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ABSTRACT Pancreatic cancer (PC) is a malignant tumor that seriously threatens the survival of patients.
Artificial classification has practical difficulties, such as unstable classification accuracy, a heavy workload,
and the classification results depend on the subjective judgment of the clinician during the diagnosis and
staging of PC. In addition, accurate PC staging could better help clinicians deliver the optimal therapeutic
schedule for PC patients of different stages. Therefore, this study proposes a comprehensive medical
computer-aided method for preoperative diagnosis and staging of PC based on an ensemble learning-support
vector machine (EL-SVM) and computed tomography (CT) images. The least absolute shrinkage and
selection operator (LASSO) algorithm was chosen for feature selection. In contrast to no feature selection,
the model optimization time decreased by 19.94 seconds while maintaining precision. The EL-SVM learner
was used to classify 168 CT images of normal pancreas and different stages of PC. The experimental results
demonstrated that the normal pancreas (normal)-pancreatic cancer early stage (early stage) classification
accuracy was 86.61%, the normal-pancreatic cancer stage III (stage III) classification accuracy was 87.04%,
the normal-pancreatic cancer stage IV (stage IV) classification accuracy was 91.63%, the normal-PC
classification accuracy was 87.89%, the early stage-stage III classification accuracy was 75.03%, and the
early stage-stage IV classification accuracy was 81.22%, and the stage III-stage IV classification accuracy
was 82.48%. Our experimental results prove that our proposed method is feasible and promising for clinical

applications for the preoperative diagnosis and staging of PC via CT images.

INDEX TERMS Pancreatic cancer, diagnosis and staging, EL-SVM, CT, LASSO.

I. INTRODUCTION

Pancreatic cancer (PC) is a highly malignant tumor of the
digestive tract that presents considerable challenges in both
the early screening stage and later treatment [1]-[3]. Accord-
ing to statistics from the American Cancer Society, the death
rates of patients with PC continue to increase, ranking fourth
in the United States [4]-[7]. It is estimated that approximately
57,600 people will be diagnosed with PC, and approximately
47,050 people will die of PC in 2020, therefore PC is known
as an incurable disease [7], [8]. In developing countries, PC is
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still widely distributed. Therefore, comprehensive preoper-
ative diagnosis and staging of PC are particularly impor-
tant, especially in the detection of PC staging, which could
better help the clinicians to deliver the optimal therapeutic
schedule for different stages of PC and allow the patients to
receive early medical interventions before advanced PC are
formed [9], [10].

At present, the imaging modalities commonly used in
the diagnosis of PC are as follows: (1) Computed tomogra-
phy (CT) is the common imaging for many patients due to
low cost and high penetration. Several studies have shown
that CT plays a significant role in the preoperative diagnosis
of PC and has become the preferred approach for many
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patients with PC screening [1], [S], [11]-[13]. (2) Endo-
scopic ultrasonography (EUS), including contrast-enhanced
harmonic EUS (CH-EUS) and EUS-guided fine needle aspi-
ration (EUS-FNA). When CH-EUS is used in combination
with EUS-FNA, it can effectively enhance the sensitivity of
EUS-FNA [14]. EUS has high sensitivity and spatial res-
olution when detecting small-sized pancreatic tumors (<=
1 cm), and it is easy to obtain tissue sections [14]-[16].
However, the accuracy of the preoperative staging of PC and
diagnosis between PC and some nonneoplastic lesions are
both controversial [1], [12], [16]-[19]. (3) Magnetic reso-
nance imaging (MRI) /magnetic resonance cholangiopancre-
atography (MRCP). MRI is highly sensitive for the detection
of PC liver metastases. However, it needs high cost, low
spatial resolution and high expertise. Therefore, MRI has not
developed into a widely used imaging modality compared
with CT [4], [12], [16], [20], [21]. MRCP can display the
pancreatic duct system with a noninvasive delineating method
for expert observation, but its diagnostic accuracy is contro-
versial [15], [22]. (4) Endoscopic retrograde cholangiopan-
creatography (ERCP) is at risk in the diagnosis of PC because
of low diagnostic sensitivity [4], [12], [15], [23], [24]. (5)
Positron emission tomography (PET) is often used to identify
distant metastases and evaluate the effect of treatment, and its
anatomical coverage is quite wide. However, its disadvantage
is low spatial resolution [1], [22], [24]. PET is currently not
recommended, because it cannot notice the information of
PC staging [16]. (6) Laparoscopy (LAP) is mainly used to
confirm the inspection results [21].

Many research institutions have carried out a series of stud-
ies on the diagnosis of PC based on CT images. Qiu et al. [25]
proposed a method based on CT images to assist in the
diagnosis of PC. The method of combining wavelet transform
and a statistical method was used to extract texture features.
After using the interactive information method for feature
selection, the supported vector machine (SVM) and proba-
bilistic neural network (PNN) classifiers were selected for
classification. Through experimental verification, the accu-
racy of the two classifiers in classifying PC and normal pan-
creas reached 95.48% and 96.13%, respectively. Although
this method can better help clinicians diagnose PC, it only
classifies the normal pancreas and PC. Li et al. [26] per-
formed a hybrid feedback-support vector machine-random
forest (HFB-SVM-RF) computer-aided diagnosis model for
PC. The test results of 80 cases of PET/CT images showed
that the average accuracy of the model was 96.47%, and the
sensitivity and specificity were both above 95%. Although
the model has high classification accuracy, the problem of
incomplete experimental objects still exists. Liu et al. [27]
proposed the faster region-based convolution network model
(Faster R-CNN) artificial intelligence system for PC diag-
nosis. CT images of 100 PC patients were used for
verification, the area under the receiver operating character-
istic curve (AUC) value of the model reached 0.9632, and
the model could automatically classify a CT image in only
0.2 seconds. Although the subjects of this study included
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different stages of PC, there is a lack of further study on the
normal pancreas and different stages of PC.

Some research institutions have also paid attention to the
ensemble learning of SVM. Shi et al. [28] proposed a com-
puter aided pulmonary nodule detection system for chest
radiography. The multiple massive training supported vec-
tor machine (MTSVM) model was proposed in this system,
which consists of four non-linear SVMs arranged in parallel
and one neural network arranged in serial. Each SVM clas-
sifier is an expert with excellent classification performance.
However, the bagging algorithm was the ensemble learning
algorithm used in this paper. Our paper used a bootstrap sam-
pling method to generate different data sets; Then, we gen-
erated T base learners for combination, which ensures that
each individual basic learner is ““good and different”. In order
to improve the overall classification accuracy, the absolute
majority voting method was used to explore the classification
problem in this paper.

Aiming at the problems in the current research on the
diagnosis of PC based on CT images, this study proposed a
method of computer-aided diagnosis and staging of PC based
on the ensemble learning-support vector machine (EL-SVM).
Firstly, 168 nonenhanced CT images of different stages of PC
and normal pancreas were chosen for pancreas segmentation.
After extracting 202-dimensional features using six texture
analysis methods, feature selection was performed based on
the least absolute shrinkage and selection operator (LASSO).
Finally, the EL-SVM learner was used to classify CT images
of normal pancreas and different stages of PC. By com-
paring with SVM, the least absolute shrinkage and selec-
tion operator-support vector machine (LASSO-SVM), the
k-nearest neighbor (KNN), the back propagation (BP) neural
network classifiers, Softmax classifier, VGG16 model and
DenseNet121 model [29], EL-SVM model achieved better
performance for normal pancreas (normal)-pancreatic cancer
early stage (early stage), normal-pancreatic cancer stage III
(stage III), normal-pancreatic cancer stage IV (stage 1V),
normal-PC, early stage-stage III, early stage-stage IV, and
stage III-stage IV classification. The main contributions of
this paper can be listed as follows:

e This study was the first to comprehensively explore early
screening and staging of PC by machine learning algorithms,
and it shows the great potential of machine learning algo-
rithms to be used in the diagnosis of PC at different stages.

e This study proposed a PC nonenhanced CT image clas-
sification model based on the EL-SVM.

e This study has a certain guiding role for junior clinicians
in the diagnosis and staging of PC based on CT images,
it can be used as a reference for diagnosis and can reduce
the workload of clinicians.

Il. MATERIALS AND METHODS

Figure 1 shows the overall flowchart for assisted diagnosis
and staging of the PC method, which consists of following
parts that are processed consecutively: 1) Pancreas region of
interest (ROI) segmentation; 2) Feature selection and fusion;
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FIGURE 1. Overall flowchart for assisted diagnosis and staging of the PC
method. The green boxes in the figure represent the four main parts in
this paper.

3) SVM classifier design, optimization and evaluation;
4) EL-SVM design and evaluation. In the following sections,
we will expand on the details.

A. DATA COLLECTION

This paper selected 54 patients from the First Affiliated Hos-
pital of Xinjiang Medical University, from November 2017 to
August 2019, of which 39 cases had PC and 15 cases had nor-
mal pancreas. Patients with PC were retrieved from the hospi-
tal pathology database, and the stage of PC was referred to the
American Joint Committee on Cancer (AJCC) standard [30].
And they were pathologically confirmed after pathology
or surgery, as shown in Table 1. The 15 cases of normal
pancreas (7 men [mean age, 57.57 &+ 14.76 years; range,
36-80 years] and 8 women [mean age, 49 £+ 17.20 years;
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TABLE 1. Patient demographics (n = 39).

Characteristic Value
Sex
Men 24
‘Women 15
Age 59.72£12.25
PC stage
1 2(5.13)
Tumor location in the pancreas
Head and neck 1(2.56)
Uncinate process 0
Body 0
Tail 1(2.56)
I 13(33.33)
Tumor location in the pancreas
Head and neck 10(25.64)
Uncinate process 2(5.13)
Body 0
Tail 1(2.56)
11 9(23.08)
Tumor location in the pancreas
Head and neck 7(17.95)
Uncinate process 0
Body 0
Tail 2(5.13)
v 15(38.46)
Tumor location in the pancreas
Head and neck 8(20.51)
Uncinate process 1(2.56)
Body 0
Tail 6(15.38)
Tumor maximum diameter (in centimeters)
Mean £SD 345+2.19
Range 1.50-12.00
Surgery
Pancreatoduodenectomy 21(53.85)
Distal pancreatectomy 5(12.82)
Biliary stenting 25.13)
Palliative surgery 2(5.13)
Needle biopsy of the pancreas 25.13)
Exploratory laparotomy 1(2.56)
Removal of intraabdominal foreign body 1(2.56)
Cancer antigen 19-9 level
<37 U/mL 4(10.26)
37-200 U/mL 7(17.95)
>200 U/mL 28(71.79)

Note-Except for age and tumor maximum diameter (mean + SD), values are the number
of patients with the percentage in parentheses.
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TABLE 2. The obtained experimental images.

Type Number of images
Total 168
Normal 51
Stage I 5
Stage I1 34
PC Stage 11 26
Stage IV 52

range, 26-77 years]) were determined by a doctor as having
a normal pancreas through routine abdominal CT.

B. PANCREAS SEGMENTATION

Accurate segmentation of the pancreas is still a complex
and challenging task. Considering the abdominal features of
the pancreas and the variation in the volume and shape of
the pancreas presented by the interpatient [31], [32], this
paper manually drew the ROI of the pancreas. First, the CT
sequence images in DICOM format were converted into JPG
format and then imported into LabelMe software where two
clinicians (Wei Han has 21 years and Yilidan Reheman has
3 years of clinical experience in abdominal CT) manually
drew ROIs along the edge of the pancreas [33]. To improve
model generalization ability, we selected 3 cross-sectional
images of plain CT scans with significant features from each
CT sequence on average [27], [34], [35]. A total of 168 CT
images (as shown in Table 2) were evaluated, and a manually
drawn ROI flowchart is shown in Figure 2. Pancreatic cancer
stage I (stage I) or pancreatic cancer stage II (stage II) can be
treated radically by surgical resection [36]; therefore, in this
paper, stage I and stage II are collectively referred to as early
stage [16], [37]-[40].

C. FEATURE EXTRACTION

We extracted 202-dimensional features using six feature anal-
ysis methods, including the shape, gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level gradient co-occurrence matrix (GLGCM), gray-
level difference statistics (GLDS), and wavelet transform,
as shown in Table 3.

D. FEATURE SELECTION AND FUSION

The 202-dimensional features are fused together by serial
fusion. To avoid the dimensional disaster and low general-
ization performance of the learner caused by too many fea-
tures [41], we must use a suitable feature selection algorithm
to remove redundant features on the basis of retaining key
factors, reduce model complexity, and reduce the waste of
time and resources [42]. We compared the three methods
of no feature selection, the relevant features (Relief) and
LASSO, and the classification results of the comparison are
recorded in Table 4.
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FIGURE 2. The pancreatic ROl segmentation. A. Normal CT image. B. ROI
drawn on a pancreas image with the normal (red area). C. Normal
segmentation. D. Stage IV CT image. E. ROl drawn on a pancreas image
with the stage IV (red area). F. Stage IV segmentation.

TABLE 3. Extracted features of the six methods.

Methods Feature name Total
number
Shape height, width, perimeter, area, complexity, rectangularity, 8
elongation, equivalent area radius
GLCM mean and standard deviation of energy, entropy, moment of 8
inertia, and correlation
GLRLM short run emphasis, long run emphasis, gray-level nonuniformity, 7
run percentage, run-length nonuniformity, low gray-level run
empbhasis, high-gray level run emphasis
GLGCM small grads dominance, big grads dominance, gray asymmetry, 15
grads asymmetry, energy, gray mean, grads mean, gray variance,
grads variance, correlation, gray entropy, grads entropy, entropy,
inertia, differ moment
GLDS mean, contrast, angular second moment, entropy 4
Wavelet 160
transform
Total 202

As shown in Table 4, the LASSO selection algorithm
not only reduced the dimensions but also retained the key
features. Under the premise of ensuring classification accu-
racy, compared with no feature selection, the optimization
time of LASSO algorithm decreased by 19.94 seconds and
compared with the Relief feature selection, the optimization
time decreased by 7.17 seconds, which verified the feasibility
of the LASSO embedded feature selection algorithm selected
in this paper. The LASSO algorithm combines L1 norm reg-
ularization and a linear regression model so that some unim-
portant variables in the model were directly compressed to
0 to streamline the model. The LASSO algorithm is shown in
Equation (1). In addition, a 10-fold cross-validation method
was used to verify the stability of the LASSO algorithm,
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TABLE 4. Compared feature selection algorithms before and after LASSO and RELIEF to select the optimal solution.

Linear kernel Category Normal- Normal- Normal- Normal-PC Early stage- Early stage- Stage II1-
(Test/training) early stage stage I1I stage IV stage 111 stage IV stage IV
Dimension 202 202 202 202 202 202
No feature
Accuracy rate% 73.08/96.88 69.57/100.00 73.33/98.63 72.55/100.00 42.86/88.64 60.71/93.65 68.00/96.23
selection
Time/second 3.06 2.12 8.71 1.58 2.94 2.15
Dimension 57 59 156 19 25 15
RELIEF feature A coyracy rate% 65.38/96.88 65.22/98.15 56.67/78.08 68.63/96.58 57.14/68.18 75/79.37 68.00/81.13
selection
Time/second 1.05 0.90 675 0.62 0.77 0.53
Dimension 26 8 19 9 12 4
LASSO feature 5 couracy rate% 76.54/92.19 60.87/97.41 55.33/91.64 70.78/96.15 49.52/85.23 71.43/87.62 66.40/74.53
selection
Time/second 0.68 037 1.48 037 051 034
035 Cross-validated MSE of Lasso fit kernel function and the feature space show a corresponding
' : . relationship, so the choice of the kernel function becomes
: MSE with Error Bars . . e .
03k : O LambdaMinMSE | | the largest variable that determines the SVM classification
© LambdaiSE performance. In addition, the selection of optimization algo-
025 | | rithms is also quite important. We used multiple experiments
: and comparisons to attempt to find optimal optimization
o2l : | algorithms and kernel functions so that the SVM achieves
u 5 the best performance and the largest increase in classification
= : ot
015 - ; i accuracy [46], [48].
o4 § i F. SVM LEARNER EVALUATION
------ I : To better evaluate the reliability of the SVM learner, this
"""""" {oHiy . . .
0.05 - Dt - paper drew the receiver operating characteristic (ROC) curve
to judge the performance of the learner and used the AUC to
0 ' ‘ ‘ quantitatively verify the learner generalization ability [49].
-1 -2 -3 -4 . . .
10 10 10 10 According to its real category and the predictor category of
Lambda

FIGURE 3. Cross-validated MSE of LASSO fit (normal-early stage).

as shown in Figure 3 [43].

m 2
ming Y (vi—wTxi) + 2l wlly (M

E. SVM CLASSIFIER DESIGN AND IMPLEMENTATION

SVM was introduced by Vapnik [44], because it shows good
performance on binary classification tasks, it has gradually
developed and is now commonly used to solve multidomain
classification matters [45]. The primary target of SVM is to
find a “‘maximum margin” partitioning hyperplane suitable
for classification samples so that the classification results
are the most robust and have strong generalization capa-
bilities [46]. Due to the existence of the kernel function,
the samples of the original space reach the linearly separable
high-dimensional feature space through mapping [47]. The
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the learner, combining the sample divided into the following
four cases: true positive (TP), false positive (FP), true nega-
tive (TN), false negative (FN), which comprise the confusion
matrix. Finally, the horizontal and vertical axes of the ROC
curve were calculated, where the horizontal axis represents
the false positive rate (FPR) and the vertical axis represents
the true positive rate (TPR), defined as Equations (2) and (3),
respectively.

FP
FPR = ——— 2)
TN + FP
TP
TPR = —— A3)
TP + FN

G. EL-SVM MODEL DESIGN

From Table 4, we learned that when we used the
LASSO-SVM, although we demonstrated good performance
in reducing time cost and dimensions, the classification accu-
racy was still low, of which normal-stage IV, and early
stage-stage III classification accuracy were low. It can be
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TABLE 5. Comparing three optimization algorithms (OA) and four kernel functions (KF) to choose the optimal Kernel function and optimization algorithm.

Polynomial kernel

Gaussian kernel

Sigmoid kernel

59.23/99.06/0.41
63.85/92.66/0.40

60.38/100.00/2.07

77.69/96.25/0.58
74.23/96.09/0.41

71.54/100.00/2.12

53.85/57.81/0.60
64.62/75.47/0.39

53.85/57.81/2.14

65.22/100.00/0.34
60.87/68.52/0.30

65.22/100.00/1.16

60.87/100.00/0.32
62.17/100.00/0.28

63.48/100.00/1.09

60.87/68.52/0.56
63.48/86.30/0.28

60.87/68.52/1.24

42.33/99.86/0.58

44.00/87.80/0.42

44.33/100.00/1.84

55.67/100.00/0.59

59.33/89.59/0.44

51.33/99.04/1.92

46.67/50.68/0.57
53.67/77.40/0.38

46.67/50.68/1.86

71.76/99.83/2.99
72.94/97.44/0.93

66.86/100.0/11.52

66.86/98.46/3.06
73.92/88.29/0.83

66.67/98.63/9.27

72.55/68.38/2.26
76.47/89.15/1.72

72.55/68.38/4.26

45.24/86.14/0.34

55.24/66.14/0.31

43.33/91.36/2.25

52.38/96.36/0.33

53.33/86.14/0.29

48.10/82.95/1.21

57.14/61.36/0.34

53.33/71.82/0.29

57.14/61.36/2.36

65.71/95.24/0.50

57.14/57.14/0.39

67.14/93.81/1.59

74.64/89.68/0.49

76.43/85.40/0.41

72.86/91.11/1.95

57.14/57.14/0.50

72.86/76.51/0.38

59.64/61.43/1.81

(Test/ KF Linear kernel
training(%)/time) OA

Normal- GS-SVM 76.54/92.19/0.68
early stage PSO-SVM 65.77/97.81/0.33
GA-SVM 70.77/95.78/2.41

Normal-stage IIT GS-SVM 60.87/97.41/0.37
PSO-SVM 64.78/100.00/0.30

GA-SVM 63.91/99.81/1.09

Normal-stag IV GS-SVM 55.33/91.64/0.64
PSO-SVM 58.33/91.23/0.41

GA-SVM 54.67/91.64/1.94

Normal-PC GS-SVM 70.78/96.15/1.48
PSO-SVM 72.16/97.44/1.89

GA-SVM 69.22/96.75/4.07

Early stage- GS-SVM 49.52/85.23/0.37
stage 11T PSO-SVM 48.10/93.96/0.29
GA-SVM 51.90/77.05/2.31

Early stage- GS-SVM 71.43/87.62/0.51
stage IV PSO-SVM 68.93/89.21/0.37
GA-SVM 73.93/87.46/1.89

Stage I1I- GS-SVM 66.40/74.53/0.34
stage IV PSO-SVM 66.80/79.06/0.34
GA-SVM 67.20/83.96/1.94

70.80/92.08/.0.34
68.40/93.02/0.46

64.40/93.58/1.98

67.60/89.25/0.36
63.20/86.42/0.32

68.00/91.13/2.94

64.00/67.92/0.34
64.00/67.92/0.34

64.00/67.92/2.51

TABLE 6. The experimental parameter of GS-SVM, PSO-SVM and GA-SVM.

Classifier Parameter Parameter value Parameter Parameter value
GS-SVM Range of C 24, 24 Range of g [24, 24
Step length of C 0.3 Step length of g 0.3
Range of C [10", 107 Range of g [102, 10%]
PSO-SVM Local search capability 1.5 Global search capability 1.7
Maximum number of generations 50 Maximum number of populations 5
Range of C [0,10] Range of g [0,10%]
GA-SVM Maximum number of generations 200 Maximum number of populations 20
Generation gap 0.9

known from theory that good generalization performance
can be obtained by using weak learner integration, so this
paper proposed an EL-SVM to improve the classifica-
tion accuracy and obtain a model with good generalization
performance.

Ensemble learning improves performance by constructing
and combining multiple base learners. The key is that the
integration individual needs to have certain accuracy and
diversity. The bagging algorithm was the ensemble learn-
ing algorithm used in this paper [50], [51]. The bagging

141710

algorithm is a significant representative of the parallel ensem-
ble learning method; it uses a bootstrap sampling method to
generate different initial data sets. T-times bootstrap sampling
is performed, and m samples are returned each time; approx-
imately 63.2% of the samples appeared in the training set,
and the remaining 36.8% of the uncollected samples were
used as the test set to perform an ‘“‘out-of-bag estimate”
of the generalization performance, which was determined
from Equation (4). Finally, we generated T differential base
learners for combination. The basic flow of the EL-SVM
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TABLE 7. Comparison of the results of the EL-SVM model and classifier.

Test/training (%) Normal-early stage Normal-stage III Normal-stage IV Normal-PC Early stage-stage 111 Early stage-stage IV Stage I1l-stage IV
BP 59.23/95.78 62.18/90.37 77.14/97.26 72.75/88.80 50.95/87.50 57.50/96.51 57.61/90.76
KNN 80.77/91.57 72.18/94.80 81.00/81.10 83.14/86.25 46.67/70.47 65.00/74.77 78.00/87.34
SVM 73.08/96.88 69.57/100.00 73.33/98.63 72.55/100.00 42.86/88.64 60.71/93.65 68.00/96.23
LASSO-SVM 76.54/92.19 60.87/97.41 55.33/91.64 70.78/96.15 49.52/85.23 71.43/87.62 66.40/74.53
EL-SVM 86.61/92.78 87.04/94.67 91.63/100.0 87.89/99.28 75.03/95.69 81.22/96.70 82.48/99.23
TABLE 8. The experimental parameter of BP and KNN.
Classifier Parameter Parameter value Parameter Parameter value
BP Maximal iteration times 2000 Target error 0.00001
Display interval 500 Learning rate 0.05
KNN Number of neighbors 5 Distance metric Cosine
Distance weight Equal Standardize data True

Import SVM to
generate T base Absolute majority
il A
learners voting
independently

Generate T datasets
il with bootstrap —>
sampling method

Import the pancreatic
CT images

FIGURE 4. EL-SVM algorithm flow.

algorithm is shown in Figure 4.

1

limpy— 0o(1 = =)" =
m

~ 0.368 )

Q| =

where m is the number of samples of each base learner.

To complete the classification task of EL-SVM, this paper
used the absolute majority voting method to select the
class with more than half of the predicted votes, other-
wise rejecting predictions to improve overall classification
accuracy.

H. EL-SVM MODEL EVALUATION

The classification error curve was used to further verify the
reliability of the EL-SVM classifier in this paper. The number
of base learners was used on the horizontal axis, and the
classification error that still existed after ensemble learning
was used on the vertical axis.

I. HORIZONTAL COMPARISON WITH OTHER MODELS

We compared SVM, LASSO-SVM, KNN, BP neural network
classifier, Softmax classifier, VGG16 model, DenseNet121
model and EL-SVM model [52]. We used the no data aug-
mentation, data augmentation 3 times, data augmentation
6 times, data augmentation 12 times, and data augmenta-
tion 24 times to expand the training set, and sequentially
import two deep learning models for experimentation. The

VOLUME 8, 2020

rest of the models use the no data augmentation data set for
classification.

Ill. RESULTS

The experiments in this paper were based on the MATLAB
2016a platform and PyCharm platform. The LIBSVM tool-
box was used for the discrimination and analysis of the SVM
algorithm [53].

A. SVM MODEL PARAMETER OPTIMIZATION

Three optimization algorithms were used to build a diag-
nostic model, including grid search-support vector machine
(GS-SVM), particle swarm optimization-support vector
machine (PSO-SVM), and genetic algorithms based on sup-
port vector machine (GA-SVM), to choose the optimal opti-
mization algorithm and the optimal kernel function, as shown
in Table 5 [54]. The primary experimental parameters of
GS-SVM, PSO-SVM and GA-SVM are listed in Table 6.
To avoid the risk of overfitting, we adopted 5-fold cross-
validation methods.

It can be seen from Table 5 that under the premise of using
the grid optimization algorithm, the linear kernel and the
Gaussian kernel have little difference in accuracy and opti-
mization time. However, the linear kernel function had the
largest growth rate in the later integrated learning classifier
and the highest optimization improvement. Therefore, this
paper chose a grid search optimization algorithm and linear
kernel function to classify pancreatic CT images.

B. EVALUATION OF EL-SVM

To reduce the experimental error and ensure the validity of the
experimental results, the results in Table 7 all take the average
of 10 experiments in each category [55].
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TABLE 9. The experimental parameter of Softmax classifier.

Classifier Parameter Parameter value Parameter Parameter value
Simulation environment 64-bit Windows 10 operating system Software PyCharm
Learning rate 0.001 Epoch value 100
Softmax
Loss type Categorical Cross-entropy
TABLE 10. Visual picture of the VGG16 model accuracy.
Training and validation accuracy Training and validation accuracy Training and validation accuracy
~—- Training ace . .
0.44 —— Vvalidation acc i 0.40 L PN Popfleiitaty ~ % —~ I\ _ermn
P A Y 3 Nt 0.40 i T W L St
L ¥ X ; & - \ -
0.42 0.35 "’ /
i 0.35 h
0.40 / |4
0.30 0.30
0.38 -—- Training acc
0.25 = Validation acc 025

(@

0.15 0.15
--- Training acc
0.10 — validation acc
0 5 10 15 20

15 20 25 30

25 30

©

Training and validation accuracy

-~ Training ace
— validation acc 0.10

- -~ Training acc
— \validation acc

o 5 10 15 20 25 30 0 5 10

(d)

15 20 25 30

Note-The visual picture of the VGG16 model accuracy. (a) no data augmentation. (b) data augmentation 3 times. (c) data augmentation 6 times. (d) data augmentation 12 times. (e)

data augmentation 24 times.

1) COMPARISON OF THE EL-SVM MODEL AND OTHER
MODELS

The mainstream classification algorithms the KNN and the
BP neural network were compared horizontally with the
EL-SVM model in this paper, and the comparison results are
shown in Table 7 [56]. The primary experimental parame-
ters of KNN and BP are listed in Table 8. Table 7 shows
that after using the ensemble learning algorithm, the clas-
sification accuracy of normal pancreas and PC in different
stages greatly improved, and the generalization ability was
enhanced. The classification accuracy rate of normal-stage IV
reached 91.63%, and the classification accuracy of EL-SVM
in normal-stage IV was improved by 36.30%, compared with
LASSO-SVM. The average classification accuracy of BP
was lower than EL-SVM 22.08%, and KNN was lower than
EL-SVM 12.17%, which verified the rationality of selecting
the EL-SVM classifier in this paper.

141712

This paper also used Softmax classifier for compari-
son [57]. The 202-dimensional features extracted by the
above six texture analysis methods are passed to the Softmax
classifier to classify normal pancreas and different stages
of PC. Experimental results showed that the average classi-
fication accuracy of the Softmax classifier was lower than
EL-SVM 14.45%. As shown in Figure 5, the overall per-
formance of EL-SVM is better than Softmax classifier. The
primary experimental parameters of Softmax classifier are
listed in Table 9.

This work attempted to train two different network
structures (VGG16, DenseNetl121) and built two mod-
els [58]-[61]. The visual images of VGG16 model and
DenseNet121 model are placed in Table 10 and Table
11, respectively. It can be seen from the figure that the
effects of the two models are not ideal, which also veri-
fies that our proposed EL-SVM is our appropriate choice.
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TABLE 11. Visual picture of the DenseNet121 model accuracy.

Training and validation accuracy

-=- Taining acc
— Validation acc

0 5 10 15 20 25 30

(2)

Training and validation accuracy

=== Training acc
— validation acc

(d

Training and validation accuracy

-=- Taining acc
— Validation acc

Training and validation accuracy

0

5 10 15 20 25 30

(b)

Training and validation accuracy

=== Training acc
— Validation acc

-—- Training acc
—— Validation acc

5 10 15 20 25 30

(e)

Note-The visual picture of the DenseNet121 model accuracy. (a) no data augmentation. (b) data augmentation 3 times. (c) data augmentation 6 times. (d) data augmentation 12 times.

(e) data augmentation 24 times.

TABLE 12. The primary experimental parameter of VGG16 and DenseNet121.

Architecture model Parameter Parameter value Parameter Parameter value
Simulation environment 64-bit Windows 10 operating system Software PyCharm

VGG16 Image dimensions 224x224 Loss function Categorical Cross-entropy
Batch size 32 Epoch 30

Learning rate 0.001 Optimization algorithm Stochastic gradient descent

Image dimensions 224x224 Loss function Categorical Cross-entropy
DenseNet121 Batch size 32 Epoch 30

Learning rate 0.001 Optimization algorithm

Stochastic gradient descent

TABLE 13. The AUC of five classifiers.

AUC Normal-early stage Normal-stage 111 Normal-stage IV Normal-PC Early stage-stage 111 Early stage-stage IV Stage III -stage IV
BP 0.6310 0.6151 0.7098 0.7046 0.5000 0.5833 0.6042
KNN 0.8095 0.7262 0.7991 0.8475 0.4722 0.6250 0.7222
SVM 0.7262 0.7381 0.8393 0.7471 0.3796 0.6302 0.6181
LASSO-SVM 0.7440 0.6905 0.5848 0.7548 0.4259 0.7656 0.7014
EL-SVM 0.8750 0.9444 0.9583 0.9500 0.7500 0.7917 0.8750
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TABLE 14. The classification error convergence value.

Classification Normal- Normal-stage I1I Normal-stage IV Normal-PC Early stage- Early stage- Stage IlI-stage IV
carly stage stage 11 stage IV
Convergence value 0.1333 0.1418 0.0971 0.1307 0.2991 0.2053 0.1954

Note-The convergence value is the classification error convergence value.
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FIGURE 5. Softmax classifier ROC curve. Class 0 (normal), class 1(early
stage), class 2 (stage Ill), class 3(stage IV), class 4(PC).
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FIGURE 6. SVM classifier ROC curve.

The primary experimental parameters of VGG16 model and
DenseNet121 model are listed in Table 12.

2) ROC CURVE AND AUC

We drew the ROC curves of SVM, LASSO-SVM, EL-SVM,
BP, and KNN, as shown in Figures 6, 7, 8, 9 and 10, and the
corresponding AUC values are given in Table 13.
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FIGURE 7. LASSO-SVM ROC curve.
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FIGURE 8. EL-SVM ROC curve.

It can be seen from Table 13, Figure 6, Figure 7, and
Figure 8 that the AUC value of EL-SVM for normal-stage IV
classification increased by 0.3735 compared to LASSO-SVM
and the AUC value of EL-SVM for early stage-stage III clas-
sification increased by 0.3241 compared to LASSO-SVM.
The average AUC of EL-SVM reached 0.8778, and the AUC
of normal-stage IV reached 0.9583, which greatly improved
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FIGURE 10. KNN classifier ROC curve.

compared with LASSO-SVM and SVM. The results show
that EL-SVM has good feasibility.

From Table 13 and Figures 8, 9 and 10, it can be seen that
the AUC values of BP and KNN were lower than those of
EL-SVM. The average AUC of BP was lower than that of
EL-SVM (0.2567) and that of KNN was lower than that of
EL-SVM (0.1633). Therefore, the performance of the KNN
and BP neural networks on pancreatic CT images was inferior
to that of the EL-SVM model.

3) EL-SVM ERROR CURVE

This paper used 400 base learners for ensemble learning and
then drew the classification error curve of EL-SVM as shown
in Figure 11. The classification error convergence values are
shown in Table 14, which shows that the classification error
convergence value of normal-stage IV was the lowest and the
classification performance was the best.
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FIGURE 11. EL-SVM error curve.

IV. CONCLUSION

This paper was the first to proposed a classification method
of pancreatic CT images based on EL-SVM. We performed
experiments on 168 CT images of normal pancreas and
different stages of PC, and the results demonstrated that
the EL-SVM method obtained the best classification perfor-
mance. Our study could help solve the problems existing in
preoperative PC diagnosis to a certain extent and deliver treat-
ment options for different stages of PC patients, which have
certain feasibility and practicability. In the future, we will
continue to collect more samples from different central insti-
tutions, and establish a classification model with better per-
formance; therefore, it has greater clinical significance for the
preoperative diagnosis and staging of PC via CT images.
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