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ABSTRACT This paper proposes an analytical method for simulation of the steady and transient response
of the HVDC system in order to simulate the electromagnetic process of HVDC system in the simulation
of hybrid AC/DC system. First, the boundaries of AC and DC systems as well as some assumptions are
introduced. Then, the HVDC system is considered as a combination of primary equipment sub-systems
(PES) and control sub-systems (CS). According to the assumptions, the PES can be represented by different
homogeneous linear differential equations within different time intervals that are determined by the status of
converters. These equations can be solved in analytical method. The CS is expressed by nonlinear differential
and algebraic equations and simulated in numerical integration method. The interface parameters of each
module are also introduced. The accuracy and efficiency of the proposed model are verified by comparing
the simulation results computed by the proposed model with that simulated in PSCAD.

INDEX TERMS AC/DC hybrid system simulation, HVDC, electromagnetic transient process, commutation
failure.

I. INTRODUCTION
Employing the high-voltage direct-current (HVDC) systems
for transmitting power over long distances has become a
trend. The introduction of HVDC transmission systems in
an alternating-current (AC) system has led to the concept
of hybrid AC/DC systems. With line-commutated thyristor
converters widely adopted, commutation failures may occur
due to the symmetric and asymmetric AC faults [1], [2]. Con-
tinuous commutation failures may cause a converter block,
which leads to a potential power transfer from DC to AC
lines. As a result, AC systems might develop some stability
problems [3], [4].

Detailed models of AC and DC systems should be adopted
to simulate the interaction of AC and DC systems’ transients.
The well-developed transient stability simulation techniques
of AC systems adopt a quasi-steady state model [5] of the
AC network where only fundamental components are used to
reduce computational burden. This model best captures the
electro-mechanical behavior of AC systems. Response mod-
els, where the dynamics of the pole controls are neglected,
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are often adopted for DC systems [6]. The commutation
failure is approximately checked by monitoring the AC bus
voltage, extinction angle, etc. [4], [7], which is computed by
a quasi-steady state model.

In order to capture the detailed dynamic behavior of an
HVDC system for the purpose of analyzing the stability
of AC/DC hybrid systems, it is better to adopt the electro-
magnetic model [7], [8], which takes into account the explicit
dynamics of the converters, DC lines, etc. For the electro-
magnetic simulation of HVDCs, the integration step needs to
be selected in microseconds to capture an accurate response.
However, large integral steps, like half of the AC voltage
cycle, are generally adopted in the transient simulations of AC
systems. This leads to different simulation time scales. Amul-
tirate simulation technique has been proposed for simulating
systems containing a wide range of time scales [9]. In this
technique, any suitable integration algorithm, with fixed or
variable time-step, can be applied to the fast and/or slow
sub-systems. Simulations of hybrid transient stability and
electro-magnetic transient have also been studied [10], [11].

A general way to derive the dynamic behavior of
HVDC systems in hybrid simulations, is simulating by
available software packages, like EMTP, PSCAD/EMTDC,
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or MATLAB/SIMULINK. In these packages, validated mod-
els are available for power system studies. EMTP and
PSCAD/EMTDC adopt the nodal analysis simulation
tool, while MATLAB/SIMULINK utilizes the state-space
model [12]. The simulation techniques in these tools are
basically numerical integration methods, like trapezoidal
integration [12], Backward Euler [13], multistepmethod [14],
etc. Fixed integration step or variable time-step can also be
used.

As we know, truncation error is an inherited problem of the
numerical integration method. Moreover, interpolation and
reinitialization techniques are normally adopted in simulat-
ing transients of power electronics with switching circuits
to reduce numerical oscillations [15]. For specific studies,
some other methods may obtain better results. For example,
an analytical method is introduced in [16] to compute the
steady-state response of HVDCs, which can theoretically
obtain more accurate results since there is no truncation error.
By computing the exact circuit switching time, numerical
oscillation can be avoided in this method.

In this paper, an HVDC model for stability and electro-
magnetic transient simulations of AC/DC hybrid systems is
proposed. The main purpose of this new model is to simulate
the detailed transient behavior of HVDCs under AC system
faults for stability analysis of AC/DC hybrid systems. In the
proposed model, the HVDC system is represented by PES
and CS. The dynamical behavior of the PES is fast. Thus,
the analytical method is applied to compute the response
of PES. Compared with numerical integration method, trun-
cation error will not exist in analytical method, and numerical
oscillation can be avoided since the exact circuit switch-
ing time can be computed. Moreover, in analytical method,
the integration step is not a limitation. Since the dynami-
cal behavior of CS is slow, the response is calculated by
numerical integration method. The PES and CS have some
variables exchanging in the simulation, which are introduced
in section III. In conclusion, we search for a new simulation
method to simulate the dynamical behavior of HVDC in a
hybridAC/DC system. Since the analytical method is applied,
it is expected with more accurate results, no numerical oscil-
lation and faster in computational time.

II. ASSUMPTIONS
The schematic diagram of a 12-pulse HVDC system is shown
in Fig. 1. In this paper, the boundary of AC and HVDC
systems in a hybrid AC/DC system is selected as the converter
bus.

The AC system includes all generators, loads, AC trans-
mission lines, etc., where the networks are described using
quasi-state model. The HVDC system includes the converter
transformers, converters, DC lines, DC filters and smoothing
reactors, which are modelled by RLC circuit model. The
HVDC control system is also included.

This paper aims to find an effective mathematical
model and simulation method of HVDCs for hybrid

FIGURE 1. The boundary of AC and HVDC system.

electro-mechanical and electromagnetic transient simula-
tions. Thus, the following assumptions are considered:

1.The effect of AC filters is ideal, i.e., the converter bus
voltage is sinusoidal in an AC simulation step.

2.The excitation impedances of the converter transformers
are ignored in the HVDC system and the saturation of the
converter transformers is not considered.

For the second assumption, the excitation impedance of the
converter transformer can be included in the AC system as a
shunt impedance connected to the converter bus.

In real power systems, the total harmonic distortion of the
bus voltage is limited to a low level, e.g., no more than 2%.
As a result, harmonic components can be ignored. Moreover,
the network function is described by quasi-steady state model
in the AC system, which means that the voltages are repre-
sented as phasors (shown in Fig. 2). Thus, the assumptions
are meaningful.

FIGURE 2. Bus voltages under symmetrical and asymmetrical cases. (x
axis represents the reference axis of bus voltages).

Under the aforementioned assumptions, the bus voltages in
time domain can be described as:

uA = UA cos(ωt + θA)

uB = UB cos(ωt + θB)

uC = UC cos(ωt + θC ) (1)

where UA,UB and UC are the amplitudes of the bus voltage;
ω is the angular frequency of the bus; θA, θB and θC are the
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FIGURE 3. The structure of the HVDC system and the relationship
between the mathematical models of the HVDC system and AC systems.

related phase angles. For symmetrical cases, the following
assumptions are valid:

UA = UB = UC (2)

θB − θC = θC − θA = 2π
/
3 (3)

III. STRUCTURE OF HVDC SYSTEM
The structure of theHVDC system is discussed in this section.
The HVDC system is expressed by a PES and a CS, as shown
in Fig. 3.

In the mathematical model, the AC system provides the
converter bus voltages U̇R and U̇I to the PES through the AC
system simulation, where the subscripts ‘R’ and ‘I ’ denote
the rectifier and inverter sides, respectively. PES returns the
fundamental currents İR and İI to the AC system. Simultane-
ously, PES provides some variables to CS, such as the DC
currents iRS and iIS , DC voltage uD and extinction angle γ .
According to the control logic as well as the variables

provided by PES, CS adjusts the delay angle α at the rectifier
and advances angle β at the inverter, which will be sent to
PES for triggering the thyristors.

IV. MODELLING AND SIMULATION OF THE PES
A schematic diagram of the PES is shown in Fig. 4. In both
sides of the rectifier and inverter, there are components like
converters, converter transformers, smoothing reactor and

DC filter. The DC filter is a single-tuned filter. The DC line,
which adopts the T-type equivalent circuit for simplicity, cou-
ples the rectifier to the inverter. A cascaded T-type equivalent
circuit can also be adapted to obtain more accurate results.
In the following part of this section, the state space repre-
sentation of the PES is provided. Under the assumptions, the
PES will be represented by linear homogeneous differential
equations and solved by analytical method.

A. CONVERTERS, CONVERTER TRANSFORMERS AND
SMOOTHING REACTOR
The converters, converter transformers and smoothing reac-
tors in either the rectifier or inverter side will be considered
as an entirety to formulate the model. The state function
associated with this part is difficult to formulate, taking into
account all 12 thyristor valves and their interconnections. It is
then necessary to form the state function in terms of different
commutation or conduction intervals. With the assumption
of the ideal Y-Y and Y-1 converter transformers, one of the
equivalent circuits is shown in Fig. 5, where converter 1 is in
the commutation interval and converter 2 is in the conduction
interval.

The differential equations in Fig. 5 are represented as:

Ly
d
dt

 iyA
iyB
iyC

 = ky

 uA
uB
uC

−
 vyA
vyB
vyC

 (4)

Ld
d
dt

 idA
idB
idC

 = kd

 uA
uB
uC

−
 vdA
vdB
vdC

 (5)

LS
diS
dt
= vyD + vdD − uD (6)

where ky, kd ,Ly and Ld are the turns ratios and equivalent
secondary inductances of the Y-Y and Y-1 converter trans-
formers, respectively.

The voltages and currents in (4)-(6) have the following
relations:

vyB − vyC = 0, vyA − vyB − vyD = 0
vdA − vdD = 0, vdA + vdB + vdC = 0

}
(7)

idB − idC = 0, iyA + iyB + iyC = 0
iS − iyA = 0, iS + idC − idA = 0

}
(8)

FIGURE 4. Schematic diagram of the PES.
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FIGURE 5. The equivalent circuit representation of the converters,
converter transformers and smoothing reactor.

Differentiating equation (8) results in:

kduB − vdB − kduC + vdC = 0

ky(uA + uB + uC )− (vyA + vyB + vyC ) = 0

LS (vyD + vdD − uD)− Ly(kyuA − vyA) = 0

Ld (vyD + vdD − uD)− LS (kduA − vdA − kduC + vdC ) = 0

(9)

Combining (4)-(7) and (9) results in:[
TCdxC

/
dt

0

]
=

[
B11 B12
B21 B22

] [
u
v

]
+

[
b1
b2

]
uD (10)

where xC = [iyA iyB iyC idA idB idC iS ]T; u =
[uA uB uC ]T; v = [vyA vyB vyC vdA vdB vdC vyD vdD]T;
TC ,B11,B12,B21,B22, b1 and b2 are the corresponding
coefficient matrices. For detailed contents in the matrices,
please see Appendix A.

Eliminating v in (10) yields:

dxC
dt
= T−1C (B11− B12B−122 B21)u+ T−1C (b1− B12B−122 b2)uD

(11)

which can be simplified as:

dxC
dt
= BCu+ bDuD (12)

iS can be represented as a function of xC as:

iS = cCxC (13)

where cC = eT7 . ek denotes the unit vector with the k-th
element equals to 1. The dimension of e is same as the vector
dimension of the state variable xC , and the value of k is the
position of the extracted state variable in the vector of the state
variable.

The state equations of the circuit representation in an inter-
val of rectifier side can be uniformly expressed as:

dxRC
dt
= BiRCuR + b

i
RDuRD

iRS = cRCxRC (14)

where the state variables vector xRC consists of the currents.
uR consists of the instantaneous AC system bus voltages of
the rectifier side. uRD denotes the instantaneous DC voltage
of the rectifier side. BiRC and biRD are the input matrices.
The superscript ‘i’ denotes the i-th operation status. For dif-
ferent conduction and commutation intervals, the equivalent
circuit will be different. Accordingly, the matrices need to be
reformed.

The equations of inverter side can also be represented as
follows:

dxIC
dt
= BjICuI + b

j
IDuID

iIS = cICxIC (15)

There are tens of circuit topologies under normal and
abnormal operation status. In this part, only one kind of
circuit topology is introduced to illustrate the mathematical
model of the PES. For different operation status, the differen-
tial equations (4)-(6) remain the same. However, the algebraic
equations, i.e., (7) and (8), need to be formed according to the
change of circuit topology.

B. DC FILTERS AND DC LINE
Similarly, the single-tuned filters of the rectifier and inverter
sides have the state-space description of:

dxRF
dt
= ARFxRF + bRFuRD

iRF = cRFxRF (16)

and:

dxIF
dt
= AIFxIF + bIFuID

iIF = cIFxIF (17)

respectively,where xRF = [uRC iRF ]T, xIF = [uIC iIF ]T and
ARF , bRF , cRF ,AIF , bIF , cIF are the corresponding coefficient
matrices. The inputs uRD and uID are DC line voltages of the
rectifier and inverter sides, respectively.

As depicted in Fig. 4, the state-space representation of the
DC lines is described as:

dxD
dt
= ADxD + bD1uRD + bD2uID

iRD = cD1xD
iID = cD2xD (18)

where xD = [iRD, iID, uD]T, bD1 and bD2 are the corre-
sponding coefficient matrices. The output matrices in (18) are
cD1 = eT1 and cD2 = eT2 . For detail processes of Eqn (16), (17)
and (18), please see Appendix B.
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C. STATE FUNCTION OF THE PES
PES has the state vector x̄ = [xTRC xTRF xTD xTIF xTIC ]

T,
input vector u = [uTR uTI ]

T, and algebraic vector ȳ =
[uRD iRS iRF iRD iID iIF iIS uID]T. Superscript ‘T’ denotes
the transposition of matrices and vectors.

During the k-th time interval t ∈ [tSk tEk ], where the
rectifier and inverter operate on the i-th and j-th operation
status respectively, the currents on the rectifier side have the
following relationship:

iRS − iRF − iRD = 0 (19)

Differentiating equation (19) results in diRS
dt −

diRF
dt −

diRD
dt =

0.
Considering (14), (16) and (18), thus:

kiRCuR − kRFxRF − kD1xD + k̄
i
RuRD − k̃RuID = 0 (20)

where kiRC = cRCBiRC , kRF = cRFARF , kD1 = cD1AD, k̄ iR =
cRCbiRD − cRFbRF − cD1bD1 and k̃R = cD1bD2.
Similarly, the inverter side has the relationship:

kjICuI − kIFxIF − kD2xD + k̄
j
IuID − k̃IuRD = 0. (21)

where kjIC = cICB
j
IC , kIF = cIFAIF , kI1 = cD2AD, k̄ iI =

cICbiID − cIFbIF − cD2bD2 and k̃I = cD2bD2.
The state space representation of PES can be formed by

substituting (14)-(18), (20) and (21) in (22), as shown at the
bottom of the next page, Equation (22) can be written in a
compact form as:

d x̄
dt
= Āx̄+ B̄1ȳ+ B̄2u

0 = C̄x̄+ D̄1ȳ+ D̄2u (23)

where x̄ = [xTRC xTRF xTD xTIF xTIC ]
T,u = [uTR uTI ]

T.
Ā, B̄1, B̄2, C̄, D̄1 and D̄2 are the corresponding submatrices.
ȳ represents the vector of algebraic variables in (22). Elimi-
nating ȳ in (23) results in:

d x̄
dt
= Āk x̄+ B̄ku (24)

where Āk = Ā − B̄1D̄
−1
1 C̄, B̄k = B̄2 − B̄1D̄

−1
1 D̄2. The

Subscript ‘k’ denotes the k-th time interval.

D. MODEL SIMPLIFICATION
The instantaneous AC bus voltages have the form:

uR =

 URA cos(ωt + θRA)
URB cos(ωt + θRB)
URC cos(ωt + θRC )


and

uI =

 UIA cos(ωt + θIA)
UIB cos(ωt + θIB)
UIC cos(ωt + θIC )

 .
Introduce virtual variables vR and vI , where:

vR =

 URA sin(ωt + θRA)
URB sin(ωt + θRB)
URC sin(ωt + θRC )



and

vI =

 UIA sin(ωt + θIA)
UIB sin(ωt + θIB)
UIC sin(ωt + θIC )

 .
Therefore, du

dt = −ωv,
dv
dt = ωu, where v = [vTR vTI ].

Thus, taking into account (24), the following equation can be
provided:

d
dt

 x̄
u
v

 =
 Āk B̄k

−ωI6
ωI6

 x̄
u
v

 (25)

where In is an n-by-n identity matrix. (25) can be written in
a short form as:

dx
dt
= Akx (26)

Consequently, the non-homogeneous linear differen-
tial (24) is simplified to a homogeneous linear differential
equation given in (26).

The DC currents iRS and iIS , and DC line voltage uD can
be represented as:

w = Ckx (27)

wherew = [iRS uD iIS ]T.w is sent to CS to generate the firing
angles.

As the operation status of the rectifier or inverter changes,
the equivalent circuit will be different. Although the state
vector for each operation status is identical, it requires refor-
mulating Ak for a different system operation status. The
definition of time intervals will be described in the next
subsection.

E. ANALYTICAL SOLUTION OF PES
Suppose that the state variable has the initial value xSk at
the beginning of the k-th time interval. The time-domain
response of the PES in this interval can be expressed as:

x = eAk (t−t
S
k )xSk (28)

where eAk t is the exponential matrix and t ∈ [tSk , t
E
k ]. t

S
k and

tEk are the start and end moments of this time interval, respec-
tively, which are determined by the triggering time controlled
by CS and the end time of the commutation interval.

When the k + 1-th time interval begins, the state vector
cannot mutate. Therefore:

xSk+1 = xEk (29)

F. VALVES FIRING PULSE AND TIME INTERVALS OF PES
In the equidistant pulse control logic, the reference phase
will be generated at an interval of π

/
6. After each refer-

ence phase, CS generates firing pulses after delay angles
α and π − β for the rectifier and inverter side converters,
respectively. Taking a period of steady state as an example,
the statuses of all converters are shown in Fig. 6. Where θPR
and θPI are the output angles of the phase-locked loop (PLL)
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FIGURE 6. Firing pulse and time intervals of the PES.

in rectifier and inverter side, respectively; and µR and µI
are the respective rectifier and inverter overlap angles. For a
different converter status, the equivalent circuit of PES needs
to be updated. Consequently, the time intervals in PES will be
formed taking into account the status of each converter in the
rectifier and inverter sides. Moreover, the overlap angle and
extinction angle need to be computed.

G. CALCULATION OF THE OVERLAP ANGLE AND
EXTINCTION ANGLE
The overlap angle µ is not explicitly contained in the state
and algebraic variables. It is associated with the commutation
angle of the inverter and the zero crossing of the line voltages.
Thus, it needs to be computed.

Assuming the k-th operation status is the commutation
status, the commutation current ic(t) can be calculated as:

ic(t) = aTk x(t) (30)

where aTk is a coefficient vector. At the turn-on time of the
commutation interval tSk , the commutation current ic(tSk ) is
greater than zero. The turn-off time tEk can be derived by

checking the commutation current ic(t) = 0, i.e.:

ic(tEk ) = aTk e
Ak (tEk −t

S
k )x(tSk ) = 0. (31)

Thus, the turn-off time tEk can be obtained by solving (31)
using Newton’s or secant methods. The overlap angle µ is
calculated as:

µ = 2π (tEk − t
S
k )
/
T (32)

where T is a cycle of the AC system. Consequently,
the extinction angle γ can be obtained by:

γ = β − µ (33)

H. CALCULATION OF FUNDAMENTAL AND
HARMONIC COMPONENTS
For the simulation of AC systems, the fundamental compo-
nents are needed. They can be derived by Fourier decompo-
sition, which is expressed as:

x(t) =
a0
2
+

∞∑
n=1

an cos(nωt)+ bn sin(nωt) (34)

The analytical solution of the fundamental component and
n-th harmonics of x(t) also exists. It can be computed by:

an − jbn =
2
T

∫ T

0
e−jnωtx(t)dt

=
2
T

N∑
k=1

∫ tEk

tSk

e−jnωteAk (t−t
S
k )x(tSk )dt

=
2
T

N∑
k=1

∫ tEk −t
S
k

0
e(−jnωI+Ak )tdt(e−jnωt

S
k xSk ) (35)

where N is the number of operation status in an AC cycle.

V. MODELLING AND SIMULATION OF THE CS
For different HVDC systems, the CS may have different
control logics. In this section, the Cigre HVDC benchmark
system is selected as an example [17].

d
dt



xRC
xRF
xD
xIF
xIC
0
0
0
0
0
0
0
0



=



biRD
ARF bRF

AD bD1 bD2
AIF bIF

bjID
cRC −1

cRF −1
cD1 −1
cD2 −1

cIF −1
cIC −1

−kRF −kD1 k̄ iR −k̃R
−kD2 −kIF −k̃I k̄ jI





xRC
xRF
xD
xIF
xIC
uRD
iRS
iRF
iRD
iID
iIF
iIS
uID



+



BiRC

BjIC

kiRC
kjIC



[
uR
uI

]

(22)
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FIGURE 7. Block diagram of rectifier control system.

FIGURE 8. Block diagram of inverter control system.

A. CS OF HVDC SYSTEM
The rectifier of the Cigre HVDC system adopts constant
current control and the inverter adopts constant current and
extinction angle control. The block diagrams of the con-
trollers are shown in Fig. 7 and Fig. 8, where iRS and iIS
denote the DC current of the rectifier and inverter sides,
respectively. The control system generates the delay angle
α and the advance angle β for the rectifier and inverter,
respectively. γ in Fig. 8 is the extinction angle.
In Fig. 7 and Fig. 8, the limited current reference iord is

generated by means of the Voltage Dependent Current Limit
(VDCL) unit, as shown in Fig. 9.

FIGURE 9. Block diagram of VDCL.

The model of CS is described by nonlinear differential
and algebraic functions since there are nonlinear items in the
diagrams, such as limiters and the piecewise function:

ẏ = f (y, z, w)

0 = g(y, z) (36)

where y = [x1 x2 x3 x4 x5 x6]T and z =

[βs1 βrec α 1γcec 1γ βs2 βinv1 βs3 βinv2 βinv Iuse]T,
which are the state variables and algebraic variables of CS,
respectively. w = [IRS uD IIS γ ]T is input obtained from
the PES. The detail description of Eqn.(36) is represented in
Appendix C for saving spaces.

In addition, the logic of PLL [18], available in the valve
control layer, is shown in Fig. 10, where ua, ub and uc are

FIGURE 10. Block diagram of PLL.

instantaneous values of three-phase voltages. The output θP
is applied to generate the firing pulse.

B. SIMULATION OF CS
Since the control system is nonlinear, the numerical method is
better to be adopted for the simulation purposes. Furthermore,
the Backward Euler method is adopted to avoid numerical
oscillations [19].

Applying backward Euler method to (36) results in:

y(t +1t) = y(t)+ f (y(t +1t), z(t +1t), w(t +1t))

0 = g(y(t +1t), z(t +1t)) (37)

where1t represents the integral step. As w(t +1t) obtained
from simulation of PES, y(t + 1t) and z(t + 1t) can be
computed by solving (37).

C. INTEGRAL STEPS OF CS SIMULATION
Comparing with the behavior of PES, the transient process
of CS is much slower. Thus, a large simulation step length
can be adopted. Considering that time-interval of each oper-
ation status is different in the transient simulation of PES,
a variable step-size can be adopted in the simulation of CS.
As the time-interval of a PES operation status is derived, the
step-length of CS changes accordingly. That is, the calculated
time-interval of the PES operation status is adopted for simu-
lating CS. The simulation of PES and CS is interchangeably
processed. It’s worth mentioning that the maximum period of
PES is only a few milliseconds for the purposes of transient
simulations, which is enough for the numerical simulation
of CS.

VI. STEADY STATE VALUE AND PROCEDURE
The transient simulation starts from a steady state. This
section discusses the computation of steady state, followed
by an illustration of a transient simulation procedure.

A. COMPUTING THE STEADY STATE OF HVDC
Given three phase voltages of both rectifier and inverter sides
and the control references Ides and γord , the steady state result
is utilized to determine α, β and the corresponding states of
the PES and CS systems at a specific time t0. The steady
state of the HVDC system is periodic. That is, the steady state
needs to satisfy the condition:∥∥∥∥ x(t0 + T )− x(t0)y(t0 + T )− y(t0)

∥∥∥∥ < ε (38)

where T is the period of the AC voltage and ε is a tolerance.
Consider that x and y satisfy (26) and(38). In an AC cycle,

they change with respect to t . Furthermore, the time intervals
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of PES need to be determined by calculation. Hence, it is
almost impossible to directly calculate x(t0) and y(t0). In this
section, the iterative simulation is utilized to calculate the
steady state. The initial values of α, β, x and y at t0 can be
calculated using quasi-steady state model [4].

The procedure for computing the steady state of the HVDC
system is as follows:

Step 1: Input the three-phase AC system voltages, the
controller references and a tolerance ε.
Step 2: Calculate the initial values of α, β, x(t0) and y(t0)

by quasi-steady state model.
Step 3: Set t = t0. Perform the following procedure

until (38) is satisfied.

Step 3.1: Identify the current operation status of PES.
Formulate the state matrix and compute the response
by (28). Determine the end time of the operation status
as shown in section IV.G. Compute the time interval1t
of the operation status.
Step 3.2: Set the simulation step as 1t . Calculate the
transient response of CS by Backward Euler method,
as described in section V.B.
Step 3.3: Set t = min(t + 1t, t0 + T ). If t 6= t0 + T ,
go to step 3.1. Otherwise, compute x(t) and y(t).
Step 3.4: If the condition (38) is not satisfied, set t =
t0+T , x(t0) = x(t) and y(t0) = y(t); then go to step 3.1.
Otherwise, terminate the loop. The initial value of the
steady state at t0 is obtained as x(t) and y(t).

B. SIMULATION OF TRANSIENT RESPONSE
In transient simulations, the amplitudes and phases of AC
voltages may fluctuate. Consequently, it only needs to per-
form steps 3.1 and 3.2 to calculate the transient response.
In this case, the AC voltages are derived by AC system simu-
lation. The operation status of the PES needs to be identified
step by step according to the simulation result due to the
possibility of commutation failures.

VII. NUMERICAL RESULTS
A uni-polar 12-pulse CIGRE benchmark system is used as
the testing system. According to the assumptions listed in
section II, the AC filters and equivalent impedance of the AC
system are ignored. In addition, the DC filters are equipped
on both sides of the DC lines. In the following simulations,
the frequency of theAC system is set as 50Hz. The parameters
of both DC filters are L = 70.4mH, C = 10µF and R =
5.3�. The parameters of other elements are the same as the
CIGRE benchmark system [17].

The accuracy and efficiency of the proposed method are
verified by comparing the simulation results produced by
the proposed method, which is realized in MATLAB codes,
with that simulated by PSCAD software packages. Both sym-
metric and asymmetric AC voltages are applied during the
simulation of the transient response. The effective values of
line voltages of the rectifier and inverter sides are 345kV
and 226.55kV, respectively. The rectifier of the Cigre HVDC

system adopts constant current control and the inverter adopts
constant current and extinction angle control. The constant
current value is 2kA and the extinction angle is 15◦.

A. SIMULATION OF STEADY-STATE RESPONSE
The delay angle α and advance angle β, obtained by the
proposed method and PSCAD software packages are shown
in Table 1. Obviously, the calculation results of the angle α
and β are almost the same.

TABLE 1. Calculation result of delay angle and advance angle.

The DC voltage and DC current of the inverter side and the
rectifier side in half a cycle are shown in Fig. 11.

FIGURE 11. The DC voltage and DC current of the inverter and the
rectifier side in half a cycle under steady-state operation.

As observed in Fig. 11, the results computed by the
proposed method are same as the ones generated using
PSCAD/EMTDC. The fundamental and harmonic compo-
nents of the AC bus current in the rectifier and inverter sides
are listed in Table 2. It shows that the current components
obtained by the proposed method and PSCAD/EMTDC are
almost the same.

TABLE 2. Fundamental and harmonic components of the AC bus current
in the rectifier and inverter sides.

B. TRANSIENT SIMULATION WITH SYMMETRIC AND
ASYMMETRIC VARIATION OF AC VOLTAGE
The transient simulation of the HVDC system response is
tested under symmetric and asymmetric AC system faults.
For the cases, only the variation of AC voltages in the inverter
side bus is considered.
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FIGURE 12. AC system voltage after symmetric and asymmetric faults.

TABLE 3. Effective value of AC system phase voltage after symmetric and
asymmetric faults.

The pre-fault and post-fault AC voltages adopted in this
paper are shown in Fig. 12 and Table 3. Both faults happen
at 1.0s and the voltages recover after 0.1s. For the symmetric
case, the inverter side voltage drops to a value of 0.90 times
the pre-fault case. For asymmetric case, the variation happens
in the voltage amplitudes and phase angles.

The waveforms under the symmetric and asymmetric dis-
turbances are shown in Fig. 13 and Fig. 14, respectively. As it
can be observed from the figures, the results computed by the
proposed method are almost the same as those obtained by
PSCAD/EMTDC.

FIGURE 13. Waveforms under symmetric disturbance.

The minimum extinction angles in one cycle computed by
the proposed method and PSCAD/EMTDC under symmetric
and asymmetric AC fault are shown in Fig. 15. Counting from

FIGURE 14. Waveforms under asymmetric disturbance.

FIGURE 15. The minimum extinction angle in one cycle.

the time the fault began, in symmetric case, both the proposed
method and PSCAD/EMTDC capture the first commutation
failure in the third commutation status process. In asymmetric
case, both methods capture the first commutation failure in
the second commutation process.

C. COMPUTATIONAL PERFORMANCE ANALYSIS
In the steady state simulation, the deviation of the advance
angle, obtained by the proposed method and PSCAD/
EMTDC, is only 0.07◦. There is oscillation of the DC voltage
in PSCAD result, but the DC voltage is steady in proposed
method. Which are shown in Fig.16. In the transient simula-
tion, the maximum deviation is 0.40◦.

FIGURE 16. The state DC voltage of rectifier side.
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There are several reasons this mismatch may occur. First,
the truncation error is an inherited problem of the numer-
ical integration, which would cause errors even numerical
oscillations to the result of PSCAD/EMTDC. That is the
reason of the oscillation in the PSCAD result in Fig. 16.
Second, the extinction angle calculated in PSCAD/EMTDC
using the interpolation method is a little bit different from
that calculated by the proposed method applying the ana-
lytical method. Third, the simulations of PES and CS using
the proposed method are interchangeably executed with a
variable step-size. In contrast, PES and CS are simulta-
neously simulated in PSCAD/EMTDC with a fixed step
size.

The proposed method also provides a faster com-
putational speed compared with the simulation results
produced by PSCAD/EMTDC. It requires a CPU time
of about 10.43s to simulate 100 AC periods while
it needs 12.69s for PSCAD/EMTDC (with a time-step
of 50µs).

VIII. CONCLUSION
A new method for simulating the transient response of
HVDCs in the hybrid electro-mechanical and electro-
magnetic systems is proposed. The boundaries for hybrid
simulation as well as the interface for electromagnetic simu-
lation of HVDC, the state-space representation and transient
process simulation are introduced.

The HVDC system in our model is described as PES and
CS. According to appropriate assumptions, in different opera-
tion status, the PES is described as linear homogeneous differ-
ential equations. The analytical solution of this part is derived.
The CS is formulated as nonlinear differential-algebraic
equations. We use numerical integration method with a vari-
able step length to compute the response. The PES and CS
are calculated alternatively to obtain the dynamic behavior of
HVDC.

Theoretically, since the analytical method is adopted, the
proposed method performs better in accuracy. In numer-
ical tests, the results of the proposed method and
PSCAD/EMTDC are consistent with each other. Moreover,
the proposed method is a little faster in computational
time.

APPENDIX
A. DETAILED CONTENTS OF MATRICES IN EQN.(10)

B11 =



ky
ky

ky
kd

kd
kd


7×3

B12 =



−1
−1

−1
−1

−1
−1

1 1


7×8

B21 =



ky ky ky

−ky
kd −kd

−kd kd


8×3

B22=



−1 −1 −1
1 1 1

1 −1
1 −1 −1
1 K1 K1

−1 1
1 −1
1 −1 K2 K2


8×8

TC =



Ly
Ly

Ly
Ld

Ld
Ld

Ls


7×7

b1 =


−1


7×1

b2 =


−K1

−K2


8×1

where K1 = Ly/LS , K2 = Ld/LS .

B. DETAIL PROCESS OF EQN(16), (17) AND (18)
The Eqn (16) (rectifier side)and Eqn (17) (inverter side)
have the same derivation process. Taking Eqn (16) as an
example, the state-space description of the rectifier single-
tuned filters shown in Fig. 4 is as follows:

CRF
duRC
dt
= iRF

LRF
diRF
dt
= uRD − uRC − RRF iRF (39)
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which can be written in a compart form as:

T
dxRF
dt
= ĀRFxRF + b̄RFuRD (40)

where xRF = [uRC iRF ]T,T = diag(CRF , LRF ), ĀRF =[
1

−1 −RRF

]
, b̄RF =

[
1

]
.

Pre-multiply T−1 to(40), the following equation can be
obtained:

dxRF
dt
= ARFxRF + bRFuRD (41)

where ARF = T−1ĀRF and bRF = T−1b̄RF , the current iRF
can be represented as:

iRF = cRFxRF (42)

where cRF = eT2 . The state space representation of the inverter
DC filter (Eqn (17)) can be obtained accordingly.

For Eqn (18), the state-space description of the DC line is
as follows:

LD
diRD
dt
= −RDiRD − uD + uRD

LD
diID
dt
= −RDiID − uD + uID

CD
duD
dt
= iRD + iID (43)

which can be written in a compart form as:

T
dxD
dt
= ĀDxD + b̄D1uRD + b̄D2uID (44)

where
xD = [iRD, iID, uD]T, T = diag(LD, LD, CD),

ĀD =

−RD −1
−RD −1

1 1

, b̄D1 =

1

, b̄D2 =
 1

.
Pre-multiply T−1 to (44), the following equation can be

obtain:
dxD
dt
= ADxD + bD1uRD + bD2uID (45)

where AD = T−1ĀD, bD1 = T−1b̄D1 and bD2 = T−1b̄D2,
the current iRD and iID can be represented as:

iRD = cD1xD
iID = cD2xD

(46)

where cD1 = eT1 , cD2 = eT2 .

C. DETAIL MATHEMATICAL EXPRESSION OF CS
For the rectifier control system, it can be expressed as:

TRmes
dx1
dt
= IRS − x1

TI1
dx2
dt
= Iord − x1

βs1 = KP1 [Iord − x1]+ x2
βrec = limited{βmax

rec , βs1, β
min
rec }

α = π − βrec (47)

For the inverter control system, it can be expressed as:

TImes
dx4
dt
= IIS − x4

TI2
dx5
dt
= Iord − x4 −1I

TI3
dx6
dt
= 1γ

1γcec =


0, Iord − x4 ≤ 0
γ̄c

x̄c
(Iord − x4), 0 < Iord − x4 ≤ x̄c

γ̄c, x̄c < Iord − x4
1γ = max{1γmax, γord +1γcec − γmin}

βs2 = KP2 [Iord − x4 −1I ]+ x5
βinv1 = limited{βmax

inv1 , βs2, β
min
inv1}

βs3 = KP31γ + x6
βinv2 = limited{βmax

inv2 , βs3, β
min
inv2}

βinv = max{βinv1, βinv2} (48)

The function limited{βmax, β, βmin
} is as follows,

limited{βmax, β, βmin
} =


βmax, β > βmin

β, βmin
≤ β ≤ βmax

βmin, β < βmin

(49)

For VDCL, it can be expressed as:

TUmes
dx3
dt
= uD − x3

Iues =


K1(x3 − x̄v1)+ P1, x3 ≤ x̄v1
K12(x3 − x̄v1)+ P1, x̄v1 < x3 ≤ x̄v2
K2(x3 − x̄v2)+ P2, x̄v2 < x3

Iord = min{Iues, Ides} (50)

Apparently, the rectifier and inverter control system
together with VDCL can described in a compact form as:

ẏ = f (y, z,w)

0 = g(y, z) (51)

where y = [x1 x2 x3 x4 x5 x6]T and z =

[βs1 βrec α 1γcec 1γ βs2 βinv1 βs3 βinv2 βinv Iuse]T,
w = [IRS uD IIS γ ]T.
The differential-algebraic equations of PLL can be

expressed as:

dx7
dt
= KI θVs

dθP
dt
= KP4θVs + x7 + ω

uα =
2
3
ua −

1
3
ub −

1
3
uc

uβ =

√
3
3
ub −

√
3
3
uc

θVs =
1√

u2α + u
2
β

[uα sin(θP)− uβ cos(θP)] (52)
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