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ABSTRACT Image segmentation plays a vital role in the medical diagnosis and intervention field. The
segmentation methods can be classified as fully automated, semiautomated or manual. Among them, manual
segmentation can best improve the quality of the results, but it is time-consuming and tedious, and it may
lead to operator bias. A continuity-aware probabilistic network based on the divide-and-conquer method
was proposed in the current work. The proposed network comprised backbone network, local segmentation
and a weight network. The backbone network extracts the features from image. The local segmentation
divides the data space, whereas the weight network provides the continuity-aware weights. Therefore,
combining those results of the weighted segments can eventually yield precise estimations. In this study,
the proposed model was evaluated against several recent methods on the three datasets, and a several
performance indexes of segmentation were evaluated for liver segmentation, the results showing that it
is the most advanced liver segmentation approach. The source code of this work is publicly shared at
https://github.com/licongsheng/DCSegNet for others to easily reproduce the work and build their own
models with the introduced mechanisms.

INDEX TERMS Liver segmentation, deep learning, divide-and-conquer.

I. INTRODUCTION
A basic task in planning liver operations is to detect and
evaluate the liver shape using abdominal CT images and
computer assistance, such as radiotherapy [1]. There are a lot
of researches focused on improving segmentation accuracy
and efficiency [2] Nonetheless, numerous issues should be
managed in liver segmentation, including the great variations
in liver shapes, their different appearances and their ambigu-
ous boundaries [3].

The liver segmentation algorithms are mainly classified
into the following categories, including regional growth [4],
graph cut [5], level set [6], and deep learning [7]. Typically,
the deep learningmethod have become the hot research topics
recently as a result of the accumulated data and the increased
computing power, especially in machine vision tasks, such
as the image classification [8] and segmentation [9].
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Generally, the deep convolutional neural networks (DCNNs)
designed for image segmentation are categorized into two
types, namely, 2D and 3D networks [10]. Among them,
the 2D DCNNs have achieved favorable performance in
many 2D medical image segmentation scenario [11]–[13].
Nonetheless, the interslice correlations of the liver tissue’s
3D structure is not considered in the 2D neural network [14],
which together with the varying liver data structure makes
it unsuitable to apply a 2D CNN to volumetric liver seg-
mentation. It is worth noting that a volumertical liver seg-
mentation algorithm should be able to take into account
the interslice and intraslice characteristics. To address this
issue, 3D DCNNs have been constructed [15], [16], such
as V-net [17], denseVNet [16], Z-Net [18] and other 3D
neural networks [19]. However, they will greatly increase the
model complexity and the number of hyperparameters in the
model [17], [20]. To this end, it is difficult to train a 3D
DCNN with limited training data and hardware resources.
In addition, some studies have been carried out to improve the
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segmentation accuracy by adding loss function constraints,
such as the boundary loss [20], the Hausdorff distance [21],
the Mumford-Shah loss function [22] and signed distance
map [23]. These methods contribute to improving the tissue
edge segmentation accuracy of 2D slices, but they can hardly
consider the continuity between layers.

A 2D DCNN segmentation network attempts to extract the
features of all liver cross-sections through convolutions on
the plane, which accounts for a key problem leading to the
poor continuity between layers [24]. However, the structural
changes in cross-sectional liver tissues are very significant; as
a result, it is difficult to consider the differences between liver
tissue and other tissues and the structural changes in vertical
liver tissues. Based on the above considerations, this study
aimed to analyze the structural similarity [25] in the cross-
sectional liver tissues of different human bodies, as shown
in Fig. 1. Such a continuity-induced similarity relationship
was predominant in neighboring layers, indicating that if a
region with high structural similarity was segmented with a
local model, then a better segmentation result should theoret-
ically be obtained.

FIGURE 1. Structural similarity of liver. (a). Adjacent transverse plane of
the liver (b). Similarity analysis of different transverse planes of the
liver. (c). Similarity analysis of different liver transverse planes.

A continuity-aware probabilistic network was proposed in
the current work to address the abovementioned difficulties.
First, a data volume is divided into several sub domains
(Fig. 1 (a)). Then, a DCNN model was proposed that was
constituted by a backbone network, local segmentation and
weighted network. In the model, the backbone network was
employed for feature extraction. All the local segmenters seg-
ment the target area according to the features extracted from
the backbone network. The weighted network determines
which local segmenter should be used for each subspace.
In other words, the weighted network is similar to telling

us which expert has better segmentation performance for
the current sub domain. Our proposed model has several
advantages. First, the local segmentation network was used
for the explicit modeling of heterogeneous data according to
the divide-and-conquer method [26]. Second, the weighted
networks recognized the continuity of any two local seg-
mentation networks. Third, the probabilistic soft decision,
rather than the hard decision, was utilized in the weighted
networks [27]; in this way, all local segmentations provided
robust and accurate estimations. Fourth, the local segmen-
tation networks were trained simultaneously with weighted
networks, and the network was easily integrated with a deep
neural network to form the end-to-end model. Our specific
findings are as follows.

1) The DCSegNet model was proposed, which introduced
the divide-and-conquer method to 3D data segmenta-
tion, and improved the segmentation accuracy through
local segmentation.

2) A new data segmentation approach was proposed for
training the DCSegNet model, and training data were
used to train the adjacent local sequences with overlap-
ping layers to ensure the continuity between adjacent
sequences.

3) The proposed DCSegNet model attained higher
advanced performance for three datasets.

II. PROPOSED APPROACH
A. OVERALL FRAMEWORK
The proposed liver segmentation framework based on the
divide-and-conquer method is shown in Fig. 2. It consists of
three parts, including a backbone network, a local segmenta-
tion network and weighted networks. The backbone network
conducted feature extraction for any input image x ∈ X , and
each slice image was fed into the deep convolution neural
network for feature extraction. In the second part, a weighted
network and a local segmentation network were employed to
obtain the segmentation results from the extracted features.
Notably, the final segmentation results were estimated as the
weighted combination of all local segmentation networks.

FIGURE 2. Liver segmentation framework put forward in this study.

The local segmentation network was used to process the
different cross-sectional data and divide the training data
into L overlapping subdomains. Then, every data subset
was adopted to train the corresponding local segmenter.
We denote y ∈ Y as the output target of input sample x ∈ X ,
where X and Y was denoted the set of input image and
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segmentation results, and x and y was denoted a sample X
and Y . Therefore, the segmentation for the l th subdomain
(l = 1, 2, · · · , k) was described below:

y (y|x, z = l) = N
(
y|µl (x) , σ 2

l

)
(1)

where z stands for the latent variable denoting the {x, y}
affiliation to one subdomain, whereas µl (x) represents the
segmentation results for the l th local segmentation network
of the input sample x. In addition, the Gaussian distribution
N (y), which has a mean of µl (x) and a variance of σ 2

l ,
is adopted for modeling the segmentation error.

To efficiently combine the above segmentation results,
a weighted network that had the novel convolution neural net-
work structure was put forward, and it generated the weight
of every local segmenter. Typically, the weighted that corre-
sponded to the l th local segmentation network was deemed to
be πl (x). It was clear that for all x ∈ X , πl (x) was positive,
and

∑
l
πl (x) = 1. Thereafter, liver segmentation was carried

out through constructing the model for the conditional prob-
ability function:

P (y|x) =
∑
l

πl (x)N
(
y|µl (x) , σ 2

l

)
(2)

Notably, segmentation aims to identify the mapping of
g : x → y. Subsequently, the expected distribution of the
conditional probability was calculated to estimate the output
y for the input sample x:

y = E [P (y|x)]

= E

[∑
l

πl (x)N
(
y|µl (x) , σ 2

l

)]
=

∑
l

πl (x)µl (x) (3)

Therefore, the pooled results of the segmentation that were
weighted based on the weight functions provided the even-
tual estimation. In the following sections, we will provide
a detailed description of backbone network, local segmenter
network and weighted networks respectively.

B. BACKBONE NETWORK
DeepLabv3+ extends DeepLabv3 by adding a simple yet
effective decoder module to refine the segmentation results,
especially along object boundaries [28]. It is able to encode
multiscale contextual information by probing the incoming
features with filters or pooling operations at multiple rates
and multiple effective fields-of-view; in addition, it can also
capture sharper object boundaries by gradually recovering the
spatial information.

The backbone network for DCSegNet is shown in Fig. 3.
The last convolution layer and the upsampling operation
in DeepLabv3+ are removed. The input of the backbone
network is a slice of a volume CT, and the output contains
256 features with 64× 64 dimensions. These output features
are used as the direct input of local segmentation network and
weight network respectively.

FIGURE 3. Backbone network employed in this study [28].

FIGURE 4. Local segmenter network architecture.

C. LOCAL SEGMENTER
In the divide-and-conquer method, local segmenters are
adopted for the effective modeling of the subdomain data.
The local segmenter network architecture is shown in Fig. 4.
The number of local segmenters is same as the number of
subdomains. Each local segmenter contains two convolution
layers with a 1×1 kernel. The first convolution layer extracts
three feature maps from the output of the backbone network.
Then, the local segmenter merges the local features with
the sub features of the neighboring subdomain segmenter as
the feature input of the last convolutional layer. The local
segmentation networks can be deemed to be several experts,
and every expert is skilled over the little segmentation subdo-
main, with diverse experts covering the distinct segmentation
regions. Therefore, all experts are able to provide the expected
outcome, regardless of the subdomain data.

To additionally model the liver label continuity, those local
segmenter segmentation regions were densely overlapped.
Those neighboring local segmenters shared a large degree of
overlap within the specific regions, thereby rending a great
degree of similarity. As a result, multiple segmenters were
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FIGURE 5. Weighted network architecture.

responsible for the liver segmentation for each subdomain,
and so we were able to adopt ensemble learning to generate
the precise segmentation results.

A comprehensively connected layer was employed for the
dense overlapping of local segmenters. In addition, the sig-
moid function was utilized to be an activation function, and
the activation value of every local segmenter wasmapped into
the corresponding subdomain space, which was used as the
expert outcome. According to the above discussion, µl (x)
was utilized to denote the l th local segmentation network
results, and the later segmentation loss was given by the
following:

Lseg =
∑
l∈L

(yl − ul (x))2 (4)

where

yl =

{
liver_mask l = index of subdomain
0 otherwise

(5)

D. WEIGHTED NETWORK
A weighted network was necessary in the approach pro-
posed in this study to determine the local segmentation net-
work weights. As a result, the use of a weighted network
that had the divide-and-conquer structure boosted the coop-
eration between the local segmentation networks and the
weighted network. With regard to the divide-and-conquer
principle, the tree structure has been extensively utilized
as a hierarchical structure. For instance, in the computer
vision and machine learning communities, decision trees
have been frequently used as classifiers in the coarse-
to-fine decision-making process and as the tree structure.
In this study, the weighted network contains one convolution
layer and three fully connected layers. The weights {ωi} ,
i = 1, 2, · · · ,L are regressed from the features extracted
from the backbone network. The SoftMax activation func-
tion is used to ensure that {ωi} satisfies the following
requirements: 

ωi ∈ [0, 1]
L∑
i=1
ωi = 1

(6)

Notably, the KL divergence [29] was used to be a loss term
to train the weight networks.

Lweight = −
∑
l∈L

zl log(ωl (x)) (7)

where ωl (x) is the weight of a subdomain x that was
regressed by the weighted network, and zl is one-hot vector
that indicates to what subdomain x belongs.

E. LOSS FUNCTION
In the end, we jointly learn local segmenter and weighted
networks by defining the total loss as follow:

Loss = Lseg + λLweight (8)

where λ is utilized to balance the importance between the
gating task and the regression task. λ = 1 is used in this study.

According to our results, our proposed network was easily
carried out through the use of the accessible comprehensively
connected, sigmoid, and softmax layers within those avail-
able deep learning frameworks. Furthermore, the compre-
hensively differentiable network proposed in this study was
embedded in each deep convolutional neural network, mak-
ing it possible to conduct end-to-end training while obtaining
a superior representation of the future.

III. EXPERIMENTS
A. DATASET
The data used in the current work includes three datasets.
They are the Liver Tumor Segmentation Challenge (LiTS)
dataset, the 3D Image Reconstruction for Comparison of
Algorithm Database-01 (3D-IRCADb-01) and custom CT
scans from the First Affiliated Hospital, Zhejiang University
School ofMedicine, China. Fig. 6 shows the volume rendered
abdominal CT images of three datasets.

FIGURE 6. Three dataset examples used in the study.

1) LiTS DATASET
A total of 200 3D contrast-enhanced abdominal CT scans,
together with the segmentation labels for liver and tumor
regions, are included in the LiTS dataset, and the resolution
in every axial slice is 512 × 512 pixels. One hundred thirty
scans had the ground truth labels, including 10 as testing
data, 20 as validation data, and 100 as training data. The
scanning layer thickness in the data set is 0.8 mm-5 mm,
and the number of liver scanning layers is 301-31. In training
phase, Intensity values were clipped to the [−10, 200] HU
range to ignore those uncorrelated details and normalize those
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images to [0, 1]. Additionally, the images were downsampled
to 256 × 256. The random cropping and normal distribution
noise (N (0, 0.01)) method was employed to enhance the
training data [30].

2) 3D-IRCADb-01 DATASET
3D-IRCADb-01 is a database that includes several sets of
anonymized medical images of patients and the manual seg-
mentation of the various structures of interest was performed
by clinical experts. The 3D medical images and masks of the
segmented structures of interest are available asDICOMfiles.
The dataset offers a higher variety and complexity of livers
and their lesions and is publicly available. The 3DIRCADb
includes 20 venous phase enhanced CT volumes from various
European hospitals with different CT scanners. The scanning
layer thickness in the data set is 1.0 mm-4 mm, and the
number of liver scanning layers is 163-45. For our study,
all volumes were used to validate the performance of the
proposed model.

3) CUSTOM DATASET
The custom CT scans of ten patients from the First Affili-
ated Hospital, Zhejiang University School of Medicine were
taken during the period from 2018 to 2019. All personal
information about the patients was removed before the data
left the hospital. The scanning layer thickness in the data set
is 0.7 mm-1 mm, and the number of liver scanning layers
is 162-134. These ten volumes were manually segmented
by 3D Slicer (https://www.slicer.org/). In addition, all these
data were used to validate the performance of the proposed
model.

B. EXPERIMENTAL SETTINGS
Our model was implemented with Torch [31] and optimized
using the Adam algorithm on the NVIDIA Tesla K40c GPU.
The original learning rate was set to 1e − 4, and it decayed
according to the poly schedule learning rate. In addition,
10 volumes from the LiTS validation data were used to
monitor the performance of our model. During training,
each CT scan was resampled to 256 × 256 pixels as the
model input. 20 epochs were adopted to train the proposed
model.

In the training data of DCSegNet, the number of subdo-
mains (L) was set as 3, 5, and 7. In addition, there were
0, 3, and 5 overlapping layers in adjacent subdomains that
were used to find the best configuration for liver segmentation
(as shown in Fig. 7). The labels of the weighted network’s
outputs were 1, 2, · · · ,L.

When the number of subdomains was set as 1, the proposed
model could be considered to be the original DeepLabv3+.
Table 1 shows the variation in the number of the training
dataset of each local segmenter when the number of local
segmenters and the size of overlap between adjacent regions
changed.

FIGURE 7. A diagram of the subspace segmentation.

TABLE 1. The number of training data for local segmenters.

C. EVALUATION METRICS
In this section, |TP|, |TN |, |FP|, and |FN | represent the
true positive, true negative, false positive and false negative
values, respectively.

1) DICE COEFFICIENT
The Dice coefficient (DICE) is an approach to determine
the spatial overlap between the gold standard image and the
segmented one, with the value ranging from 0 (no overlap) to
1 (perfect matching), as shown below [33]:

DICE =
2 |TP|

2 |TP| + |FN | + |FP|
(9)

2) RAND INDEX
The rand index (RI ) assesses the pixel consistency within the
ground truth and segmented images, with a value that ranges
from 0-1. Here, a value of ‘0’ suggests that the segmentation
results are completely different from the ground truth image
whereas ‘1’ represents that the segmentation result is identical
to the ground truth image.
RI is calculated using the following equation:

RI =
|TP| + |TN |

|TP| + |FN | + |TN | + |FP|
(10)

3) SENSITIVITY
The sensitivity measures the percentage of actual positives
values that are correctly identified whereas the specificity
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measures the percentage of negative values that are correctly
identified. The sensitivity (TPR) is the ratio of the pixels that
are classified as positive and all the pixels that are actually
positive.

TPR =
|TP|

|TP| + |FN |
(11)

4) HAUSDORFF DISTANCE
Hausdorff Distance (HD) is widely used in evaluating medi-
cal image segmentation methods. It is one of the most infor-
mative and useful criteria because it is an indicator of the
largest segmentation error. In some applications, segmenta-
tion is one step in a more complicated multi-step process.
For example, some multimodal medical image registration
methods rely on segmentation of an organ of interest in
one or several images. In such applications, the largest seg-
mentation error as quantified by HD can be a good measure
of the usefulness of the segmentations for the intended task.
for two point sets X and Y, the one-sided HD from X and Y
is defined as [21], [34]:

hd(X,Y) = max
x∈X

min
y∈Y
‖x − y‖2 (12)

and,

hd(Y,X) = max
y∈Y

min
x∈X
‖x − y‖2 (13)

The bidirectional HD between these two sets,

HD(X,Y) = max(hd(X,Y), hd(Y,X)) (14)

In the above definitions we have used the Euclidean dis-
tance, but other metrics can be used instead. Intuitively,
HD(X,Y) is the longest distance one has to travel from a point
in one of the two sets to its closest point in the other set.
In image segmentation, HD is computed between boundaries
of the estimated and ground-truth segmentations, which con-
sist of curves in 2D and surfaces in 3D.

IV. RESULTS AND DISCUSSION
A. VERIFICATION OF THE WORKING PRINCIPLE
OF LOCAL SEGMENTERS
In this study, a liver segmentation model was proposed in line
with the divide-and-conquer principle based on the structural
similarity of the adjacent liver cross-sections. Typically, high
liver segmentation accuracy was achieved through training
the local segmenters and the weights of the corresponding
segmenter. Fig. 8 shows an example of the segmentation
result for local segmenters (L = 5) for the cross-sections at
different positions.

According to the outputs of DCSegNet, the model selected
the corresponding segmenter and calculated the weight of
each segmenter according to the slice features extracted from
the backbone network. In this study, the data of adjacent
subdomains were overlapped, and the target region was seg-
mented by multiple local segmenters for some areas of the
sliced data; therefore, the weighted integration of those output

FIGURE 8. An example of the segmentation result for local segmenters
on the transverse planes at different positions.

FIGURE 9. Comparison of segmentation accuracy of different
segmentation algorithms. The green mask is the ground truth. The red
mask is the segmentation result based on DCSegNet.

results of local segmenters by the weighted network helped to
obtain the final segmentation result.

B. COMPARISON WITH THE LATEST MODELS
Fig. 9 shows some 2D slices extracted from the LiTS,
3D-IRCADb-01 and custom datasets, as well as the ground
truth and segmentation results obtained from the DCSegNet
model.

The means and standard deviations of DICE, RI, TPR
and 90th HD are listed in Table 2 to Table 5, respectively.
These tables indicated the DCSegNet model performance
with different numbers of local segmenters using three dif-
ferent datasets. As shown from these tables, when the number
of local segmenters is 5, for the different datasets, the three
segmentation indicators have obtained the best results.
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TABLE 2. Dice coefficient validation against different methods on
different datasets (dice %).

TABLE 3. Rand index validation against different methods on different
datasets (RI %).

TABLE 4. Sensitivity validation against different methods on different
datasets (TPR %).

TABLE 5. 90th Hausdorff distance validation against different methods
on different datasets (HD in mm).

C. ABLATION INVESTIGATION AND PARAMETER ANALYSIS
To evaluate the effect of the number of different local sub-
domains and the overlap between adjacent subdomains on
the segmentation results, the number of subdomains in the
LiTS dataset is set a 3, 5, and 7 and the overlap between
adjacent subdomains is 0, 3, and 5. We trained different
network models, and used the models to verify the data of the
three data sets. The comparison of the means and standard
deviations of the DICE are shown in Table 6.

1) THE NUMBER OF LOCAL SEGMENTERS
Table 6 displays some specific conclusions. First, after com-
paring the impact on the segmentation results of using 3, 5,
and 7 local segmenters to construct the segmentation net-
work, it can be seen that the best results are obtained using
5 local segmenters. In theory, highly accurate segmentation
was acquired from those abovementioned structures through
the use of the set number of segmenters, which was reason-
able since a higher number of local segmenters suggested
a greater quantity of local segmentation networks, whereas

TABLE 6. Validation against different on three datasets (dice %).

a greater number of local segmentation networks indicated
higher expert intelligence. Furthermore, the researchers con-
tinued to increase the number of local segmenters to analyze
its impact on the segmentation results. For example, when the
number of local segmenters increases to 7, the segmentation
accuracy decreases by different amounts. Therefore, we can
draw a conclusion that the performance tended to be satu-
rated when the number of local segmenters was large enough
since certain neighboring local segmentation networks cor-
responded to identical training data in the presence of an
excessive number of local segmenters, making it impossible
to boost the actual number of experts. In addition, as seen
from Table 1, as the number of local segmenters increases,
the amount of training data for each local divider will be
significantly reduced, which may result in the insufficient
training of the hyperparameters for each local divider. That
is, the model is underfit. In addition, due to the individual dif-
ferences in the liver disease structures of the patients and the
differences in the CT imaging layer thickness, the similarity
of the CT image structure in the same subdomain is reduced,
which will further increase the difficulty of model fitting.
These factors need to be further verified by standardizing the
imaging process (such as selecting the same layer thickness)
and increasing the number of training sets.

2) THE SIZE OF THE OVERLAP LAYERS FOR SUBDOMAINS
In this study, different sized overlapping region for adjacent
subdomains of the training data were selected to study their
impact on the segmentation results. It can be seen from table
6 that increasing the number of overlapping layers of adjacent
subdomains will not significantly improve the segmentation
accuracy, but the standard deviation of the segmentation will
decrease. Table 1 shows that when increasing the number
of overlapping layers of adjacent subdomains, for each local
segmenter, the training data for the optimizer network param-
eters will increase accordingly, which is beneficial to improv-
ing the model performance. In addition, as the number of
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overlaps between adjacent subdomains increases, the data of
the adjacent subdomains of adjacent local segmenters has
better compatibility. In other words, each expert is not only
good at the data segmentation of their respective subdomains
but also the data segmentation of adjacent subdomains will
be more professional. This results in better stability of the
segmentation results, and a lower standard deviation in the
DICE coefficient.

3) THE LOCAL SEGMENTATION ARCHITECTURE
To further improve the segmentation performance of the local
subregions on adjacent subdomains, the middle layer of each
local partition in the study introduces part of the middle CNN
layer features from the adjacent local partitions, as shown
in Fig. 4. In the study, we compared the effect of introducing
the middle layer feature of the adjacent local splitter and
not introducing this feature on the segmentation results. The
results are shown in table 7.

TABLE 7. Influence of local segmentation architecture differences on
segmentation results (DICE %).

It can be seen from the calculation results that the use
of different splitter architectures does not have a significant
impact on the segmentation accuracy. This is mainly due
to the overlapping of the subdomains in the training data.
In addition, the training set data in LiTS use different layer
thicknesses for the scanning procedures, which results in a
reduction in the similarity of the data structure of the same
subdomain and the overlap in the data structures of adjacent
subdomains. Therefore, by introducing the local features of
the middle layer of the adjacent local dividers in this study,
the segmentation performance is not significantly improved.

V. CONCLUSION
The current work proposes the DCSegNet model, which is
the continuity-aware probabilistic network used in liver seg-
mentation. DCSegNet can definitely model the established
continuity relationship across different components using the
local segmentation networks based on the probabilistic net-
work. According to the experimental results from using the
three datasets, this model shows higher accuracy than the
other advanced models when the appropriate parameters are
selected.

Due to the different layer thicknesses of the data in the
training set, the individual differences in the abdominal fea-
tures, and the limited amount of data in the training set,
the local segmenter is difficult to achieve the best expert per-
formance. Therefore, it can be seen from the results that this
study still does not solve the problem of continuity between

adjacent layers. It is necessary to standardize the imaging
parameters and collect more data to establish training in the
future datasets to further optimize and improve the local
segmenter to achieve more accurate segmentation results.
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