corresponding field, therefore, utilized compu-
tational power to acquire analytic competences. Automated
trading methods often use machine learning techniques, such
as Artificial Neural Network [18], [21], [25], [26], Support
Vector Machine [19], [20], Reinforcement Learning
[22], [23] or LSTM [24] and attention mechanism [17], based
on technical analysis to forecast for specific quotes in the
corresponding market.

Volatile and unpredictable characteristics of the financial
market, however, often prevent such attempts to make accu-
rate predictions. History may or may not repeat itself in the
financial market. Moreover, unidentifiable noise in financial
data also hinders the use of algorithmic trading. Unlike its
prominent success in academic experiments, real-life invest-
ment and applicationswithmany traditionalmachine learning
in Finance [17]–[27], is known to be relatively less prevail-
ing [33]–[36] compare to many successes in other fields
of studies and works with traditional machine intelligence
techniques. Even in the winning scenario of having 80% or
90% accuracy in the stock predictions, price pattern based
forecasts may fail investors with large costs if they lose big
in a single estimation with such approaches. As previously
stated, noises, complex dimensionality in financial data, and
various not-descriptive socio-economic factors often bring
limitations in learning the patterns. For example, while the
recent COVID-19 pandemic crashed the entire market, learn-
ing historic price data alone was not fully capable of project-
ing such sudden volatility into the forecasts.

However, unpredictability of future prices due to noise and
dimensional complexity in traditional machine learning can
be redeemed or hedged in fundamentals through diversifica-
tions and using asset valuation models. Building a portfolio
or using a risk considered asset valuation models offer better
returns per risk and to lay a groundwork for a sustainable
investment strategy. Extensive but thorough studies [1]–[9]
on how to measure risk balanced return on assets or how to
evaluate the stock prices have been conducted by economists
like H. Markowitz, W. F. Sharpe, J. Lintner and many more.

Although there is a distinction between the definitions
of uncertainty and risk, with respect to their controllability,
uncertainty in the financial market or any unknowns for future
estimations all are considered as risk in this study. Likewise,
volatility is also used as a risk. In short, risk in this research
includes any unpredictable factor that may hinder price esti-
mations in the market.

A. MODERN PORTFOLIO THEORY
Every rational investor is expected to pursue a higher return,
but because ‘there is no free lunch’ in financial investment,
obtaining a high return as a reward always incurs a larger
cost, or a risk. In more simple terms, if a higher profit
involves a bigger risk, the possibility of not making promising
investment is more likely to happen. Then, not every investor
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will make the same decision of unconditionally following
profits. Each may have different propensity for the level of
risk taking: some may prefer high-risk high-return type of
investment, and others may like a stable risk structure even
if they cannot realize maximized return. It may be optimal
to find a single product that offer a large profit with a low
level of risk in the hypothetical situation. However, it is nearly
impossible to find that single stockwheremarket dynamically
evolves while countless market factors are involved.

Modern portfolio theory [1], [2] assumes that risk-averse
individuals in the market shall pursue a rational behavior of
choosing the most profitable assets in a certain degree of risk.
In other words, one prefers investment decisions on items
that offer the most returns on the same level of risk or on
less risky assets if expected returns are the same between
two options.

Markowitz insists that maximized return for a given level
of volatility can be achieved through diversification while
constructing an efficient portfolio, a set of financial assets,
instead of putting one’s budget on a single commodity.
In such circumstances, securities in each portfolio are con-
sidered to reduce uncertainty: compositions of stock offset
or redeem individual return/risk and form a new synthetic
overall return/risk. We can measure expected return on port-
folio by summing up an individual equity’s return based on
its proportional weight and calculate risk through statistical
measure and correlation via variance and covariance.

B. SHARPE RATIO
William F. Sharpe devised a new simplified model [3]–[5]
which improves the practical aspect of Mean-Variance
approach of Markowitz. Unlike the earlier model, which
required costly and time-consuming computation of vari-
ance and covariance matrix for every individual stock in the
portfolio, Sharpe’s Diagonal Model assesses total risk of a
portfolio in a simple regression analysis and eases the calcu-
lation workloads. Sharpe additionally developed a measure,
the Sharpe ratio, to examine the return on investment per
unit of risk. In equation (1), Sharpe defined the differential
return while R̃A is the return on assets and R̃B is the return
on the benchmark and the expected value of d and sigma d,
the standard deviation of d, derive the expected differential
return per unit of associated risk in equation (2).

d̃ ≡ R̃A − R̃B (1)

S ≡
d̄
σd

(2)

In Sharpe ratio [5], which is also known as Reward-
to-Variability Ratio, excess return of an asset over a bench-
mark or often riskless asset return delineates how much
return is gained for the same level of risk. Therefore, larger
Sharpe ratio indicates a portfolio with a better risk-adjusted
performance, and negative values designate that a benchmark
or risk-free asset offers a greater return than the selected
equities.

C. FUND STANDARDIZATION
Modern portfolio theory [1], [2] and the Sharpe ratio [3]–[5]
are criticized in some aspects despite their foundational
contributions on finance and economics. Chou et al., from
National Chi Nan University of Taiwan, for example, high-
lighted that Mean-Variance model and the Sharpe ratio
demand large amount of calculations to be carried out [28].
In the integrated field of computer science and finance, where
performance with respect to computing resource and time
spent to calculate is critical, having an inefficient complex-
ity is a nuisance especially when complexity exponentially
increases as the stocks in the portfolio accumulates.

The researchers at Chi Nan also stressed that the use of
covariance in MPT to represent interactions among stocks
does not denote every existing relationship in the portfolio.
Markowitz’s portfolio variance for the risk in equation (3),
where wi is the amount of assets allocated to stock i in the
percentage, σij is the covariance between two stocks i and j,
accurately represents the correlation between any 2 stocks in
the portfolio. However, if there exist more than 2 stocks in
the portfolio, which is more likely to happen in real cases,
Markowitz’s approach is incapable of denoting interactions of
multiple stocks more than 2. Here, as depicted in equation (4)
and Fig.1, we provided the case of having 4 stocks and its risk
where it does not consider the interactions of 3 and 4 stocks.

σ 2
p =

N∑
i=1

N∑
j=1

wiwjσij,where σij = σiσjρij (3)

FIGURE 1. Correlation types among 4 stocks that are considered/ not
considered due to covariance-approach in modern portfolio theory.

Chou, et. al proposed Fund Standardization, a measure
for an individual return subtracted from transaction fee and
tax for the allocated stocks, to assess portfolio risk more
thoroughly, as precisely demonstrated in Table 4. Using sim-
ple additions and subtractions can help investors or portfolio
managers to 1) take all interactions among stocks in portfolio
set into account 2) simplify the calculations and improve
the computation complexity from O(n2) of modern portfolio
theory to O(1).

σ 2
p = w2

Aσ
2
A+w

2
Bσ

2
B+w

2
Cσ

2
C+w

2
Dσ

2
D+2wAwBσAσBρAB

+2wAwcσAσCρAC+2wAwDσAσDρAD+2wBwCσBσCρBC
+2wBwDσBσDρBD+2wCwDσCσDρCD (4)
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D. CAPITAL ASSET PRICING MODEL AND SECURITY
MARKET LINE
Return on investment is credited with a reward for taking
risks. Based on many portfolio theories [1], [2], as earlier
introduced, we can spread the risk by increasing the num-
ber of assets allocated in portfolio. Making investment on
non-risky assets through portfolio design sounds promising
but there still exist unidentified danger even after an investor
hedge a risk through diversifications.

In finance and portfolio theory, risk, or total risk, is com-
prised of systematic risk and non-systematic risk. Markowitz
and many researchers suggested the idea of eradicating the
possibility of fluctuations through constructing a portfolio.
The corresponding risk for assets volatility which can be
mitigated through portfolio design is called a non-systematic
risk, or an idiosyncratic risk. On the other hand, a systematic
risk, also known as undiversifiable risk, cannot be spread
because it is inherent to the market, not to the individual
assets.

Expanding the assumptions on Markowitz’s portfolio the-
ory [8], [9], Capital Asset Pricing Model (CAPM), gives the
expected return of an asset with respect to its systematic risk.
In Fig.2, we made a graphical representation of CAPM, or a
Security Market Line (SML) to depict and to evaluate what is

the expected return of themarket for different levels of market
risk in Beta.

Beta or beta coefficient [6], [7] is a measure for the volatil-
ity of an individual stock based on its past performance rela-
tive to its market’s movement as depicted in OLS regression
of stock A in Fig.2 (a) or as in equation (5). In other words,
beta value indicates how the stock moves compare to the
market. A high-beta value larger than 1.0 means that the stock
is more volatile, or riskier than the market, and low-beta stock
of less than 1.0 is less likely to fluctuate. If a stock moves
exactly same as the rest of market, it should have the beta
value of 1.0.

βi =
Cov (Ri,Rm)
Var(Rm)

(5)

Having beta coefficient of the stock on the x-axis, expected
return on the y-axis, we can graph the security market line to
represent risk-return relationship of the capital asset pricing
model. A reward for investors tolerating risks, risk return
tradeoff or the risk-premium in Fig.2 (b) is the excess of the
risk-free rate of return an investment and it is the slope value
of the SML.

Adding risk-free rate of return to the risk premium mul-
tiplied by the beta-value, we can derive expected return at a

FIGURE 2. Representation of capital asset pricing model on security market line.
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systematic risk. If a particular stock positions above the SML,
it should provide a better return against its risk and assumed
to be under-valued. On the other hand, stocks below the SML
where the return is lower at a given risk, is over-valued, and
investors should be reluctant to keep them in their buying list.

III. ENSEMBLE INVESTMENT STRATEGY USING GENETIC
ALGORTIHM
To make investment profitable, we should buy stocks at low
prices and in turn sell them at higher prices. To achieve
such exchanges, we should first judge which stock can offer
a more favorable return. However, it is nearly impossible
for an investor to individually analyze every market factor,
such as financial data, industry trends or economic outlook.
Especially where hundreds of different but interrelated prod-
ucts fluctuate in real-time, individual investors, compare to
institutional ones, are incapable of leading such a movement.

In the earlier sections, we have witnessed the following:
1) risk balanced returns are necessary to realize profits, and
2) both systematic and unsystematic risks can be reduced via
diversifications and valuations. Although such approaches
can be helpful when analyzing market data in a rapidly
changing environment, analytics itself is not sufficient as an
investment tool. In this section, we describe how to apply
these analytical tools into an actual investment strategy.

A. PORTFOLIO DESIGN – MOMENTUM STRATEGY
Since Sir Isaac Newton introduced inertia in his first law
of motion, we have observed the continuity of object move-
ments in various fields. In finance, David Ricardo, a British
economist and a successful trader, is known as one of the first
scholars to develop a theory of continuous movements as an
investment tool. Ricardo insisted that the prices of financial
products tend to continue their previous actions and dropped
a hint regarding future investment opportunities. A number of
subsequent investors, like Jesse Livermore in How to Trade
in Stocks [13] andWyckoff in The Richard D.Wyckoff Method
of Trading in Stocks [14] also supported this theory.

Later, A. Cowles and H. E. Jones drafted the first aca-
demic work onmomentum [10]. They articulated a number of
favorable observations related to continuity in the movement
of prices, quoting that ‘‘the tendency is very pronounced for
stocks which have exceeded the median in one year to exceed
it also in the year following.’’ Additionally, N. Jegadeesh and
S. Titman examined price inertia and realized excess average
return obtained from purchasing past-outperforming stocks
and selling past-underperforming stocks [12].

Positive experiment results from investors following the
market and taking advantage of the existing trends are not
only found in the equity market but also in different financial
markets, like bonds, commodities, or foreign exchange mar-
kets. Moreover, compared to value investing, investors may
also obtain profits with a momentum strategy in a relatively
short term. This strategy is also known to be very accessible
without a deliberate financial analysis.

B. PORTFOLIO DESIGN – CAPM STRATEGY
Despite of its strong theoretical reasoning and evidences,
the use of momentum investing is sometimes criticized for
its incompetency in the flat market. Additionally, in line
with the fact that Newton’s first law of motion applies under
some constraint of not being ‘‘compelled to change its state
by the action of an external force,’’ momentum strategy in
the financial market also operates under certain conditions:
stock prices can be reversed due to, for example, domestic
and international economic matters, or a corporate’s own
financial issues. In such cases, investors with a momentum-
only strategy may suffer and lose big, as it were. Because a
trend-following method lacks deliberate analysis, an investor
can never completely forecast market whims.

Therefore, instead of simply wishing the same return-
and-risk trends to repeat in the coming periods, it is more
reasonable to score the relative values of stocks. One of the
most prescriptiveways of pricing a stock or portfolio takes the
help of the capital asset pricing model [8], [9]. According to
Sharpe and Lintner, we can price the market values of shares
by measuring their risks and their relations to the market.
In CAPM, return on an individual stock i, or E (Ri) , is a value
of risk-free-rate and a premium for accrued risks.

Although the risk-free-rate of return is a return with
zero-risk in theory, because no such investments exist, the
Treasury Bill rate of 2% often replaces it in practice. The
premium here consists of a stock’s relative volatility and
market premium. Market premium is the expected return
from the market minus the risk-free-rate and involves how
an individual stock or a portfolio reacts with respect to the
market, denoted as Beta. Sharpe’s model can be found in
equation (6) and can be converted to equation (7):

E (Ri)− Rf
βi

= E (Rm)− Rf (6)

E (Ri) = Rf + βi(E (Rm)− Rf ) (7)

With the adjusted close prices of individual stocks,
KOSPI200, and the S&P500 index, we initially calculated
their monthly percent changes. We can easily find a single
Beta value for each company. However, CAPMoften encoun-
ters criticism for using a single fixed beta value for differ-
ent time periods. Therefore, we dynamically computed the
3-year-monthly beta of each stock, as shown in Table 1, that
changes over time throughout the testing periods of 10 years
in our experiments. After gathering the Beta values of every
stock, we can complete equation (7) and measure the price
based on its behavior in an efficient market.

C. PORTFOLIO OPTIMIZATION – GENETIC ALGORITHM
Granting funds to the optimal portfolio, which returns
risk-adjusted profits the most while remaining under-
estimated till date, is going to be a goal of our investment
strategy. However, it is nearly impossible for a human to
manually analyze all the existing items in a market and decide
whether or not to include a specific stock in a portfolio.
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TABLE 1. Pseudo-code for 3-year-monthly beta calculation.

Instead, we can more easily find the best combination by
using a genetic algorithm (GA).

Inspired by Darwinian ideas, this heuristic search algo-
rithm [15], [16] follows natural selections to discover an opti-
mal solution among viable candidates. By passing the best
existing ones down to the succeeding generations or a group
of populations, we can gradually find better fitness-scored
solutions. A detailed process of this stochastic optimization
methodology is provided below in Fig. 3 and Table 2. Using
such optimization procedures, our goal is to design a portfolio
with optimal stocks for the investment periods to follow.

FIGURE 3. Flow chart of overall process and a genetic algorithm.

TABLE 2. Pseudo-code for a genetic algorithm.

1) ENCODING AND INITIALIZATION
As a preliminary step of a genetic algorithm, we should define
a problem and an objective function: build a portfolio with

maximum risk-balanced returns that are composed of under-
valued stocks. Then, a defined problem should be trans-
formed into its genotypic form. By assigning each stock from
the index fund to a chromosome in a string or list, phenotypic
variables are encoded as genotypic representations. For the
simplification and fast-computing purposes of this study, this
is done via binary representations.

Table 3 presents a reduced example of six companies
from S&P500 companies under chromosomal representation.
Similar to numerous earlier studies on portfolio management
with a GA [28]–[32], having 1 for Chromosome indicates
that the given company is included in a portfolio. On the
contrary, 0 denotes that a corresponding company does not
contribute to the plan for the coming investing period. For
example, in Table 3, only two companies, American Airline
Group and Amerisource Bergen Corporation, are included in
the portfolio for the next term.

TABLE 3. An example of stocks in genotypic representations.

The experiment conducted in our study deals with data
from two separate markets, KOSPI200 and S&P500, which
include approximately 200 and 500 stocks, respectively.
Therefore, with genetic encoding, each stock is represented
in 200 and 500 binary-bits and each gene group is identified
as a chromosome. During the evolutionary process, a number
of different chromosomes form a population. While later
generations’ populations will acquire their chromosomes and
binary values through genetic operations, the binary geno-
typic value in the initial stage is given arbitrarily.

2) FITNESS CALCULATION
Using a computationally effective portfolio design provided
by a fund standardization approach [28], we optimized
stock allocations. However, the key differences between our
methodology and the traditional GA approach with portfolio
are in the objective functions and the notion of survival of the
fittest. While previous methods, such as Chou’s, focuses on
optimizing a portfolio with high returns and low- risk stocks,
our understanding of portfolio as an investment strategy also
highlights the aspects of stock valuations.

First, we raise either capital or set the amount of initial bud-
get before the trade executions. Then, we equally distribute
the budget over the stocks that are randomly selected as a
part of a portfolio. For instance, if the total budget is $100
and two random stocks are selected, we put $50 on each
stock. After finding the price of those allocated stocks and
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TABLE 4. Pseudo-code for fitness calculation.

computing how many stocks can be bought within a budget,
we deduct the incurred transaction fees and taxes to acquire
the fund standardization of each stock. Similarly, we should
also find CAPM values for every selected stock. Adding fund
standardization and CAPM values of all selected stocks and
remaining budgets, we can get Portfolio Fund Standardiza-
tion and Portfolio CAPM. Finally, using the Sharpe ratio and
Portfolio CAPM, we can measure the fitness of a given chro-
mosome. More detailed procedures of the fitness calculations
can be found in Table 4.

Table 5 provides an exemplary demonstration of Table 4,
which shows how fitness calculation was carried out with six
stocks, AAL, AAP, ABBV, A, ABC, and AAPL, in S&P500
in January 2008. At first, we encoded them into their geno-
typic forms and chose the stocks to trade. Once the encoding
was done, we split the total fund of $10,000 into two and
allocated $5,000 to selected stocks (AAL and ABC) in this
particular scenario. Thereafter, we acquired the necessary
information for the transactions, such as stock prices, han-
dling fees, transaction taxes on particular dates. Then, we
calculated how much the portfolio is worth after the invest-
ment, precisely after 21 days (the available trading dates in
January 2008).

As a result, investing on AAL and ABC as an optimal
chromosome collected from genetic operations with
Jan 2008 financial data, returned $10,389.89 from the initial
capital of $10,000.00, giving approximately 3.90% profits
with a risk rate of 3.02. The CAPM value, obtained from
security market line differences and beta calculation, is 0.13,
and the final Fitness Scores for this portfolio are 1.42 and
1.29 with and without CAPM information, respectively.

TABLE 5. An example of fitness calculation of trading 6 stocks from
S&P500 in January 2008.

3) GENETIC OPERATIONS
Darwinian natural selections that iteratively refine species
and realize the ‘‘survival of the fittest’’ start with random
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guesses through a process known as initialization or encod-
ing. Then, a group of chromosomes composed of stocks or a
population in each generation either evolves or makes natural
variations via genetic operations. The evolutionary stages of a
genetic algorithm that helps tomove chromosomes toward the
ultimate solution of finding the best portfolio in a given period
include three steps, which are also witnessed in the field
of biology: selection, crossover and mutation. The repeated
steps of genetic operations produce offspring with better fit-
ness score values and ultimately lead to global optimal solu-
tions. In our case, each genetic operation gradually searches
an optimal portfolio that is under-valued and has a strong
positive momentum. This will be done by pursuing better
fitness scores in the following genetic operations. A detailed
description of the algorithm used in this research is stated
in Table 6.

TABLE 6. Pseudo-code for 3 genetic operations.

- Selection: After the first populations are created, their
genetic information is passed down to the second gener-
ation. As in genetics and biology, the dominant species
tend to survive longer. By following such an evolu-
tionary theory and preservation for favorable variations,
species with better fitness are devised to have a better
chance of speciating in the next generations. In other
words, a genetic algorithm performs the operation of
searching chromosomes with better fitness scores and
choosing them as more likable candidates for the even-
tual breeding. This process is called selection and it
increases desirable results via repetition in the suc-
ceeding generations. Among many, we used tournament
selection to reduce early convergencewithout re-scaling.
Moreover, tournament selection is expected to have

a better takeover time, compared to the proportional
selection methods.

- Crossover: Another type of genetic operation executed
is crossover. This process, also known as recombination,
imitates the genetic inheritance and the selected parents’
chromosomes by recombining their segments for the
next generations and exploring additional mixtures of
stocks. While selection may largely contribute to the
preservation and breeding of dominant genes, crossover
is expected to ensure the exploration of search space in a
stock list and induce variations in our portfolio combina-
tions. However, without the information on the building
blocks at present, we decided to emphasize more on
exploitations and on sustaining parental genetic infor-
mation while reproducing variations with a two-point
crossover, rather than the larger-size crossovers. In our
case, each crossover got various arbitrary crossover
positions.

- Mutation: Another method of reproduction is to modify
the alleles of individuals. Similar to biological mutation,
which alters the nucleotide sequences, a portion of the
genes in some offspring is subject to be flipped. The
realization of genetic mutation fosters diversity, or at
least prevents early convergence by introducing changes
and generating novel offspring.

- Overlap: We also implemented the idea of overlap to
avoid eradicating the best individuals acquired from
genetic operations. For instance, we forced certain por-
tions of the best chromosomes in the previous generation
to the next one, in order to guarantee that the best
individuals in the coming generation would always be
better than or at least equal to the ones before in terms
of their fitness scores.

We attached examples of genetic operations performed
with six stocks of AAL, AAP, ABBV, A, ABC, and AAPL
from S&P500 in Fig. 4. Because the figure only demonstrates
the general procedures of the genetic operations, chromo-
some size, population size, selection, evolution rates were all
modified in the later experiments. We will state more of the
actual rates and the parameters used in the following section.

IV. EXPERIMENTAL RESULTS
There are many previous studies on the financial appli-
cations of Machine Intelligence with equity investments
using neural networks [17], [18], [21], [24]–[26] sup-
port vector machines [19], [20], or a genetic algorithm
[27]–[32], [37]–[39]. Most of those price prediction prob-
lems, however, were not very successful in the real world,
unlike the expectations [33]–[36]. For instance, even when
the designed model recognized the earlier patterns well
enough, we could not precisely estimate the actual prices
in a different timeframe. Furthermore, many regularization
techniques seem ineffective in this particular field of studies.
Such errors in equity price forecast are even compared to
‘‘A Monkey Throwing Darts.’’

VOLUME 8, 2020 140241



S. Lim et al.: GA Approach to the Portfolio Design Based on Market Movements and Asset Valuations

FIGURE 4. An example of genetic operation with selection, crossover, and mutation processes of six stocks from S&P 500.

Noise in the data is believed to be one of many reasons
behind this unpredictability. This is because not just past price
patterns, but various socio-economic factors also affect the
prices, provided that the data available may not be enough to
make good investments. Moreover, because a designedmodel
has to deal with the events that did not occur yet, it is surely
overwhelming to forecasts solely from historical data.

Therefore, we designed a genuine investment strategy that
identifies and reduces both systematic and non-systematic
risks to succeed in the financial market via machine intelli-
gence, particularly using a genetic algorithm. In the following
sub-sections, we validate portfolios with CAPM and momen-
tum ensembled strategy, with three different analyses: CAPM
Effects Validity Test, Dynamic Market Test, and Overall
Application Analysis. In general, we show the gross and
annual profits as well as the overall analysis.

A. DYNAMIC MARKET ENVIRONMENTS
1) MARKET ENVIRONMENTS
Before digging the details out, we would like to discuss the
experimental universe in which our ensembled portfolio strat-
egy unfolds. Indeed, we conducted experiments on two equity
lists in different financial markets: the constituent stocks of
KOSPI200 from Korea and S&P500 from the United States.
Many applications which expect their models to identify the
market-oriented patterns in a single market, already exist.
However, multi-market application is too challenging to be
completed while using such approaches of detecting patterns.
Our ensembled strategy, on the other hand, does not concern
a single model but a machine intelligence that captures and
analyzes the fluctuating mechanisms of the market using a
theory-based valuation technique. Therefore, we expect that
if our methodology works in one market, it should be appli-
cable in others as well. The operations of our methodology

in two different equity markets are investigated further in the
‘‘Dynamic Market Validity Test’’ section.

First, we performed the ensembled investment strategy test
on the Korean market. According to Korea Exchange (KRX),
the domestic equity market in Korea comprised 1,789 com-
panies as of 2012 and 2,111 companies as of 2018. Despite
its repeated bull-and-bear markets, the Korean stock market
continued its growth andwas worth $2.456 trillion as of 2018.
The Korea Composite Stock Price Index 200 (KOSPI 200) is
the representative index in Korea, which indicates 200 large
capitalization companies and their equities.

According to the World Bank and World Federation of
Exchanges database, the world’s total traded stocks is worth
approximately $68.212 trillion. Our next target market is
the largest stock market, the U.S. stock market, which takes
up a 48.41% share of the world market and is worth about
$33.027 trillion. Since the operation of its first official
stock market, the Board of Brokers of Philadelphia in 1790,
and the Buttonwood Agreement in 1792, which turned into
today’s New York Stock Exchange, the U.S. Stock Market
has also witnessed repeated expansions and recessions. The
Standard & Poor’s 500 Index (S&P500 Index or S&P500) is
a representative indication of the U.S. stock market: its index,
comprising 500 large-cap companies that trade on either the
NYSE or NASDAQ, takes up 80% of the total market value.

We picked these two markets due to a number of reasons.
First, both markets are large enough, well-institutionalized,
and not severely manipulated. Extreme market movements
from political corruptions, or market manipulations that
may arise in many smaller markets, could hinder legitimate
analysis from the informed estimations and discourage rea-
sonable investment opportunities. Additionally, arbitrarily
repeated uptrends, downtrends, or flats in both markets made
the test universe complicated in relation to analysis and
provided real-world like environments for future analyses.
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Last, the independence of the markets with respect to their
price movements can be also helpful when verifying the
applications of our strategy in multiple markets. Although the
Korean stock market is often influenced by the U.S. economy
and its financial market, its own geo-political and industrial
backgrounds, with exclusive strengths and weaknesses, make
it a unique and independent market in itself.

We conducted experiments with stock price data listed on
bothKOSPI 200 and S&P500, particularly for 2008 and 2018.
This specific timeframe includes both the global 2008 finan-
cial crisis, the worst economic disaster since the Great
Depression of 1929, and the stock markets’ record rally of
both markets repeatedly reaching all-time highs. Under these
two extreme investing environments, we investigated how our
methodology survives and operates.

2) PARAMETERS AND SETTINGS
Throughout the tests, we set out to incur trading fees and
transaction taxes of 0.015% and 0.3%, respectively. Although
there is a popular trend where many stock brokerage firms
or trading platforms that offer 0% commissions and different
countries may have different standard for taxes on trading,
we settled those values as a conventionally incurring fare
in both the Korean and U.S. markets. Additionally, all tests
were conducted with stock price data listed in KOSPI200 or
S&P500 for 2008 and 2018. Some stocks, however, did not
go public before 2008 and may have missed several prices
for some periods in our dataset. Selecting those missing value
stocks in a given period is probably futile, and in most cases
the heuristic optimization will automatically not select those
stocks with no prices in certain periods.

For operations in a genetic algorithm, we also set a muta-
tion rate of 1% and a crossover rate of 100% [40], [41], except
for two overlapping individuals who are forced into the next
generation to maintain the previous generation’s best values.
Because we use only the best individuals in the next trading
period after the GA analysis, not many identical individuals,
even when they have good fitness values, are required to pass
down to the coming generations.

In the following experiments, we used financial data
in 1- 3- 6- month time frame for a GA analysis. For example,
as depicted in Fig. 6, we first perform a genetic algorithm in
timestamp t0. After the proposed genetic operation is com-
pleted with financial data in time t0, we use a set of stocks
that are returned from the analysis to make investments in the
next period of t1. Such process is repeated until tn+1 when
last investment is made based on a GA analysis from time tn.

B. ENSEMBLED EFFECTS VALIDITY TEST
In this section, we compare the results following the method-
ologies of CAPM and Momentum Ensembled Strategy
(CAPM+) and Momentum Only Strategy (NO-CAPM) to
the movements of stock index prices during 2008 and 2018,
using KOSPI 200 data. Although this data often comprised
200 large-cap stocks, for data continuity, we acquired the
stock price data of 190 companies during a given time

FIGURE 5. Historical price movements data of KOSPI200 and S&P500.

FIGURE 6. An example of time windows for CAPM+ and momentum
analysis and investments in each timestamp.

period (tickers of constituent companies are presented in the
Appendix). Using this comparison, we examined the valida-
tion of our approach and expected to see CAPM+’s superi-
ority, in terms of generating profits, over a momentum-only
strategy, while such NO-CAPM strategy still outperformed
the movements of the index fund.

Before analyzing the results of each investment plan,
we confirmed whether the GA can achieve optimal portfo-
lio allocations, that includes the devised fitness evaluation
methodologies on CAPM and fund standardization. Each
sub-plot in Fig. 7 shows the changes in average, maximum,
or minimum fitness values of the designed portfolio over gen-
erations. In this example of genetic operations, different color
lines represent distinct months of the year 2013. Although
the values were all different, throughout the 11 months of

FIGURE 7. An example of 1-month analysis in Jan, 2013.
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FIGURE 8. Cumulative ROI movements and annual ROI percentile Distributions between 2008 and 2018 in KOSPI market.

analysis, their scores improved with successive generations
and finally converged before the 150th generation. As men-
tioned earlier, overlapped individuals guaranteed the best
fitness scores and the maximum fitness value never worsened
across generations. Additionally, because the intended varia-
tions induced by the genetic operations, minimum fitness val-
ues are not as stable as average and maximum fitness values,
showing that the implemented algorithm preserves variations
but prevents premature convergences. We can conclude that
our GA can complete optimal stock allocations.

Fig. 8 shows how the proposed trading technique per-
formed throughout 2008 and 2018, compared to how the
index fund changed. Among six subplots, each column refers
to an analysis period of one, three, or six months. While
the three graphs on the top row demonstrate the cumula-
tive Returns on Investment (ROI), the three boxplots on the
bottom row show the annual ROI percentile distributions.
Within each analysis, we conducted three identical trials for
CAPM+ and applied the NO-CAPM strategy on the same
data. This was done to settle concerns about a GA having
non-deterministic features. Although the results did not per-
fectly match, regardless of the analysis periods, each trial
provided very similar results.

Except for one case, all our investments based on both
CAPM+ and NO-CAPM strategies made positive returns.
However, returns from the index funds for 11 consecutive

years outperformed some of our investment trials. For exam-
ple, when using theNO-CAPMmomentum strategy, although
we can find some positive results and obtain positive profits,
it cannot evidently outperform index funds nor be treated as a
good investment plan. Especially, the ROIs on the NO-CAPM
strategy was found to drop severely when the market was
either on a downturn or did not offer strong upward trends
during the flat market.

On the contrary, CAPM+ initiatives provided distinctive
ROIs. In all three different trials of the one-month CAPM
analysis, we obtained over 400% returns over 10 years.
While a recent market instability caused a significant drop
in 2018 even with our methodology, trading a portfolio of
less-risky and undervalued assets was still twofold better
compared to the returns from index fund investments.

Although it is less profitable than a 1-month model,
a 3-month CAPM+ analysis still offered more profits com-
pared to returns from both the NO-CAPM strategy and the
index trading. Here, we observed that it is less likely to make
better margins if the periods of analysis become larger with
CAPM+. We believe that this is due to the characteristics
of valuation in capital asset pricing model. The stock price
converges to a point where an efficient market witnesses
decisions made according to theories on CAPM and beta.
Therefore, selecting undervalued stocks no longer remains
effective as we consider a longer period of time.
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The fact that a 6-month NO-CAPM analysis outper-
forms CAPM+ also supports the notion that a CAPM-based
approach is more prominent only if it is analyzed for a shorter
term. Because the momentum-only approach of NO-CAPM
does not concern market- and beta-based valuations as much
as CAPM analysis, NO-CAPM works better for longer peri-
ods. At the same time, it is also notable that a NO-CAPM
method based on a portfolio composed of outstanding stocks
of the last six months can provide good investment outcomes.
We believe that momentum-only trading in a longer term
made the portfolio more stable, while avoiding the selection
of stocks that have good scores only temporarily from a sharp
increase during short-term fluctuations.

Investors in most real-world cases, however, would not
put their funds for 10+ consecutive years and wait for the
cumulative returns to become 500%. They are more likely to
expect successful results from their investments on a monthly
or at least on a yearly basis. Therefore, we assessed how our
method works in relation to annual returns.

The boxplots above draw the percentile distribution of
annual returns and compares three individual trials of each
technique with index fund investment. Similar to the cumu-
lative return results, the three boxplots with whiskers, from
the minimum to the maximum of annual returns as per our
tactics, display a preferable investment opportunity. Here,
we realized that not only the average values but the overall
quartiles from the boxplot of the 1-month CAPM analysis
also provides better annual returns than the market index,
on average. Moreover, both the maximum and minimum
annual returns of our devised method are always better than
those of the NO-CAPM strategy or KOSPI200. We found
a similar result for the CAPM+ of the 3-month analysis,
but it was not as effective as the 1-month version. Like-
wise, as the period in study gets longer, momentum strategy
becomes more desirable. However, it seems that we need
more cumulative years, instead of executing investment every
other year, to make a suitable 6-month momentum analysis of
the cumulative ROI case.

In order to acquire such boxplots, we first obtained the
annual return during 2008 and 2018 using different models.
Then, we measured how much we had gained in percent-
age throughout each year; every year’s investment started in
January and its trade was terminated by the end of December.

We recorded how much profit we generated after one
month of CAPM+ and NO-CAPM GA analyses, compare to
the annual returns from the index funds presented in Table 7.
Although there were a few exceptions, especially during the
bear market years, where we did not win it, CAPM+ mostly
beat the market and gave good annual returns. Similar to the
cumulative returns, we observed that CAPM+ outperforms
NO-CAPM. However, unlike the earlier tests of cumulative
returns, analyzing six months of inertia effect seemed less
promising with this annual measure and did not lead to a win.

In short, the CAPM+ of finding undervalued and histori-
cally outstanding stocks prevailed with respect to the market
index fund and the momentum-only strategy of using risk and

TABLE 7. Annual ROI in percentage after 1 month analysis.

returns only. It worked better if the stock price data was long
enough to find a valuation of the portfolio, and the outcome
became worse if analysis became too long. On the contrary,
the momentum-only strategies worked better when analyzing
longer periods of data. With efficiently designed portfolios
(as a result of employing a genetic algorithm) via historic
price data analysis, we were able to discover viable options
to outperform the index.

C. DYNAMIC MARKET VALIDITY TEST
In order to verify our CAPM+ portfolio works in different
markets, as briefly introduced earlier, we conducted the same
tests in the U.S. stock market. At first, we did not change
any condition except the stock price data from KOSPI200 to
the S&P500 index. However, we obtained some results that
were not as successful as the KOSPI cases after completing
the identical genetic operations. After reviewing the acquired
numerical data, we realized that the chromosome of the sec-
ond test is longer, because they have about 300 more listed
stocks in S&P500 compared to those in KOSPI200. Thus,
the best solutions we found at the 150th generation may not
have yet reached the global optimum point within the search
space.

Thus, we performed additional tests with expanded iter-
ative periods of generations, specifically 300th and 450th.
Because it is widely known that the generation size is propor-
tional to the problem size, or the number stocks in the index
for our study, linearly increasing or tripling the size of gener-
ations seems reasonable. However, because the computation
time also accordingly increases as the iterating procedure
becomes more complicated, we tested the case of conver-
gences at the 300th generation, to find a difference in value
between the initial attempt and the improved one.

While the basic structure of graphs, three line-plots of
cumulative returns on the top and the annual ROI box plots
on the bottom remain the same, while each line and box in the
subplot represents a different value. Unlike the previous plot
in Fig. 8, where each line and box indicate the different trials
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FIGURE 9. Cumulative ROI movements and annual ROI percentile distributions between 2008 and 2018 in S&P500 market.

of each strategy, the lines and boxes in Fig. 9 denote different
trails based on the number of GA generations iterated.

Similar to the KOSPI200 case, although S&P500 usually
includes 500 large-cap stocks, here we used only 464 actively
traded stocks during a given test period (tickers of the con-
stituent companies are presented in the Appendix).

In general, the CAPM+ experiments on S&P500 listed
stocks, similar to those on KOSPI 200, offered positive ROIs.
Due to the years witnessing the bull market rallies, espe-
cially after the 2008 recession, we had a very strong and
winning momentum in the market. In the winning market,
as long as we could identify which stocks had the potential
of continued growth in the next trading period, we were able
to profit from our predictions. For example, the 1-month
analysis of CAPM+methodology provided more than 400%
profits. Although it was less profitable, investors still could
have earned about 300% of cumulative returns from 11 years
of investments with either the 3- or 6-month analyses of
CAPM+. However, having more stocks in the list or having
greater market growth do not necessarily entail or guarantee
greater returns than those from obtained stock portfolios in
the KOSPI market.

The NO-CAPM methodology of using the momentum-
only strategy did not do any better even under several years
of such upward trends. First, the line plots seem to have

been able to recover from the initial drop during 2008 and
2009. Similar to the KOSPI 200 case, ROIs from the 1-month
NO-CAPM merely converged to that generated by the index
fund trading after long periods, with S&P500 data. Addition-
ally, unlike the KOSPI case, longer periods of analysis did
not aid the momentum-only approach work better in these
particular market circumstances. Although they were able
to capture the inertia in the market and followed the herds,
the NO-CAPM strategy returns stayed behind the movements
and remained more vulnerable to any downturn signals.

Although the recession years led to negative returns annu-
ally, the Annual ROI Percentile Distribution with month-long
use of both CAPM+ and NO-CAPM strategies showed pos-
itive returns in most of the years. It seems that having longer
periods of analysis is less effective in relation to the Annual
ROI box, similar to the KOSPI 200 scenario.

Having a larger generation size definitely proved to be
helpful in the search for optimal portfolios with S&P data
in this research. For instance, the case of 450th or 300th

generation size returned better profits as per both Cumu-
lative ROI and Annual ROI. However, first two lines and
boxes in each graph, which respectively represent the genetic
operations with 450th- or 300th- generation sizes, did not
show a big difference between two. We believe that this indi-
cates, after a certain level and around the 300th generation,
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that the fitness values of the portfolio allocation have reached
their convergence point and that additional generation is
not required. Without further optimization, extra genera-
tions might just consume the computing resources unless
an additional convergence test helps them exit the process.
Therefore, we observed that the generation size of 300 for
464 stock optimizations worked more efficiently while pro-
viding almost the same results.

D. SELF-ANALYSIS
To sum up, we were able to successfully utilize the CAPM+
strategy while outperformed both KOSPI200 and S&P500,
the representative index funds. Moreover, it is noteworthy
that we succeeded in both bull (the U.S.) and flat (the
Korean) markets and the both produced over 300% gains
over 11 years. Considering the fact that we were able to
grasp promising investment opportunities even without any
positive impacts or market trends, we believe that our strategy
is very strong. Although we were able to earn some gains
from investments with the NO-CAPM methodology as well,
it was neither as profitable as the CAPM+ nor significantly
better than the market index trading in either the Korean or
the U.S. markets.

We also tested our works in light of the more realistic
scenarios of annually evaluating the investments and gained
impressive profits (>15%) in most of the test years. One
impressive result from the experiments on annual ROI is that
our trading strategy worked better than the market index in
both markets for the year 2008, when the returns on index
trading dropped by more than 20% due to the global eco-
nomic recessions. Although our strategy could not turn the
negative movements into positives, it could have reduced the
degrees or the impacts of negative market shifts by searching
those combinations of stocks that have more potential in the
future.

In short, our method of designing a portfolio, constituted
by risk-return balanced stocks with high potential, is capable
of generating profits in both bull and flat markets. Suffering
along with the market is inevitable when recessions or
crises come, regardless of our informed estimations, because
our tasks and assumptions depend on market movements.
Nevertheless, we can provide a combination of stocks with a
future that can at least reduce the amount of losses incurred.

In course of these experiments, we also observed that
having a greater number of stocks in the list or larger market
growths did not meaningfully make our approach become
more successful. Because we simply identify stocks that are
low-risk with high return and have high potentials in relation
to the CAPM+ strategy, market growth or the number of
stocks is not necessarily related to the profits generated by
our method.

V. CONCLUSION
The recent years of bull market rallies provided winning
opportunities to many investors in both the U.S. and Korean
stock markets. For example, investing on widely-renowned

TABLE 8. List of stock codes(tickers) used in the experiments.

companies like Amazon (AMZN) or Netflix (NFLX) could
have brought investors abundant profits in the last 10 years,
while their stock price went up more than 2500% and 3500%,
respectively. Throughout those years, many public media
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continuously announced the public how good the market
was. Additionally, companies like Regeneron Pharmaceuti-
cals, Inc. (REGN) or Alexion Pharmaceutical, Inc. (ALXN)
could have brought investors profits worth more than their
initial funds multiplied by 24, during a recent bull rally in the
S&P market.

At the same time, the values of companies like Apache
(APA), CenturyLink (CTL), Devon Energy (DVN), and
Exelon (EXC) all significantly dropped despite the bull ral-
lies. There are many more companies which lost their market
capitals and their statuses as 500-large cap companies. Many
companies in bio/pharmaceuticals or technology industry ral-
lied, while companies in the energy sector started to lose
their market caps. Such analysis of who did well or bad,
unfortunately, can be completed only after the results came
out. Investors, especially individual ones, cannot easily fig-
ure out which stocks will be the future winners of the market,
so to speak.Without insider information or industry expertise,
investments are often compared to no better than ‘‘A Monkey
Throwing Darts.’’

Through the experiments, we first acquired historic stock
price data from the Korean and U.S. stock markets. With
the obtained data, we calculated beta values for each stock
and measured its valuations. After, we applied them in a
genetic algorithm to search which stocks have potential to
grow further and to form an optimal portfolio in a next period.
Thereafter, we observed how the combinations of such stocks
performed in the succeeding trading periods. Although the
proposed method did not offer 3000% profits, it hedged the
risk by building a portfolio and by selecting undervalued
assets. As a result, our ensembled investment strategy of
asset valuations and momentum strategy was considered as
capable of offering a better opportunity of searching out an
optimal portfolio that entails high returns, low risks and has
the potential to grow without deliberate analysis of experts or
domain knowledge.

In the next step, we plan to test our investment strategywith
real-time data, in order to verify its feasibility and market
usability. We believe that our attempts to find an optimal
portfolio can be further extended to Fama-French’s Factor
Model, which improves Capital Asset Pricing Model and
more empirically used in practice. In the future works, market
volatility indexes can also be used to analyze the overall
market behavior and act as a part of a multi-objective genetic
algorithm.

APPENDIX
See Table 8.
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