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ABSTRACT Green cognitive radios show promise for high energy efficiency (EE) in the future of wireless
communications. Spectrum sensing refers to an energy-consuming procedure that allows cognitive users
to independently identify unused radio spectrum segments and prevent interference to primary users, and
it should be minimized due to resource limitations. In this paper, we present a wireless multiple-access
channel function to establish the primary users’ presence and the mean EE optimization problem of the
cognitive radio systems with mathematical structure computation purposes. EE, as the average throughput
to the average energy consumption ratio, is used to measure the network’s performance subject to detection
constraint. More specifically, since secondary users are generally battery-powered devices, saving on energy
is crucial. We aim to decrease the energy consumption of secondary users while maximizing the total EE and
preserving the accurate sensing by maximizing the sensing time detection subject to secondary user power
constraints and minimum data rate. To address the non-convexity optimization problem, one can consider
energy-efficient power allocation based on an iterative method. Simulation results show the optimum of
our framework when combined by the multiple-access channel computation-based scheme. Green cognitive
radio should consider the tradeoff against its complexity and maximum available EE metric. However, one
can observe from the simulation results that the improved EE presented in this work yields much higher
when compared with others with the same detection performance.

INDEX TERMS Cooperative sensing, energy detection, resource allocation, spectrum sharing, energy
efficiency.

I. INTRODUCTION
The development of new wireless services has, in recent
years, led to increasing demand for the spectrum. Already
rare in nature, the radio spectrum has had most of its practical
part used by different services. Regulators are finding it more
challenging to provide the capacity in the preferred frequency
band for new wireless services. Spectrum sensing is a critical
and fundamental function of cognitive radios (CRs) for the
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secondary user (SU) to identify available spectrum holes
and avoid harmful interference to the primary user (PU).
Cooperative sensing can apply independent observations at
sensing nodes to raise the spectrum sensing accuracy band
of interest. Moreover, it can forward the local statistics to
the fusion center (FC) to decide the PUs status [1]. Green
communication can reduce carbon dioxide (CO2) emissions
to protect the environment. Due to the rapid growth of
the wireless networking industry, new technologies are also
evolving and surpassing the old technology with higher data
transfer speeds and overcoming more and more services
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on one platform. In these processes, total energy consump-
tion by communication devices also increases significantly
by 16-20% per annum, almost doubles every five years.
Thus, reducing the future wireless communications energy
consumption demands more considerable attention, which
requires new technologies and solutions, became an essential
factor of future standards specification. Development of CR
technology aimed at the spectrum scarcity issue, initially.
However, this technology could be an optimal option for
green communications due to its built-in properties, including
rigorous energy constraint and opportunistic spectrum shar-
ing with PUs with no harmful interference.

CR is marked by an adaptive, multidimensional aware, and
independent radio appointed by modern intelligent function-
ality, which combines with its operating era and learns from
its experiences to reason, plan, and decides future actions
to encounter various requirements [2]. This approach mod-
erates a consequential enlarge in the spectrum, networking
efficiency, and energy efficiency (EE). The importance of EE
optimization in CR networks is numerous. Still, the design,
green communications policy, savings as regards to monetary
cost, and end user’s gratification and fulfillment are the issues
to be addressed. The wireless devices convert the consumed
energy into heat, so that the more power they use, the more
heat they produce. There are also worrisome problems like
green-house gas (GHG), which have gained considerable
global attention. More energy consumption can increase the
production of GHG. Therefore, applying EE protocols in CR
networks can reduce energy consumption and also be easily
certified by the EE standards. Therefore, CR can play an
essential role in improving EE in wireless networks, because
from a green perspective, the spectrum is a natural resource
that should not be wasted but be shared. The main goal of
CR is to provide adaptability to the wireless transmission
through dynamic spectrum access (DSA) so that the perfor-
mance of wireless transmission can be optimized, as well as
enhancing the utilization of the frequency spectrum. Target
radio spectrum information would be obtained by utilizing
the CRs through spectrum sensing. The sensing informa-
tion is developed using spectrum management to analyze
the opportunities and decision making on spectrum access.
If the target spectrum status changes, the spectrum mobility
function would control the evolution of operational frequency
bands for the CR users [3]. Here, the CRs would identify
opportunities autonomously. Today’s standards and regula-
tions must strictly restrict parameters like specified power
level and frequency range in operation to obtain a minimum
interoperability level, spectrum efficiency, and fair access to
spectrum [2].

In cooperative spectrum sharing, the PUs needs to know
whether the SU is present or not. When the PU is about to
operate, it chooses other unoccupied sub-channels without
restricting the SU communications. In opportunity spectrum
sharing, to have information about the situation of the SU,
the PU has to communicate with SUs. Nonetheless, in the
case the SU is required to have access to the licensed

frequency band, the PU’s presence status has to be detected.
If the PU occupies the licensed frequency, the unlicensed
user cannot access the spectrum. On the other hand, when
the PU reoccupies the frequency band, the unauthorized user
demands to quit immediately and look for a new unoccupied
frequency band [2]. CR devices in cooperative spectrum
sensing send their decisions or local statistics to an FC, based
on the type of information provided to the FC. So, cooperative
sensing can be mainly classified into two aspects: hard and
soft combinations. In hard combinations, SUs turn the local
decisions into a one-bit decision and send these decisions to
the FC. In contrast, SUs send their local statistical informa-
tion, which is the amount of energy value of the received
signals from the PU, to the FC in soft combination [4].

A. RELATED WORKS
In the literature, most papers have tended some schemes
and algorithms to maximize the EE of the CRs. One of the
issues which are being considered in recent researches in
the field of green communications of future mobile networks
is the maximization of EE. Here, we give a brief overview
of the related works with the state-of-the-art schemes and
algorithms adopted in the existing literature. To maximize
EE, whereas encountered the required detection accuracy, [5]
proposed an iterative algorithm to change the fusion thresh-
old on optimal sensing length. The authors showed their
proposed parameters while satisfying the detection accuracy
constraints for EE maximization. However, the problems of
sensing time optimization for power allocation transmission
were investigated in [6] to maximize the EE and thereby,
decrease the cost and sensing period. In [7], they considered
a scenario where multiple SUs jointly sensed a licensed band
that can be separated into multiple sub-bands. They concen-
trate, nevertheless, on EE maximization of power allocation
and sensing time joint optimization and do not interfere
mainly with the PU. To solve their optimization problem,
the authors of [7] also proposed a fractional programming
optimization algorithm. Wang et al. [8] studied the mean
EE maximization problem for hard decisions, using hybrid
spectrum sharing. Sensing time iterative optimization and
cooperative SUs numbers can lead to the problem of the
mean formulation of maximum EE. This optimization uses
the following parameters: the average transmission power of
SUs, peak transmission power, data rate constraints, and the
mean PU interference power constraint.

In [9], the researchers proposed EE by reducing the power
of the secondary transmitter for such spectrum sensing and
sharing over fading situations. However, the extra channel
state information (CSI) effects the secondary antenna has
also been analyzed under spectrum sharing through closed-
form expressions for relevant transmission power. How-
ever, imperfect cross CSI, where a licensed band is shared
between those primary and secondary links, was discussed.
Here, the allocation of power over perfect and imperfect
measurement was reduced. However, previous studies [7],
[10], [11] were examined such methods from the EE time
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maximization problem and power allocation joint optimiza-
tion of the allowable spectrum in the presence of differ-
ent CSI levels point of view, regarding the standard links
of transmission and inference over statistical relationships.
In [11], a novel computation over the multiple-access chan-
nel (CoMAC) was formulated to maximize the EE optimiza-
tion problem. The authors also proposed an iterative solution
algorithm (ISA) arrive, combining the modulated symbol
sequence and efficient sensing time duration. The ISA turns
the optimization problem into two sub-problems to reach
the convergence. For a given symbol sequence length, they
proved a sensing time quasi-convexity optimization problem
and provided a bisection based algorithm as a solution. They
established the optimal symbol sequence length optimization
problem using an extensive search.

The authors of [12] investigated an energy-efficient
resource allocation (RA) problem for energy harvestingM2M
communications through the two-stage energy-efficient
joint channel selection, peer discovery, power control, and
time allocation algorithm. They have also combined their
approach using the linear and non-linear programming,
and iterative pricing based matching theory to superior
the performance of the network to maximize the EE.
Besides, Zhou et al. [13] provided a hybrid RA for D2D
communications deployment as LTE-A networks based on
C-RAN architectures, which include common centralized
interference mitigation that was performed in the central-
ized BBU pool and a distributed joint channel selection
and power allocation algorithm. In [14], the optimal RA
strategies for delay-insensitive and -sensitive are consid-
ered to optimize the available EE, using the two pro-
posed algorithms upon optimal RA with low complexity
average metric constraint. Besides, the authors of [15]
proposed optimal linear weights and optimal power allo-
cation for SUs, to maximize the CR systems probabil-
ity of detection. They also derived signal probability of
PUs of high detection and high spectrum utilization using
the modification of the time slots period inside of the
time frame [16]. The multichannel sensing and RA prob-
lems guarantee a certain level of PUs activation protection
was addressed in [17], [18] using a proportional optimiza-
tion problem with CSI sensing to control the transmission
power.

B. MOTIVATION AND CONTRIBUTIONS
In this paper, we attempt to solve the problem of computing
functions over a wireless MAC, which has a set number of
sensor nodes and an individual receiver, which we refer to
as the FC. Current sensor networks often employ a tried
technique to tackle this computational problem, allowing sep-
arate nodes individually transmit, in the form of a stream of
information-bearing symbols, a quantized version of its data
(i.e., sensor readings) to the FC. Each sensor node transmits
data at a rate that is congruent with the FC reconstructing each
of the (quantized) sensors readingwithout fault and goes on to
determine the required function. Therefore, the two processes

of data transmission and the function computation have no
element at all in common. Protocols of the separation-based
medium access type are, for the most part, greatly subopti-
mal, e.g., at times when maximizing computation throughput
means the rate of reconstruction of quantized sensor readings
at the FC that has a few communication constraints.

The information-theoretic result of [19], specifically, pro-
poses that if the MAC mathematically corresponds to a
function under calculation, the superposition property of the
wireless channel can present advantageous implications. The
term CoMAC refers to this method, and it can act as a
technique for combining the data transmission and function
computation processes through utilizing channel collisions
in which concurrent access of separate nodes induces to a
common channel. This technique promptly results in a higher
computation throughput, hence a decreased latency or fewer
bandwidth requirements. The wireless channel has superpo-
sition properties, which can make the wireless MAC suitable
as a summation-type linear operator mapping the input space
to the set of complex-valued numbers. Functions naturally
matched to this channel, therefore, are linear functions and
comprise a single class of functions of interest in practice.
Nevertheless, to ensure such a perfect synchronization in
practical wireless networks, it may present high costs and
difficulty in providing the resources.

This paper, in general, shows the topic of EEmaximization
for green CR practical networks with less energy consump-
tion. Some research works have performed EE maximiza-
tion in the sensing period, transmission period, and overall
EE by considering the probability of detection with closed-
form expression for maximal EE. In this paper, we analyzed
a different sensing method at each period with the same
bandwidth on an effective coefficient for the sensing case.
Then, we develop the EE of the CR performance to maximize
the EE while increasing the average throughput. Therefore,
our contribution is to find a procedure to reduce the CR
energy consumption while maximizing total EE to protect
PU comparing the other works with closed-form expressions.
The basic idea behind the regime for efficient computation of
desired proposed functions is to exploit the broadcast prop-
erty of MAC to allow the FC to observe a superposition of
signals transmitted by the CRs. Numerical comparisons with
an existing method such as ISA is presented for performance
analysis in EE maximization. However, the analysis in [11]
is just limited to cooperative CoMAC signals based on an
analytical framework. However, in this work, we have con-
sidered the collaborative sensing utility to guarantee energy
saving and detection performance, which yields improvement
in EE to a greater scope. To the best of our knowledge, such
an analysis of EE in multichannel wireless MAC networks,
including data transmission, has not been considered earlier
in the literature. The main contributions of this work are
summarized as follows:
• We first mathematically model the CoMAC-based
approach to accelerate the practical CR sensing model
to guarantee the soft sensing decision fusion to perform
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the EE maximization. Then, the derivatives of false
alarm and detection probabilities are raised to metric the
system performance. Moreover, we arrive at an optimal
detection closed-form expression to achieve a simplified
EE maximization problem by minimizing the average
energy consumption,

• Received a Gaussian distribution can approximate signal
energy distribution based on central limit theorem (CLT)
at the FC. Then, maximization of EE is posed as a non-
convex optimization problem, to find the CRs required
for collaboration, that satisfies a given constraint on the
probability of false alarm and detection,

• Two scenarios of the problem formulation to jointly
optimize EE problem whereas preserving the accuracy
of detection to achieve maximum average throughput
with the lower complexity analysis is then considered.
Besides, a new energy-efficient scenario is considered
in this paper to set the requirements of the minimum
data rate for SUs to assure the quality of service (QoS).
They formulated the maximization problem of mean EE
for SUs despite preserving the accuracy of detection by
jointly maximizing the perception time and SUs num-
bers that were subjected to the constraint of data rate,
by applying non-linear fractional programming,

• We further address the issue of non-convexity optimiza-
tion problem based on fractional programming and the
Dinkelbach method. For this purpose, the optimization
problem will transform into a similar concave problem.
Then, iterative energy-efficient power allocation is elab-
orated to acquire the SUs optimal power transmission
policy. Finally, great results to compare the developed
EE soft decision fusion strategy is presented to analyze
our scheme. Obviously, it is exhibited that our scheme
outperforms recently presented schemes and improves
the performance of the network.

C. ORGANIZATION
The remainder of this work is organized as follows.
In Section II, system model details with cooperative sens-
ing energy detection have been given, and Sec. III presents
the global decision and local sensing system performance.
Section IV describes the optimization problem formulation
scheme for maximizing the EE perspective. In section VII,
some results to validate the efficiency of our solution
outperforms recently efficient scheme with discussions
through simulations are presented. Finally, Sec. VIII pro-
vides the conclusion. In addition to this, a list of com-
monly used variables and special functions is provided
in Table 1.
Notations: Throughout this paper, lightface symbols

denote scalars, while boldface symbols represent matrices
and vectors. The sets of real and complex numbers are
denoted by R, C. CN

(
0, σ 2

)
denotes the complex Gaussian

distribution with zero mean and variance σ 2. [.]H denotes the
Hermitian transposition and [.]T represent the transposition

TABLE 1. List of notations.

FIGURE 1. Periodic sensing time frame structure.

of a vector or matrix;E (.) andVar (.) represent the statistical
expectation operator and the variance operator.

II. SYSTEM MODEL
A CR network with a single-hop infrastructure as well as N
SUs, C licensed channels, and one FC assumed in a B Hz
bandwidth permitted channel and control channel. The time
period is also partitioned into frames, and all nodes synchro-
nized with the FC. Frame designing is performed in such a
way that every single of them is capable of sensing the CR
by taking advantage of the periodic sensing model. The three
phases of constructing the frame structure as in Fig. 1 are: a
sensing phase, a reporting phase, and a transmission phase.
Spectrum sensing is performed by all cooperative SUs by
means of energy detection inside of the sensing phase. In the
reporting phase, the local sensing data at each node is reported
to the FC in the form of a power-encoded symbols sequence.
The FC then makes a global decision based on the results of
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the local measurement received according to the identified
threshold and disseminates the global decision through the
control channel at the end of the reporting phase. The CR
communications select a narrow band unlicensed spectrum as
the control channel, which is contention-free but may elimi-
nate the flat-fading process. The time of fusion and decision
in FC is specified, and we set the time as a unit of time
(mini-slot) for simplicity. Meanwhile, the transmission phase
is slotted. The TDMA-MAC protocol plans transmissions in
the transmission phase if the PUs are detected absent at the
end of the reporting phase. At the beginning of the trans-
mission phase, the data transmission is specifically centrally
performed and broadcast by the FC over the control channel.
After retrieving the schedule, each node transmits its data
to the FC in the allocated time slot and falls asleep for the
rest of the time. Specifically, the lengths of the sensing and
transmission phases are represented by τs and τt , respectively,
and the reporting phase one mini-slot length is denoted by
τ . The length of a single frame is therefore given by T =
τs+2τ + τt . PUs may be inactive during the sensing time but
later become active during the transmission time. However,
due to the low utilization of the PUs spectrum and the short
duration of periodic sensing, the probability of this event
will be negligible. To make the analysis tractable as well as
to address the intrinsic feature of the considered problem,
we assumed that the PUs status would be fixed within one
frame.

A. SENSING
The measurement of local sensing per ith user, (1 ≤ i ≤ N ),
in a form of binary hypothesis for all n = 1, 2, . . . ,Mi is,

yi (n) =

{
wi (n) , H0

hi (n) s (n)+ wi (n) , H1
(1)

where H0 and H1 represents primary signal status (absence
and presence), and Mi = τsf si is the total number of sam-
ples with f si as sampling frequency of SUi. The primary
signal is also denoted by s (n). Furthermore, the noise of
wi (n) ∼ CN (0, σw) is taken to be a circular symmetric
complexGaussian noise. The channel gain |hi (n) | is assumed
to be a Rayleigh distribution with the same variance of σ 2

h .
Assuming s (n), wi (n), and hi (n) are independent of each
other, the average signal-to-noise ratio (SNR) at each node

can be obtained by γ ,
σ 2h σ

2
s

σ 2w
where σ 2

s is the received fading

PU signal variance. Ei (y) = 1
M

∑Mi
n=1 |y (n) |

2 denotes the
calculated average energy of the CR node ith overM samples’
detection interval as the test statistic for energy detector.
However, the overall test statistics at the FC is as follows:

T alls (y) =
1
N

N∑
i=1

Ei (y) . (2)

B. REPORTING
Generally, to compute T alls (y), FC should collect Ei (y) from
CRs successively to express the local statistic of ith SU.

In conventional schemes, it is observed that the Ei (y) trans-
mission and computation of T alls (y) are separated in the
time domain. Computation schemes which are separation-
based are often incompetent since computing T alls (y) is not
dependent on total reproduction of individual Ei (y) at the FC.
On the other hand, this work exploits the CoMAC scheme to
promote the merging of transmitting and computing T alls (y),
as it only takes one time reporting phase unit (see Fig. 2).
CRi broadcast a sequence of complex and distinct sym-
bolic values with the power of transmission that involves
the Ei (y) value. Specifically, the ith transmission power is
Pi (Ei (y)) = αarit (Ei (y)− xmin), if we define αarit =

Pmax
xmax−xmin

, wherein Pmax shows the SUs transmission power
and [xmin, xmax] (xmin < xmax) denotes the sensing range.
Si := [Si [1] , Si [2] , . . . , Si [L]]T ∈ CL indicates a random
transmission symbol sequence independently produced by
the ith SU and L represents the symbol sequence length. The
sequence of SU i is denoted by Si [m] = exp (iθi [m]) (m =
1, . . . ,L) where i is the imaginary part and {θi [m]}i,m are
independent identically and uniformly distributed continuous
randomized phases on [0, 2π ). This implies ‖Si‖22 = L and a
constant envelope of the transmit signal (i.e., |Si [m] |2 = 1,
for all m, i), which is a vital practical constraint.
Remark 1: Employing sequences with random phases

and the constant envelope can outperform optimizing the
sequences assigned to different nodes to decrease the over-
head for coordination and to enhance scalability in compari-
son to systems that have optimized sequences. It is noteworthy
that a corresponding sequence model may differ from a
design for traditional asynchronous code division multiple
access (CDMA) systems [20], which aim to obviate or lower
the mutual interference. Contrarily, CoMAC schemes have
to take advantage of the interference to reach a common
objective, to calculate functions of sensor readings.

Wepropose that if it is possible to eliminate the effect of the
fading channel from the receiver-side, each transmitter inverts
its own channel to counteract this impact. CSI is necessary at
each transmitter to achieve this goal. The known pilot signal
transmitted by the FC can estimate the CSI. The pilot signal
in practical systems can also help wake up sensor nodes and
the computational process to initiate. Thus, the mth transmit
symbol of CRi with the CSI at the nodes inverts its channel
by sending [21]

0i [m] =
√
Pi (Ei (y))

|h̃i (m) |
Si [m] , (3)

where |h̃i(m)| shows independent complex-valued flat fading
channel magnitude among the SU i and FC.1 The channel
magnitude

∣∣∣h̃i (m)∣∣∣ appears to be adequate for obtaining the
same operation with full CSI link at the transmitter. Simulta-
neous transmission of SUs produces an output at the FC as

1The division by the channel amplitude is adequate so that the estimation
of the channel phase is not required.
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FIGURE 2. Block diagram of the CoMAC computation of user N .

follows [11],

Y =
N∑
i=1

√
Pi (Ei (y))Si +W (4)

where Y := [Y [1] ,Y [2] , . . . ,Y [L]]T ∈ CL and W :=

[W [1] ,W [2] , . . . ,W [L]]T ∈ CL shows an indepen-
dent stationary complex Gaussian noise vector with W ∼

CN
(
0, σ 2

wIL
)
. By estimating the signal energy of (4) at ‖Y‖22,

the FC calculates an unbiased and consistent of the overall
test statistic T alls (y) estimation as f̂L (E (y)) where E (y) =
[E1 (y) ,E2 (y) , . . . ,EN (y)]. Specifically, let f be the desired
function arithmetic mean,2 then, the estimate f̂L (E (y)) of
f (E (y)) is defined to be [21]

f̂L (E (y)) :=
1

Nαarit

(
‖Y‖22
L
− σ 2

w

)
+ xmin. (6)

All parameters in (6) are assumed to be known to the FC,
where αarit , L, and xmin are reported by the SUs and σ 2

w can be

2In mathematics, the sum of a collection of numbers divided by the count
of numbers in the set (or group) as an arithmetic mean or a clear field
merely as an average or the mean. Usually, the group is a set of results of
an experiment or an empirical study, or often a set of values of assessment.
Some contexts in mathematics and statistics choose ‘‘arithmetic mean’’ as
a term to show its difference from other means, e.g., the geometric mean
and the harmonic mean. In a data set, central tendency mean is an arithmetic
measure, which is the easiest to understand and has the most applications.
A measure of central tendency in statistics defines the term average. The
arithmetic mean of a set of observed data is equal to the total of the numerical
values of all of the observations divided by their total numbers. Considering
the data set with the values of E (y), we can take into account the symbolic
formula of the desired arithmetic mean f :

f (E (y)) =
1
N

N∑
i=1

Ei (y) =
E1 (y) ,E2 (y) , . . . ,EN (y)

N
. (5)

obtained based on the long-term historical observation at the
FC. To perform the energy detection, f̂L (E (y)) is exploited
instead of T alls . According to (3), T alls is more informative for
the FC to make the global decision.

III. DECISION PERFORMANCE ANALYSIS
For the final decision, f̂L (E (y)) is compared to the threshold
value of λs by FC while the absence of the PU is estimated,
if f̂L (E (y)) < λs. However, the probabilities of false alarm
and detection can be respectively expressed as

Pf = P
(
f̂L (E (y)) ≥ λs|H0

)
, (7)

and

Pd = P
(
f̂L (E (y)) ≥ λs|H1

)
, (8)

where the detection condition of Eqs. (7), (8) can be modified
as follows:

f̂L (E (y)) ≥ λs ⇐⇒ ‖Y‖22 ≥ η (λs;L,N ) , (9)

where η (λs;L,N ) = LNαarit (λs − xmin)+ Lσ 2
w.

A. SENSING PERFORMANCE APPROXIMATION
Given the importance of the total energy of vector Y for
f̂L (E (y)), we first declare ‖Y‖22 as follows

‖Y‖22 = 11 +12, (10)

where 11 = L
∑N

i=1 Pi (Ei (y)) and 12 = WHW +
∑N

i=1∑N
j=1
j6=i

√
Pi (Ei (y))Pj

(
Ej (y)

)
SHi Sj + 2

∑N
i=1
√
Pi (Ei (y))

<
{
SHi W

}
. Obviously, 11 is a linear combination of all
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{Ei (y)}Ni=1. The mean and variance conditions of Ei (y) are

E {Ei (y)} =

{
σ 2
w, H0

(γ + 1) σ 2
w, H1

(11)

and

Var {Ei (y)} =


σ 4
w

Mi
, H0

(2γ + 1) σ 4
w

Mi
, H1

(12)

However, the mean and variance of 11 are

E {11} = L
N∑
i=1

E {Pi (Ei (y))} =

{
L�0, H0

L�1, H1
(13)

and

Var {11} = L2
N∑
i=1

Var {Pi (Ei (y))}

=


L2Nα2aritσ

4
w

M
, H0

L2Nα2aritσ
4
w (2γ + 1)
M

, H1

(14)

where �0 := Nαarit
(
σ 2
w − xmin

)
and �1 := Nαarit(

(γ + 1) σ 2
w − xmin

)
. Similarly, the mean and variance of 12

are:

E {12} = Lσ 2
w, (15)

and

Var {12} = L
N∑
i=1

N∑
j6=i

√
E
{
Pi (Ei (y))Pj

(
Ej (y)

)}
+ Lσ 4

w

+ 2Lσ 2
w

N∑
i=1

E {Pi (Ei (y))}

=

{
L�0

(
N − 1+ 2σ 2

w
)
, H0

L�1
(
N − 1+ 2σ 2

w
)
+ Lσ 4

w, H1
(16)

However, we are ready to derive the mean and variance of
‖Y‖22 by assuming Si and W are mutually independent as
below,

E
{
‖Y‖22

}
=

{
L
(
�0 + σ

2
w
)
, H0

L
(
�1 + σ

2
w
)
, H1

(17)

and

Var
{
‖Y‖22

}
=


L�0

(
N − 1+ 2σ 2

w
)
+

L2Nα2aritσ
4
w

M , H0

L�1
(
N − 1+ 2σ 2

w
)
+ Lσ 4

w

+
L2Nα2aritσ

4
w (2γ + 1)
M

, H1

(18)

Due to the complexity of the expression ‖Y‖22, its exact
distribution will be unavailable even if the mean and variance
are known. However, we can approximate ‖Y‖22, with the aid

of CLT [22], based on Gaussian distribution. Hence, for a suf-
ficiently large L, false alarm probability can be approximated
as follows:

Pf = P
(
‖Y‖22 ≥ η (λs;L,N ) |H0

)
= Q

 LNαarit
(
λs − σ

2
w
)√

L�0
(
N − 1+ 2σ 2

w
)
+

L2Nσ 2wα
2
arit

M

 , (19)

Next, the global probability of detection can be simplified as
follow:

Pd = P
(
‖Y‖22 ≥ η (λs;L,N ) |H1

)
= Q

 LNαarit
(
λs − (1+ γ ) σ 2

w
)√

L�1
(
N−1+2σ 2

w
)
+Lσ 4

w+
L2Nα2aritσ

4
w(2γ+1)

M

 ,
(20)

where Q (.) is complementary cumulative distribution func-
tion (CCDF), which calculates the tail probability of a zero
mean unit variance Gaussian variable; that is, Q (x) =∫
+∞

x exp
(
−t2/2

)
dt/
√
2π . From (19) and (20), we have to

constrain λs to make Pd > 0.5 and Pf < 0.5, which ought to
be the most CR scenarios case.

IV. OPTIMIZATION PROBLEM FORMULATION
Here, the fundamental tradeoff of sensing capability and
available throughput corresponding to the secondary net-
works is investigated. By using an energy detection scheme,
one can obtain the maximum throughput for an optimum
sensing time, and protecting the PUs adequately. In this
section, we elaborate on the data transmission, energy con-
sumption, and EEmodels in detail. The optimization problem
aims at maximizing the EE of the optimum sensing to deter-
mine the optimum detection threshold and the time in a way
that energy consumption reaches the lowest value as the EE
reaches the highest value. Considering C0 as the secondary
network throughput provided in PUs absence and C1 as the
throughput of the PUs presence, obviously, C0 > C1. It is
worth mentioning that the formula, as discussed above for
C1, could be considered as a lower bound of the secondary
link accessible rate whenever the PU is active provided
that the signal of the PU is non-Gaussian. Defining P (H0)

and P (H1) as the PU absence and presence probabilities,
P (H0) + P (H1) is equal to 1 for a certain frequency band
of interest. We assume that the ith SU is allotted a segment
of the jth channel that can be accomplished through either
filter bank multicarrier (FBMC)3 or orthogonal frequency

3Multicarrier modulationwith a long track history in wireless communica-
tions is considered widespread practical applications in the form of orthog-
onal frequency division multiplexing (OFDM) channels, with advances in
integrated circuits. Long term evolution (LTE), Wi-Fi, and digital video
broadcasting-terrestrial (DVB-T) are the current applications of OFDM tech-
nology. Orthogonal pulses overlap in time and frequency transmit the infor-
mation in multicarrier systems. These pulses are highly preferable as they
cover small bandwidth, thus transforming frequency-selective broadband
channels, with negligible interference, into multiple, virtually frequency flat,
sub-channels.
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division multiple access (OFDMA), at a transmission power
of pij. Consequently, two scenarios can be viewed, meaning
the secondary networks can keep running at the frequency
band of the PU. Future portable systems will be described
by enormous scope provided by conceivable uses, from
enhanced mobile broadband over enhanced machine-type
communications to ultra-reliable low latency communica-
tions [23], [24]. A high subcarrier is dispersing pass the low
latency transmissions, while small subcarrier spacing raises
the bandwidth efficiency. Besides, extraordinary subcarrier
spacing facilitates matching the transmission framework to
specific channel conditions. A user at high velocities should
utilize a high subcarrier dispersing. If multipath delay spread
is the limiting factor, small subcarrier spacing would be
the better choice. Other calculations presented lower delay
spreads [25]. The little delay spread is the indicator of the
adequacy of low-complexity one-tap equalizers to achieve an
operational optimum in FBMC. Rayleigh fading is mainly
observed by relocating the receive antennas inside a couple
of wavelengths but not over the frequency domain.
S1. There are no PUs and SU does not make false alarm.

In this scenario, the energy consumed, Ê1, and the
achievable secondary link throughput are explored by
N (Esτs + LEtv) + (T − 2τ − τs)Et and T−2τ−τs

T C0,
where Es, Et , and v represents the sensing power, trans-
mission power, and symbol duration, respectively.

S2. In this scenario, secondary link achievable throughput
and energy consumed of Ê2 corresponding to the sec-
ondary link is determined by T−2τ−τs

T C1 and Ê1 = Ê2,
respectively, the latter is the same as the S1.

In this case, the achievable transmission rate of SU is

Gij = Bwij log2

(
1+

pijhij
wijσ 2

s

)
, (21)

where wij ≥ 0 is the weighting factor of CRi and the jth chan-
nel, and hij is the channel coefficient of ith user on channel j.
We assume

∑N
i=1 wij = 1, j ∈ C without loss of generality.

Hereafter, the probabilities of S1 and S2 are respectively(
1− Pf

)
P (H0) and (1− Pd )P (H1). If we define

R̂0 =
T − 2τ−τs

T

N∑
i=1

C∑
j=1

[
C0
(
P (H0)

(
1− Pf

))]
Gij, (22)

and

R̂1 =
T − 2τ−τs

T

N∑
i=1

C∑
j=1

[C1 (P (H1) (1−Pd ))]Gij. (23)

To ensure the sensing accuracy, probability of detection lower
limit can be fixed precedently, and the average through-
put maximization problem is conceived as equation (24)
(as shown at the bottom of the next page) where C =

{1, 2, . . . ,C}, N = {1, 2, . . . ,N }, and p denotes the vector
of pij. Also, P̄d is the lower limit of detection probability
that requires to achieve the protection of PU, P̄f exploits
the false alarm probability upper limit, and Pmax is the SUs

maximal transmission power. Apparently for the specified
time frame T , the more sensitive time τs and the reporting
time τ , the data transfer available time of (T − 2τ − τs)
seems to be shorter. Generally, the false alarm and detection
probabilities mainly depend on the local sensing duration and
the number of cooperative users N . Actually, the increase
of τs and N leads to a higher detection probability and a
lower false alarm probability, which implies a better sensing
capability, but also means less time and power for the later
data transmission. Thus, there is a tradeoff between cooper-
ative spectrum sensing and throughput. Alternatively, Q (x)
is a function of x for specified probability of detection (Pd )
that decreases monotonically. Therefore, the probability of
false alarm is concurrent with a longer sensing time, which is
consistent with the fact that the secondary network can utilize
the channel within a higher chance manner. However, sensing
throughput tradeoff aims to establish the desired length of
each frame while protecting the PUs, can achieve the max-
imum attainable secondary networks throughput. A prefer-
able problem optimization objective function, concerning
EE, should be able to calculate the number of bits which
one Joule of the consumed energy can allow to transmit
[26]. A high SNR level necessitates more power, which can
cause a bit error rate (BER) to decrease and throughput to
increase. A high power, nevertheless, implies lower battery
life in terminals, in addition to being harmful to the envi-
ronment. Data transmission is an enormous energy-consumer
and necessitates to develop strategies for energy-efficient data
transmission to decrease power usage and extend the CR
lifetime. Contrarily, the transmission performance should be
guaranteed while minimizing power consumption is crucial.
Hence, EE performance can also be specified as the average
throughput and average energy consumption over a period of
time, containing sensing and transmission power. Therefore,
the EE (bits/sec/Hz/Joule) can be written as below,

ξ̂ (τs, λs,L,p) =
R̂s (τs, λs,L,p)

Ê (τs, λs,L)
. (25)

Accordingly, using the energy consumed in S1 and S2, one
can estimate the average energy consumption for data trans-
mission within a frame as follows,

Ê (τs, λs,L) = Ê1 + Ê2
= N (Esτs + LEtv)

+ (T − 2τ − τs)Et (P (H0)
(
1− Pf

)
+P (H1) (1− Pd )). (26)

In similar fashion, it is assumed that P (H1) < 0.5 as
described in [27]. Since EE includes sensing accuracy, total
energy consumption, and achievable throughput, this compre-
hensive metric is extensively utilized to indicate the overall
performance of a system. By decreasing the average energy
consumed per frame, (25) is substantially increased; however,
one can find a principal method to have green CRs’ EE
increased. Given an effective coefficient (0 < α < 1)
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constraint, (25) can be considered as:

min
τs,λs,L

Ê (τs, λs,L)

subject to: Êi (τs, λs,L) ≥ 0,

τmin ≤ τs ≤ T − 2τ,

Llower ≤ L ≤ Lmax ,

fα (τs) = αÊ (τs) ,

Ê (τs) := Ê (τs, λs,L) . (27)

Under the primary communication protection condition,
the aim is to optimize the mean EE, whereas preserving the
accuracy of detection by maximizing the sensing time dura-
tion and SUs subject to the average transmit power constraints
and the average sustainable power for PUs. In CR networks,
energy is consumed during different spectrum management
activities such as data reporting and spectrum sensing. When
designing spectrum decision schemes, considering energy
efficient methods to ensure the less energy consumed during
cognitive activities should be mentioned. According to CR
reconfiguration4 framework, an intelligent choice can lead
to lower power and energy consumption. In the medium-
and long-range wireless communications, power amplifier
usually dominates power and energy consumption. Based on
the mentioned points, the CR-EE comparison could be found

4In traditional wireless networks, radio terminals are set up to operate
over pre-defined frequency channels with pre-defined transmitter parameters
and specifications. Although such systems may use adaptive techniques to
modify various parameters such as transmission power and modulation and
coding schemes (MCS), their hardware-based architecture restricts their flex-
ibility to conform to the external environment. However, the inaccessibility
of the heterogeneous spectrum and DSA requires systems that are much
more flexible. Therefore, CR networks provide such flexibility to quickly
adjust their transceiver parameters (e.g., channel width, center frequency,
transmission power, andMCS) upon external RF environment stimuli, policy
updates, QoS requirements, selected spectrum, channel characteristics, and
user’s needs. This flexibility is easily achieved by performing CR using
SDRs [3].

in Table 2. Herein, the EE maximization problem for a given
predefined threshold 3 (that is close to but less than 1) can
be reformed as below,

P1 : max
τs,λs,L,p

ξ̂ (τs, λs,L,p) =
R̂s (τs, λs,L,p)

Ê (τs, λs,L)
subject to: Pd (τs, λs,L) ≥ 3,

0 ≤ τs ≤ T − 2τ,

λs ≥ 0,

Llower ≤ L ≤ Lmax ,
N∑
i=1

wij, j ∈ C,

0 ≤ wij ≤ 1, i ∈ N, j ∈ C,
C∑
j=1

pij ≤ Pmax , i = 1, . . . ,N ,

pij ≥ 0, i ∈ N, j ∈ C. (28)

where Llower and Lmax respectively represent the lower and
upper bounds of L. The exploited optimization problem of
(28) is considered as a non-convex problem. To deal with this
problem, we turn it to a convex one through nonlinear frac-
tional and sequential convex programming in the following
sections.
Theorem 1: Given that each local maximum in (28) is

known as a global maximum that has one maximum, P1 is
considered to be completely quasi-concave.

It has been shown that the numerator and denomi-
nator of the optimization objective (25) of the original
problem P1 in (28) are concave and affine p, respec-
tively. The objective function (25) is a pseudo-concave
function. Accordingly, P1 is a non-linear fractional pro-
gram (we present our detailed approach by the following
section).

max
τs,λs,L,p

R̂s (τs, λs,L,p) = R̂0 + R̂1

=

(
T − 2τ − τs

T

) N∑
i=1

C∑
j=1

[(
C0
(
P (H0)

(
1− Pf

))
+ C1 (P (H1) (1− Pd ))

)
Gij
]

subject to: 0 ≤ τs ≤ T − 2τ,

Pd ≥ P̄d ,

Pf ≤ P̄f ,
N∑
i=1

wij, j ∈ C,

0 ≤ wij ≤ 1, i ∈ N, j ∈ C,
C∑
j=1

pij ≤ Pmax , i = 1, . . . ,N ,

pij ≥ 0, i ∈ N, j ∈ C. (24)
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TABLE 2. EE solutions for CR technologies.

A. DECOMPOSITION
For simplicity, we present the EE performance by q, i.e.,

q∗ = ξ̂∗ =
R̂s (τs, λs,L,p∗)

Ê (τs, λs,L)
. (29)

Defining the function form of q to be

P2 : F (q) = max
p

R̂s (τs, λs,L,p)− qÊ (τs, λs,L) ,

subject to:
C∑
j=1

pij ≤ Pmax , ∀i and pij ≥ 0,

i ∈ N, j ∈ C. (30)

We next show in Lemma 1 that F (q) is a strictly decreasing
function that is always non-negative.
Lemma 1: The function F (q) is strictly decreasing for

every feasible EE value and F (q) ≥ 0.
Proof: The proof can be found in Appendix A. �

Based on Lemma 1, we present the following theorem to
reformulate the optimization problem into a friendly form.

Theorem 2: The optimal EE of CRi and optimal trans-
mission

(
τs, λs,L,p′

)
are obtained if and only if F (q∗) =

F
(
q∗; τs, λs,L,p′

)
= 0 where q∗ = ξ̂∗ = R̂s(τs,λs,L,p∗)

Ê(τs,λs,L)
.

Proof: The proof is given in Appendix B. �

V. SOLUTION OF THE PROBLEM
Now, the optimization algorithm and fractional programming
are applied to calculate the problem P1. Then, sensing and
transmission power allocation are optimized simultaneously
using the iterative Dinkelbach algorithm [34]. Then nonlinear

fractional and parametric programming are used to compute
objective function (24).

A. EQUIVALENT CONCAVE PROGRAMMING
TRANSFORMATION AND KKT-BASED SUBOPTIMAL
POWER ALLOCATION
The fractional programming obtained in (28) can be stated in
the condition form of below [36],

max
p∈P

f (p)
q (p)

,

subject to: hi (p) ≤ 0, i ∈ N. (31)

In such follows, the properties of (31) can be expressed as a
concave fractional program as follows: (i) the functions f (p),
g (p), and {hi (p)}Ni=1 are all real values defined on theP ∈ Rn

set, (ii) f (p) and g (p) are concave and affine sign on P , and
(iii) if g (p) is not affine, the set f (p) on S is considered
positive where S = {p ∈ P : hi (p) ≤ 0, i ∈ N}. A concave
fractional programming objective function is quasi-concave,
and a global maximum in quasi-concave problem cannot
be assured as the optimal solution. When g (p) is severely
convex or f (p, z) is strictly concave, the concave fractional
program has a maximum of one solution point [36], [37]. If g
and S are convex and f is concave and non-negative, then
(31) is claimed as a concave-convex fractional program that
provides an efficient approach to calculate a limited fractional
programming problems class. However, a concave fractional
program can be converted to a concave problem, and any
local maximum point can also be guaranteed as a global
maximum point for a convex problem. Given the concavity
of R̂s (τs, λs,L,p) based on the transmission power and the
affine function of Ê (τs, λs,L), P1 would be the considered
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quasi-concave function. In a differentiable equivalent con-
cave problem, an optimal solution is provided by a solution
ofKarush-Kuhn-Tucker (KKT) conditions. Then, Lagrangian
duality theorem is used to calculate the suboptimization prob-
lem as shown in (32), at the bottom of the next page, where
µ and ν are the non-negative Lagrangian multipliers. Also,
R̂min represents the minimum data rate demands by SUs.
The optimization problem can be then transformed into a
Lagrangian duality as,

min
µ,ν

max
p

L (µ, ν,p) ,

subject to: µ ≥ 0, ν ≥ 0. (33)

The power allocation subproblem exists in the optimization
problem formulated in (33) and may have a repetition solu-
tion. The internal maximum subproblem can use a series of
Lagrange multipliers to maintain the locally optimal power
allocation. The Lagrange dual-decomposition method [38]
can separate (33) to a number of subproblems parallel to each
other in the same manner for [36]. These subproblems have
the same structure for each fading state. The corresponding
subproblem for a particular fading state can be therefore given
as (34). Here, the external minimum subproblem of updated
Lagrange multipliers can extract a resolving strategy after-
ward. where the external minimum subproblem of updated
Lagrange multipliers can afterward obligate the strategy to
find a solution. After substituting Gij from (21) to (32),
we can calculate the derivative of the Lagrange function and
modification,

∂L (µ, ν,p)
∂p

= −µC −
BCNwijhij (T − 2τ − τs) %s(

pijhij + wijσ 2
s
) (35)

where

%s =

(
C0
(
Pf − 1

)
P (H0)+ C1 (Pd − 1)P (H1)

)
T ln 2

(36)

By setting ∂L(.)
∂p = 0, we can find the optimal point for

energy-efficient power allocation mechanism as follows:

p∗ =

[
−
BNwij (T − 2τ − τs) %s

µ
−
wijσ 2

s

hij

]+
(37)

where (a)+ = max (0, a).

B. PARAMETRIC OPTIMIZATION ITERATIVE
SOLUTION
An iterative fractional programming technique based on less
cumbersome Dinkelbach mathematical technique does not
require the transformation. This algorithm first transforms
the fractional programming objective to a parametric opti-
mization problem, afterwards, ε-optimal arrangements are
acquired iteratively by assuming ε as the convergence tol-
erance, i.e., ε ∈ [ε0, ε1]. Consider the following general
optimization problem, where p ∈ Rn and q ∈ R

max
p

K (p)
D (p)

,

subject to: p ∈ S. (38)

The parametric problem associated with Equation (38) can be
written as follows:

max
p
K (p)− qD (p) ,

subject to: p ∈ S. (39)

There is one-to-one relation among the fractional and iterative
concave programming solutions with the parametric objec-
tive as indicated in the following theorem:
Theorem 3: q∗ = K(p∗)

D(p∗) = maxp∈S
K (p)
D(p) if and only if,

maxp∈S K (p)− q∗D (p) = K (p∗)− q∗D (p∗) = 0.
To achieve power allocation, we convert our optimization
problem into a similar one (12) and go on to propose a repeti-
tion of ε-optimal algorithm. We are therefore using fractional
programming to transform P1 to a convex one, reformulated

L (µ, ν,p) = R̂s (τs, λs,L,p)− qÊ (τs, λs,L)− µ

 C∑
j=1

pij − Pmax

− ν (R̂s − R̂min)

=

(
T − 2τ − τs

T

) N∑
i=1

C∑
j=1

[(
C0
(
P (H0)

(
1− Pf

))
+ C1 (P (H1) (1− Pd ))

)
Gij
]

− qN (Esτs + LEtv)+ (T − 2τ − τs)Et (P (H0)
(
1− Pf

)
+ P (H1) (1− Pd ))

−µ

 C∑
j=1

pij − Pmax

− ν (R̂s − R̂min)

subject to:
C∑
j=1

pij ≤ Pmax ,

R̂s − R̂min ≥ 0,

pij ≥ 0. (32)
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as P2. Algorithm 1 presents the pseudo-code of the itera-
tive scheme. The iterative method-based EE maximization
algorithm, which we proposed earlier, is, however, shown in
Algorithm 1. We are now able to prove that the algorithm is
convergent.

Algorithm 1 Iterative Method-Based EE Maximization
Algorithm
Require: Initialize I0, ε0, k = 0, q = 0, and Conver-
gence=false.

Ensure: F (p, q) = R̂s (τs, λs,L,p)− qÊ (τs, λs,L)
while (Convergence=false) and (k ≤ I0) do
p← argmaxp {F (p, q) |Eq.(28)}
if F (p, q) = 0 then

Convergence=true
return p∗ = p

else if F (p, q) ≤ ε0 then
Convergence=true
return pε0 = p

else
update, q← R̂s(τs,λs,L,p)

Ê(τs,λs,L)
update, k ← k + 1

end if
end while

Lemma 2: ∃q such that F (q) = 0.
Proof: The proof is deferred to Appendix C. �

Lemma 3: F (q) is decreasing in q.
Proof: The proof is given by Appendix D. �

Theorem 4: The iterative algorithm will always converge
to ε-optimal solution.

Proof: The proof can be found in Appendix E. �
We iteratively update µ and ν using a sub-gradient method in
order to compute the external minimum subproblem in terms
of the Lagrange multipliers as [36]-[40],

µ (k + 1) =

µ (k)− s
 C∑
j=1

pij − Pmax

+ , (40)

ν (k + 1) =
[
ν (k)− s

(
R̂s − R̂min

)]+
. (41)

where k denotes the index iteration and s is the step size
constant to converge to the optimal value. In each k , we first
update µ and ν by p∗, and then use optimal values of
µ and ν in the subsequent iterations to obtain p∗. The
analysis of the KKT-based complexity approach can be
found in Algorithm 2, which provides the searching duality
Lagrangian power allocation procedure and can be applied
in a straightforward model to solve the CR communications
power allocation.

Algorithm 2 Lagrange KKT-Based Power Allocation
Algorithm
Require: Initialize I1, ε1, Lagrangian multipliers µ (k) and
ν (k) for k = 0, and Convergence=false.
while (Convergence=false) and (k ≤ I1) do
Compute p∗ using (37).
Update µ and ν by (40) and (41) using sub-gradient
method:
µ (k + 1) =

[
µ (k)− s

(∑C
j=1 pij − Pmax

)]+
ν (k + 1) =

[
ν (k)− s

(
R̂s − R̂min

)]+
if |µ (k + 1)− µ (k)| + |ν (k + 1)− ν (k)| ≤ ε1 then
The algorithm terminates,
Convergence=true
return p∗ = p

else
update, k ← k + 1

end if
end while

TABLE 3. Parameter settings.

VI. COMPLEXITY ANALYSIS
We now analyze the joint iterative power allocation sub-
problem mathematical computation complexity. Generally,
regarding the fact that the iteration number necessary for
Lagrange multipliers and the transmit power to reach con-
vergence is rather small, the procedure is somehow straight-
forward and simple. Note that it is necessary to update dual
variables of µ and ν for convergence. Hence, the fractional
programming complexity and the sub-gradient searching
method is O (NI0I1) by supposing I0 and I1 as the outer loop
and the inner loop iteration numbers.

VII. SIMULATION RESULTS AND EVALUATIONS
Next, we present our framework with discussions to elim-
inate the performance taking in account of different key
system parameters. The values of the parameters are given
in Table 3, as in [27], [39]. The other parameters used in
this simulation are N = [10, 15, 20], αarit = 10, and

max
p

y (p) =
(
T − 2τ − τs

T

) N∑
i=1

C∑
j=1

[(
C0
(
P (H0)

(
1− Pf

))
+ C1 (P (H1) (1− Pd ))

)
Gij
]
− µ

C∑
j=1

pij (34)
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FIGURE 3. Maximum EE comparison: γ =-16 dB for 10 users with fixed L.

FIGURE 4. Maximum EE comparison: γ =-16 dB for 10 users with fixed τs.

P (H0) = 0.8. However, transmission rate is adopted to be
C0 = log2 (1+ γs) = 6.658 bits/sec/Hz where γs considered
as SNR and is 20 dB, and C1 = log2

(
1+ γs

1+γp

)
= 6.613

bits/sec/Hz by assuming γp = −15 dB. We also choose the
frame duration T = 300ms. Noise samples are appropriated
to be Gaussian with zero mean and variance 1. For compar-
ison, we take the scheme in [11] as a reference. In Fig. 3,
the proposed scheme compared to ISA algorithm shows the
EE maximization against the sequence length. In particular,
with a significant reduction in the energy consumption based
on our results, we arrive at an increase in the EE with the
same sensing time of 2.5ms for different values of (λs,L) and

L =
{
Lmin,

Lmin+Lmax
2 ,Lmax

}
. Thus, the EE maximization of

this form is twice approximately, making way for the next-
generation green communications network. Figure 4 presents
the EE maximization with the same symbol sequence length
of Lmin = 280 for (λs,L) and different values of τs =
{5ms, 50ms, and 100ms}. As shown in this figure, EE is
maximized by decreasing the sensing phase length in compar-
ison with ISA algorithm. In this form, considering the energy
consumption, it is possible to increase the EE by approx-
imately 70% in the proposed method. Compare to Fig. 3
with 4, we can discover that for each rule, the EEs obtained
are always higher than the others. It is because compared to
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FIGURE 5. Comparison of maximum EE for various SNRs and users.

power transmission constraints, conventional ISA is looser,
and our method with its power allocation is more flexible.
However, more power can be allocated by the transmitter
under the good channel constraints.

However, the EE maximization of this work compared
to [11] for various users and SNRs from −16 to −2 dB is
depicted in Fig. 5, respectively. Concerning traditional coop-
erative sensing, individual users local statistic has to be trans-
mitted to the FC in different time intervals. Consequently,
the reporting delay in the reporting phase of traditional
cooperative spectrum sensing rises linearly with N . More
interestingly, EE is maximized by the SNR increasing. Here,
the EE is set to approximately 12.7 for SNR ≥ −10 dB for
10 users, while the EE of the ISA in [11] is about 6.6. Hence,
there are advantages such as energy consumption and savings
for users, which increases the efficiency of the system net-
works. It is seen that the EE first increases with the increase
in the number of users, signifying that the improvement in
sensing performance exceeds the loss caused by less data
transmission andmore significant energy consumption. How-
ever, the rate of decrease in EE does not change significantly
after a certain user through the transmission power increases.
Therefore, an energy-efficient model can be designed by
selecting a suitable number of users to avoid unnecessary
power consumption growth. Hence, EE decreases as N fur-
ther increases because the more cooperative users lead to
more energy consumption, and the sensing performance can-
not be improved anymore, thus resulting in the declining EE.
Hence, it is necessary to balance energy consumption against
the number of users when designing cooperative CR systems.
Fig. 6 shows the comparison results among the maximum
EE of this approach with that of the ISA algorithm under
various P (H1) conditions. However, we set γ to -16 dB with
varying P (H1)s from 0 to 1. Similarly, our EE is much higher

FIGURE 6. Comparison of maximum EE for various P
(
H1

)
and three users

group.

than the ISA for three different users. The EEs of all the
compared schemes reduce with increasing P (H1), indicating
the system performance of energy savings in the transmission
phase. Similar to Figure 5, as the number of users in the
network increases, the EE curve for each rule decreases,
which indicates the correct network status. According to this
form and standard of CR networks, there is at least a 60%
increase in the gap between the user’s group of two rules,
which reduces the power consumption and save more energy
in general.

In practice, a CR can enable the energy saving that can pro-
vide necessary information on radio environment and radio
component characteristics and capabilities. It also determines
the favorable configuration for the QoS requirement and
accumulates knowledge on the interaction of radio compo-
nent characteristics and environment, which is usually hard
to model analytically. Similar to Fig. 3 and 4, Fig. 5 and
Fig. 6 shows that our method with power allocation has
better performance because power constraints can provide
more flexibility for the transmission power allocation of SUs
than the conventional ISA. Increasing the sensing time for
each CR leads to increasing the number of samples, which
improves the accuracy (smaller false alarm and missed detec-
tion probabilities) of sensing results. Smaller false alarm
probability increases the chances of transmission and hence
increases the throughput. From the SUs’ perspective, a low
false alarm means that more transmission opportunities can
be used by the SUs, thus raising the throughput and the
system EE. Additionally, smaller miss-detection probability
reduces unuseful transmission cases in which the CR node
interferes with the PU transmission. However, more sensing
time provides a transmission time reduction, which decreases
throughput.
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VIII. CONCLUSION AND FUTURE WORK
In this work, we studied a CoMAC-based design to accelerate
the cooperative sensing process by combining reporting and
computation steps to optimize the EE using the fractional pro-
gramming problem. According to the approximation of the
local statistics suitable arithmetic mean function, we investi-
gated the probabilities of detection and false alarm. We have
also obtained the optimal sensing EE, which results in the
minimum consumption of the average energy. Regarding the
complex and non-convex nature of the joint optimization
problem, we turned the problem into the same parameterized
concave problem utilizing the fractional programming theory
and the Dinkelbach method. We did this by presenting an
energy-efficient iterative power allocation algorithm to solve
the problem efficiently. The proposed EE method is superior
over that of the ISA design, which provides a more desirable
performance referring to simulation results obtained in this
work. Beyond 5G networks, coverage performance increas-
ing with the use of non-orthogonal multiple access (NOMA)
and OFDMA technologies can be future study trends in
this realm through considering the power-saving capabilities.
Additionally, we have also stated the terms optimal spectrum
allocation and maximum power allocation to reduce the min-
imum power consumption to save higher amounts of energy
and maximize the total EE of the mentioned networks.

ACKNOWLEDGMENT
(Arash Ostovar and Yousaf Bin Zikria are co-first authors.)

APPENDIX A
PROOF OF THE LEMMA 1
For an arbitrary SU i, q1 and q2 denotes the optimal EE values
corresponding to the transmission scheme (to the right side of
P2). Assume that q1 > q2. Therefore,

F (q2) = R̂s (τs, λs,L,p)− q2Ê (τs, λs,L)

> R̂s (τs, λs,L,p)− q2Ê (τs, λs,L)

> R̂s (τs, λs,L,p)− q1Ê (τs, λs,L)

= F (q1) . (42)

Hence, F (q) is monotonically decreasing in q. On the other
hand, let

(
τs, λs,L,p′

)
be an arbitrary feasible transmission

approach, i.e.,

q′ =
R̂s
(
τs, λs,L,p′

)
Ê (τs, λs,L)

. (43)

By definition,

F
(
q′
)
= max

p
R̂s
(
τs, λs,L,p′

)
− q′Ê (τs, λs,L)

≥ R̂s
(
τs, λs,L,p′

)
− q′Ê (τs, λs,L) = 0. (44)

This completes the proof.

APPENDIX B
PROOF OF THE THEOREM 2
First, we prove qn+1 > qn for all n with F (q) >

0 in such optimal values of q∗. By definition of

qn+1, we have R̂s (τs, λs,L,p) = qn+1Ê (τs, λs,L),
thus F (qn) = R̂s (τs, λs,L,p) − qnÊ (τs, λs,L) =

(qn+1 − qn) Ê (τs, λs,L) > 0. In addition, using Ê (τs, λs,L)
> 0, we have qn+1 > qn. Because (τs, λs,L,p∗) gives the
corresponding transmission rule, there exists

q∗ =
R̂s (τs, λs,L,p∗)

Ê (τs, λs,L)
≥
R̂s (τs, λs,L,p)

Ê (τs, λs,L)
. (45)

Thus, it is concluded that when

F
(
q∗
)
= max

p
R̂s (τs, λs,L,p)− q∗Ê (τs, λs,L)

= R̂s
(
τs, λs,L,p∗

)
− q∗Ê (τs, λs,L)

= F
(
q∗; τs, λs,L,p∗

)
= 0. (46)

the optimal EE is accomplished by the optimal strategy. Then
we proved limn→+∞ qn = q∗. From [34], we have F (q∗) =
0, if limn→+∞ qn = q? 6= q∗, we must have q? < q∗.
By constructing a sequence limn→+∞ F

(
q?n
)
= F (q?) = 0,

hence, limn→+∞ F (qn) = F (q∗). Considering the continu-
ous property of F (.), we have limn→+∞ qn = q∗. Therefore,
the transmission strategy is optimal for the original program
with objective function (25), i.e., it is the optimal EE strategy.
This completes the proof.

APPENDIX C
PROOF OF THE LEMMA 2
Using the ε − δ definition of continuity, we can prove that
F (q) = 0 is continuous in q. Further, limp→+∞ F (q) =
−∞ and limp→−∞ F (q) = +∞. By the intermediate value
theorem, ∃q, such that F (q) = 0.

APPENDIX D
PROOF OF THE LEMMA 3
Take q1 < q2, and let p∗ maximize K (p)− qD (p). Then

F (q2) = max {K (p)− q2D (p)}

= K
(
p∗
)
− q2D

(
p∗
)
< K

(
p∗
)
− q1D

(
p∗
)

≤ max {K (p)− q1D (p)}

= F (q1) (47)

We shall now prove the theorem. Note that it is sufficient to
show that F (p, q) becomes smaller than ε with the number
of iterations. Since F (q) = max {F (p, q)}, we only need to
show that F (q) becomes smaller than ε. We now show that
q is non-increasing in successive iterations of the algorithm.
If we use the subscript, n, to denote the values of variables on
the nth iteration, we have:

0 = K (pn−1)− qnD (pn−1)

≤ max {K (pn−1)− qnD (pn−1)}

= F (qn)

= K (pn)− qnD (pn)

= qn+1D (pn)− qnD (pn)

= (qn+1 − qn)D (pn) (48)
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Now, it follows that qn+1 ≥ qn, because D (pn) > 0.
By Lemma 2, F (q) is decreasing in q, and we just proved that
q is non-increasing in successive iterations of the algorithm.
Therefore, F (q) is non-increasing in successive iterations of
the algorithm. F (q) does become zero, and it follows that
F (q) does become smaller than ε.

APPENDIX E
PROOF OF THE THEOREM 4
F (q) is strictly monotonic decreasing, i.e., F (q1) < F (q2)
if q1 > q2. Let p maximize F (q1), then

F (q1) = max
p

R̂s (τs, λs,L,p)− q1Ê (τs, λs,L)

= R̂s (τs, λs,L,p)− q1Ê (τs, λs,L)

< R̂s (τs, λs,L,p)− q2Ê (τs, λs,L)

≤ max R̂s (τs, λs,L,p)− q2Ê (τs, λs,L)

= F (q2) (49)
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