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ABSTRACT Heterogeneous multi-robot system is one of the most important research directions in the
robotic field. Real-time path planning for heterogeneous multi-robot system under unknown 3D environment
is a new challenging research and a hot spot in this field. In this paper, an improved real-time path planning
method is proposed for a heterogeneous multi-robot system, which is composed of many unmanned aerial
vehicles (UAVs) and unmanned ground vehicles (UGVs). In the proposed method, the 3D environment
is modelled as a neuron topology map, based on the grid method combined with the bio-inspired neural
network. Then a new 3D dynamic movement model for multi-robots is established based on an improved
Dragonfly Algorithm (DA). Thus, the movements of the robots are optimized according to the activities of
the neurons in the bio-inspired neural network to realize the real-time path planning. Furthermore, some
simulations have been carried out. The results show that the proposed method can effectively guide the
heterogeneous UAV/UGYV system to the target, and has better performance than traditional methods in the
real-time path planning tasks.

INDEX TERMS Heterogeneous multi-robot system, path planning, dragonfly algorithm, bio-inspired neural

network.

I. INTRODUCTION
Heterogeneous multi-robot system is a new research hot spot
in the robotic field [1]-[4]. Heterogeneous multi-robot sys-
tem means that the types or the capabilities of the robots
in a multi-robot system are different. With the develop-
ment of multi-robot system, more and more heterogeneous
multi-robot systems have been proposed to deal with some
complex tasks, which require different robotics to finish, such
as the space exploration, urban search and rescue, and so
on. The main research topics of heterogeneous multi-robot
systems include path planning, task assignment, fault
self-healing, and so on [5]-[7].

Among these heterogeneous multi-robot systems, the
hybrid UGV/UAV system is the most used type of
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system. With the continuous improvement of technologies,
the unmanned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs) have been widely used in military, security,
agriculture, disaster relief and other aspects [8]-[10]. But
only one type of UGVs or UAVs can not finish the complex
job very well sometimes, the hybrid UGV/UAV system is a
good solution that can combine the advantages of UAVs and
UGVs [11], [12]. However, the hybrid UGV/UAV system has
also met some challenges, which are different from those of
the homogeneous multi-robot system. In this paper, the real-
time path planning is focused, which is the basic task of the
hybrid UGV/UAV system [13], [14].

The objective of the real-time path planning is to plan a
passable path for the robots, from the starting position to
the target position according to certain performance indexes
(such as distance, time, etc.) under the dynamic environments
with obstacles. The real-time path planning is a challenging
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task for the hybrid UGV/UAV system, because the UGVs
walk on the ground and UAVs fly in the air, and the obstacles
are unequally spread over the 3D environment.

There are many research results in the path planning for
the hybrid UGV/UAV system. For example, Li ef al. [15]
presented a path planning method in unmanned aerial/ground
vehicle cooperative systems, which is based on a hybrid
genetic algorithm and local rolling optimization algorithm.
Seyedi et al. [16] proposed a scalable planning strategy for
simultaneously finding the trajectories of UAVs and UGVs.
Asadi et al. [17] implemented the Rapidly-exploring Random
Tree (RRT) algorithm for a integrated UGV-UAV system.
Although these methods can realize the path planning prob-
lem, there are some problems need to be further studied. For
example, some methods above just solved the path planning
problem of the UGV in a 2D environment. Few of them can
deal with the path planning problem as a whole, which are not
suitable for real-time path planning for the hybrid UGV/UAV
system.

With the development of technologies and the increased
demands of applications, more and more researchers have
focused on the problem of path planning in real 3D envi-
ronment [18]. For example, Han [19] proposed a method
based on critical obstacles and surrounding point set, which
can lower the complexity for efficient 3D path planning.
Ni, et al. [20] presented an improved dolphin swarm algo-
rithm based navigation method for the autonomous under-
water vehicle in 3D underwater environment. Yang et al. [21]
presented an appropriate spatial representation of the environ-
ment for the path planning of ground robots in 3D environ-
ment. However, due to the variability and complexity of 3D
unknown environment, the real-time path planning of hybrid
UAV/UGYV system is still a hot spot.

Recently, the bio-inspired intelligent methods have been
a hot spot in the real-time path planning [22]. For exam-
ple, Ni and Yang have studied the bio-inspired neural net-
work (BINN) in the real-time path planning task for different
robots and the results show the efficiency of the bio-inspired
neural network [23], [24]. Cai et al. [25] proposed a 3D
real-time path planning method based on cognitive behavior
optimization algorithm. Yan et al. [26] presented a real-time
path planning algorithm for AUV using PSO combining the
waypoint guidance. Zhu et al. [27] proposed an integrated
biologically inspired self-organizing map algorithm for the
task assignment and path planning of an AUV system. These
bio-inspired methods have achieved some good results. How-
ever, most of them are used for the homogeneous robotic
system, which can’t be used for the hybrid UAV/UGYV system
directly. And there are still some problems need to be further
studied, such as the low accuracy and slow convergence speed
problems.

To deal with the problems in the real-time path planning
for the hybrid UAV/UGV system, an improved bio-inspired
methods is proposed, which is combined with the Drag-
onfly Algorithm (DA) [28], [29] and the bio-inspired neu-
ral network (BINN) [23], [30]. In the proposed method,
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the motion space of the hybrid UGV/UAV system is con-
verted into a topological state space composed of multiple
neurons. The activity of each neuron is updated based on a 3D
dynamic movement model in the dragonfly individual local
search. Then the path can be generated based on the activities
of all the surrounding neurons of the robots.

The main contributions of this paper are summarized as
follows: (1) The 3D environment of the hybrid UGV/UAV
system is modeled based on the combination of the grid
method and an improved bio-inspired neural network model.
(2) An improved Dragonfly Algorithm is proposed for the
real time path planning of the hybrid UGV/UAV system in
unknown dynamic 3D environments. (3) The search space of
the proposed method is reduced obviously, which can work
for the real-time path planning in complex 3D environments.
Furthermore, various simulations are carried out for the real
time path planning of the hybrid UGV/UAV system.

This paper is organized as follows. Section II presents
the real-time path planning problem of the heterogeneous
multi-robot system under 3D environment. The 3D real-time
path planning method based on improved dragonfly algo-
rithm is proposed in Section III. The simulations are given in
Section IV. Section V discusses the performance of the pro-
posed approach by some comparison experiments. Finally,
the conclusions are given in Section VI.

Il. PROBLEM STATEMENT

The real-time path planning problem in unknown 3D environ-
ment for a hybrid UGV/UAV system is studied in this paper.
In this path planning task, UGVs and UAVs know their own
position information and the target position information, but
the current 3D environment space information is completely
unknown. The UGVs and UAVs in the process of movement
can detect the surrounding environment, identify and locate
the surrounding obstacles and other robots, by using the
onboard sensors. Furthermore, the robots in the same system
can communicate to obtain the positions of each other by
wireless communication technology. The schematic of the
real-time path planning process for the hybrid UGV/UAV
system is shown as Fig. 1.

__yUAV

3D environment
o >
X

FIGURE 1. The schematic of the real-time path planning process for the
hybrid UGV/UAV system.

The problem studied in this paper is described as follows:
(1) A hybrid UGV/UAV system is used to carried out
the real-time path planning task. The task t is denoted by
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T={Ptarget, H }, where Pyyge; is the position of the target and
H is the hybrid UGV/UAV system. The target is on the ground
and its position is known to all the UGVs and UAVs in the
system.

(2) In the hybrid UGV/UAV system, there are N UGVs and
M UAVs. The UGV ismarked as Ug;, i = 1,2, ..., N and the
UAV is marked as Ugj,j = 1,2,..., M.

(3) The UGVs and UAVs can automatically locate them-
selves based on some positioning technologies. Because the
communication range is big enough, the positions of the
UGVs and UAVs in the system are known to each other.

(4) The UGVs and UAVs can obtain the positions of the
obstacles based on the onboard sensors. For the sake of
analysis, the detection ranges of the UGVs and UAVs are set
as equal, which are denoted as R.

As described above, the real-time path planning task stud-
ied in this paper is near the real-world applications of the
UGV/UAV system, such as the urban rescue task, target
searching and field hunting problem [31]-[33].

Ill. PROPOSED SOLUTIONS

There are two main problems in the real-time path planning
task, namely the environment modeling problem and motion
planning problem. In this paper, the grid-based method and
the bio-inspired method are combined to model the 3D envi-
ronment. Then an improved dragonfly algorithm (IDA) is
proposed to deal with the motion planning problem for the
UGVs and UAVs. The work flow of the proposed solutions
for the real-time path planning task is shown in Fig. 2.

The combination of the grid

Construct 3D environment model K method and the BINN model

!

— Detect the environment information

!

Update neuronal activity values

Choose the moving position K

The improved BINN model

{}

The improved dragonfly
algorithm

FIGURE 2. The work flow of the proposed solutions for the real-time path
planning task.

A. 3D ENVIRONMENT MODELING

The environment of the path planning task studied in this
paper is a 3D environment, which is set to a 3D bounded
cuboid space €2. Grid modelling method is used to divide the
moving space €2 into a 3D grid map. Each node of this grid
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map is then taken as a neuron. Thus, the whole grid map is
transformed into a topological state space composed of neural
networks. The modelling process is shown in Fig. 3.

Neurons

@
FIGURE 3. The modelling process of the proposed method for the 3D
environment: (a) The 3D environment; (b) The grid map based on the
BINN model.

In the grid map shown in Fig. 3(b), the nodes (namely the
neurons) are interconnected, and the distance between two
adjacent neurons is set as the length of the robot moving
step [:

I = Vi* Sstep (1)

where V; is the speed of the i-th robot and Step is the simula-
tion step size. The coordinate of each node in the grid map is
expressed as (x, y, z), and the environmental information of
the node in the grid map is defined as:

1 target location

W ) 0 movable position @)
x? 9 Z =
Y —1 obstacle position

k robot position

where k& means the serial number of the robots in the
multi-robot system. With the robot movement, the activities
of the neurons (nodes in the grid map) will be updated based
on the dynamic function of the bio-inspired neural networks
(BINN) [23]:

dx; " _
i —Ax; + (B — xi)([li]++j§1: wiilx1)— (D + xp)II;]

3)

where, x; is the activity value of the i-th neuron; A, B, D
are the parameters of the BINN, which are all nonnegative
constants; & represents the number of adjacent neurons in
the i-th neuron; w;; is the connection weight between the
i-th neuron and the i-th neuron; Function [/]T and [I]™ are
nonlinear functions defined as [/]T = max {7, 0}, and [[]~ =
max {—1, 0}, respectively. Here, [; is the external input of the
i-th neuron, which is defined as:

E  target area
I; = { —E obstacle area 4
0 movable area

where E > B is a larger normal number.
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Based on the proposed environment modeling method,
with the movement of the robots in the 3D environment,
each robot will construct a local grid map within its detection
range. And the environment information will be updated with
the activities of the neurons simultaneously. Thus, the envi-
ronment information can be presented by the activities of the
neurons and the calculation can be reduced obviously.

Remarkl: In the proposed 3D environment modelling
method, the advantages of the grid method and the BINN
method are both utilized. Meanwhile, the shortcomings of the
two methods are overcome, such as the insufficient informa-
tion presentation of the general grid method and the great deal
of calculation of the basic BINN method.

B. REAL-TIME PATH PLANNING METHOD BASED ON
IMPROVED DA

To deal with the real-time path planning problem for the
hybrid UGV/UAV system, an improved dragonfly algo-
rithm (DA) is presented. The fundamentals of DA are based
on the foraging principle of dragonflies in groups, which have
some advantages in the path planning, such as the real-time
performance, robustness, and so on [34], [35]. However, there
are still some shortcomings of the general DA, including the
locally optimal problem and the stability problem. To deal
with these problems, the dragonfly algorithm is improved
combined with the BINN method, which will be introduced
in details as follows.

1) UPDATE THE POSITIONS OF THE DRAGONFLIES
There are five main behaviors in the process of the dragonfly
foraging, namely separation, formation, aggregation, obstacle
avoidance and target predation. Based on these behaviors,
if there are some dragonflies around the i-th dragonfly, its
position P! is updated by:
P, | =P, +dP,
dP, | = (sS; 4 aF; + cA; + eO0; + fT;)) + wdP,  (5)

where dPi 41 denotes the step vector of the dragonfly;
s denotes separation coefficient; a denotes the formation
coefficient; ¢ denotes the aggregation coefficient; e denotes
obstacle influence factor; f denotes target influence factor;
w is inertial coefficient; S;, Fj, A;, O;, and T; represent the
position of the i-th dragonfly after the five behaviors above
respectively.

The position S; after the separation behavior is defined as:

Y
Si=—) Pi—P (6)
j=1

where Q denotes the number of dragonflies around the i-th
dragonfly, and P; denotes the position of the j-th dragonfly.
The position F; after the formation behavior is defined as:
Q
2V
j=1

Q
where V; denotes the velocity of the j-th dragonfly.

Fi= (N
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The position A; after the aggregation behavior is defined
as:

0
2y

A="— P 8
0 (3)

The position O; after the obstacle avoidance behavior is
defined as:

O; = Popstacle + Pi (9)

where Popsiacle denotes the position of the obstacle.
The position T; after the target predation behavior is
defined as:

T; = Ptarget —P; (10)

where Pyyee¢ denotes the position of the target.

When there no other dragonflies around the i-th dragonfly,
its position is updated by Levy flight in the general Dragonfly
Algorithm, namely

Pl =P +Levy3) % P! (11)

where Levy(3) is the Levy flight in 3D environment. Because
the Levy flight is based on a levy distribution to provide
a random walk for robots, this process is slower and less
efficient [20], [36].

To deal with the problems existed in the general DA,
the Levy flight search is replaced by the 3D dynamic
moving model based on the bio-inspired neural network
(see Fig. 3(b)). Based on the proposed search method,
the search range of the dragonfly individual is reduced to
26 directions in the 3D grid map, corresponding to the
topological neuron cyberspace in the environment. In this
BINN-based grid map, the active value of the target is main-
tained at a higher positive level, and the active values of
the neurons corresponding to the obstacles are maintained at
lower negative level. The activities of the neurons correspond-
ing to the free locations are set as 0. By solving the shunting
equation (3), obstacles only partially affect the movements
of UAVs and UGVs, and the target can attract the UAVs and
UGVs globally.

2) FITNESS FUNCTION OF THE DRAGONFLY ALGORITHM
The fitness function is used to determine which position is the
next position for the current robot. In this study, the fitness
function Fitness(-) is defined as follows:

Fitness(g;) = ¢1xi + & < — §3SafeCheck(q,-))

Dist(g;, 1)
(12)

where ¢1, {2, and ¢3 are the weight coefficients, which are all
non-negative numbers; x; and g; represent the activity value
and position of the i-th candidate neuron, respectively; g7 is
the position of the target; Dist(-) is the distance function;
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SafeCheck(-) is the function to check whether the position
of i-th neuron is safe, which is defined by

1, IfDis(gij, R D
SafeCheck(g;) = { 18(qijs Ri) < Dsafe

. (13)
0, Otherwise

where g;; is the position of the j-th robot at the location of the
i-th neuron; k = 1,2,...,(N + M), k # j; Ry means the
position of the k-th robot in the hybrid UGV/UAV system;
and Dq,¢e is the safe distance between two robots.

Then, the j-th robot in the system will select the neuron
with the biggest fitness value as the next position to move
from the surrounding neurons, namely

qn < Fitness(g,) = 'nllaxk {Fitness(q,-j)} (14)
j=

,,,,,

where g;;,i = 1,2, --- , k, is the location of the i neuron in
the detection region of the j-th robot (see Fig. 3(b)); g, is the
location of the neuron, with the maximum fitness value in
these neurons.

In summary, the pseudo code of the proposed dragonfly
algorithm in this paper is shown in Algorithml1 (see Fig. 4).

Algorithm1: Improved dragonfly algorithm for real-time path planning

Initialization;
%lnitialize the population size , the maximum number of
iterations, the weight coefficient, and so on.

For each robot in the hybrid UAV/UGV system

{

Calculate the neuronal activities in the detection range;
If (the target isn’t reached by this robot)
Do
{
Calculate the fitness for all dragonfly individuals;
Update the step size;
Update the five behavior factors;
Update the inertia weights;
}
While (the maximum iterations are reached)
Choose the next position of the robot;
Endif
Endfor

FIGURE 4. The pseudo code of the proposed dragonfly algorithm.

The whole work flow of the proposed approach for the
real-time path planning task of the hybrid UAV/UGYV system
are summarized as follows:

Stepl: Construct the 3D environment model based on the
proposed grid map and the BINN model;

Step2: Detect the environment with onboard sensors;

Step3: Update the neuron activities of all the neurons in the
detection range according to (3);

Step4: Calculate the fitness values of all the candidate
locations according to (12);

Step5: Choose the next location based on the improved DA
algorithm according to (14), and move to this location;
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Step6: If the target position is not reached, return Step2,
otherwise the task is completed.

Remark?2: Based on the proposed path planning method,
the robots in the hybrid UAV/UGYV system can deal with the
obstacle avoidance in real time. The robots can finish the path
planning task cooperatively without too much communica-
tions. Furthermore, the robots in the system can deal with
the heterogeneous problem (such as the different movement
speed) efficiently based on the proposed environment model
and movement model.

IV. EXPERIMENTS AND ANALYSIS

To verify the effectiveness of the improved dragonfly algo-
rithm in real-time path planning in unknown 3D environment,
some simulation experiments are carried out in the Matlab
platform, by a computer with i5-3230M CPU and 8G mem-
ory. There are some assumptions about the UGV and UAV
in the system: (1) The UAVs and UGVs are all regarded as
particles without shapes, and the effects of the shapes can be
dealt with by enlarging the safe distance Dgyfe. (2) Because
the time of turning is very small in the total process of the
real-time path planning task, the turning radius and the time
of turning of the robots are ignored in the simulations. (3)
In the task 7, the hybrid UGV/UAV system H is composed of
two UAVs in the air and one UGV on the ground, namely H =
{Ua1, Ua2, Ugt}. To remove the effects of the randomness, all
the experiments in this study are conducted 20 times and the
mean values are given out. The parameters of the proposed
method and the simulation parameters in this study are listed
in Table 1.

TABLE 1. Parameters of the proposed method.

Parameters Values Remarks
R 10 (m) Detection range of robots
Vuav 15 (m/s) Velocity of UAV
Vugy 5 (m/s) Velocity of UGV
Np 40 Population size of DA
Maxy 500 Maximum iterations of DA
Sstep 1(s) The step size of the simulation in (1)
A 500 Decay rate of neuron activity in (3)
B 500 Upper limit of neuron activity in (3)
D 500 Lower limit of neuron activity in (3)
E 500 Target incentive weights in (4)

A. STATIC ENVIRONMENT EXPERIMENT

To test the performance of the proposed algorithm, a static
experiment is carried out firstly. In this experiment, the envi-
ronment is static, and the position of the target is fixed.
The initial state of the environment is shown in Fig. 5(a).
The initial positions of the two UAVs are (87,87, 65)
and (89, 55, 60) respectively. The initial position of the
UGV is (40,80,0) and the position of the target is
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70N UAVI1(87.87,65) U./:V2(89,55,60)
*

Target(15,15,0)
*

20

(a)

(©)

(d)

FIGURE 5. The real-time path planning in the static environment for the hybrid UAV/UGV system: (a) Initial positions of the robots and target,
view=(—128°, 22°); (b) At the 20th step, view=(—133°, 32°); (c) At the 38th step, view=(—139°, 29°); (d) Final trajectories, view=(—131°, 21°).

Parger = (15, 15, 0). The path planning results of the hybrid
UAV/UGYV system are shown in Fig. 5 and Table 2.

TABLE 2. The path planning results of the hybrid UAV/UGV system in the
static environment.

The length of the path (m)  The time of the robots (s)

UAV1 158.75 10.58
UAV2 133.25 8.88
UuGv 79.46 15.89

The results in Fig. 5 show that the UAVs and the UGV
can effectively avoid obstacles and reach the target position
based on the proposed method. The generated paths based on
the proposed method are smooth. In addition, the trajectories
of the robots are optimized. For example, the two UAVs can
fly as close to the buildings as possible and the UGV can go
between the two buildings (see Fig. 5(d) and Table 2).

B. DYNAMIC ENVIRONMENT EXPERIMENT
To further test the performance of the proposed algorithm,
a dynamic experiment is carried out, where the environment
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is the same as that of experiment in Section IV-A, except there
are some dynamic obstacles. The initial positions of the two
UAVs, the UGV, and the target are also the same as those of
Section IV-A. And the initial positions of the three dynamic
obstacles are (45, 90, 25), (60, 45, 32), (50, 35, 20), respec-
tively (see Fig. 6(a)). The results of this dynamic experiments
are shown in Fig. 6 and Table 3.

TABLE 3. The path planning results of the hybrid UAV/UGV system in the
dynamic environment.

The length of the path (m)  The time of the robots (s)
UAV1 164.4 10.96
UAV2 139.25 9.28
UuGv 79.46 15.89

The results show that the proposed approach can deal
with the dynamic environment efficiently. For example,
when the UAV2 detects the dynamic obstacle 02, it will
change its direction and move toward the target at once
(see Fig. 6(b) and Fig. 6(c)). The final results of the path
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60

20

100

()

60

20

100

(d)

FIGURE 6. The real-time path planning in the dynamic environment for the hybrid UAV/UGV system: (a) Initial positions of the robots
and target, view=(—132°, 29°); (b) At the 18th step, view=(—132°, 29°); (c) At the 38th step, view=(—110°, 49°); (d) Final trajectories,

view=(—131°, 49°).

planning in Fig. 6(d) and Table 3 show that the path is longer
than that of the static experiment, the results are optimized
too. In addition, as the starting positions of the UGV, UAVs,
target in the experiment and the starting positions, size and
number of obstacles can be set arbitrarily, the results of
this experiment show that the proposed method has strong
robustness and universality.

C. DYNAMIC TARGET EXPERIMENT

To test the performance of the proposed algorithm in the
real-time state, a dynamic target experiment is carried out,
where the position of the target is changing randomly. In this
study, when all the robots arrive at the position of the target,
the task will be end. To make the task executable, the move-
ment speed of the target is set as 2.5 m/s, which is lower
than those of the UAVs and the UGV. In this experiment,
the environment is complex, which is similar as a moun-
tainous environment and the ground is rugged. The initial
environment is shown in Fig. 7(a). The initial positions of
three robots (two UAVs and one UGV) are (10, 50, 50),
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(10, 70, 60), (40, 95, 3), respectively. The initial position of
the target is Piyrger = (90, 90, 3). The final results of this task
are shown in Fig. 7 and Table 4.

TABLE 4. The path planning results of the hybrid UAV/UGV system in the
dynamic target experiment.

The length of the path (m)  The time of the robots (s)

UAV1 202.26 13.48
UAV2 181.8 12.12
uGv 63.42 11.88

The simulation results show that all the robots can reach to
the position of the target quickly, and the paths generated by
the proposed approach is optimized. For example, the UAVs
and UGV will change their movement directions and move
toward the target quickly, when they detect the changing of
the target position (see Fig. 7(b) and Fig. 7(c)). The results
of this experiment show that the proposed method can deal
the path planning task efficiently when the target is dynamic,
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FIGURE 7. The real-time path planning of the dynamic target for the hybrid UAV/UGV system: (a) Initial positions of the robots and target,
view=(61°, 26°); (b) At the 18th step, view=(56°, 22°); (c) At the 38th step, view=(51°, 22°); (d) Final trajectories, view=(55°, 26°).

which is very important for the hybrid UAV/UGV system in
real world applications, such as criminal hunting, etc.

D. DYNAMIC TARGET EXPERIMENT UNDER DYNAMIC
ENVIRONMENT

To test the performance of the proposed algorithm in some
complex states, a dynamic target experiment under dynamic
environment is carried out. In this experiment, the initial
positions of the two UAVs and the UGV are the same as
those of the experiment in Section IV-C, except there are two
dynamic obstacles in the environment. The initial positions
of the two dynamic obstacles are (60, 60, 30) and (35, 80, 20)
(see Fig. 8(a)). The two dynamic obstacles will move in the
environment and the final positions of them are (60, 60, 20)
and (50, 80, 20) (see Fig. 8(d)). The final results of this task
are shown in Fig. 8 and Table 5.

The simulation results of this experiment show that the
UAVs and UGV can reach to the target quickly and avoid the
dynamic obstacles efficiently (see Fig. 8(b) and Fig. 8(c)).
The time of the robots in the hybrid system doesn’t increase
obviously than that of the experiment in Section IV-C
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TABLE 5. The path planning results of the hybrid UAV/UGV system in the
dynamic target experiment under dynamic environment.

The length of the path (m)  The time of the robots (s)

UAV1 213.21 14.21
UAV2 190.56 12.75
uGv 63.42 11.88

(see Table 4 and Table 5). The results of this experiment
prove that the proposed method has good performance in the
complex real-time path planning task where the target and the
environment are both dynamic.

V. COMPARISON AMONG THE PROPOSED APPROACH,
THE BASIC DA AND BINN

To demonstrate the effect of the improved dragonfly algo-
rithm (I-DA), a comparison experiment is carried out. In this
experiment, the proposed approach is compared with the
approach based on the basic DA (B-DA), and that based on
the basic bio-inspired neural network (BINN). The task in this
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FIGURE 8. The real-time path planning of the dynamic target experiment under dynamic environment, view=(65°, 26°): (a) Initial
positions of the robots, dynamic obstacles and target; (b) At the 20th step; (c) At the 40th step; (d) Final trajectories.
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FIGURE 9. The real-time path planning of the dynamic target for the hybrid UAV/UGV system, view=(55°, 26°): (a) Final trajectories of the

experiment is the same as that of Section IV-C. The results
of the basic BINN and the basic DA algorithms are shown

in Fig. 9, and the result of the proposed method can be seen
140566

in Fig. 7(d). The final length of the trajectories obtained by
the three methods and the computational time of the three
methods are listed in Table 6.
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TABLE 6. The results of the path planning for the hybrid UAV/UGV system in the dynamic target experiment.

Methods The length of the path (m) The maximum time The computation time  The computation time
UAV1 UAV2 UGv of the robots (s) of the simulation (s) of each step (s)
G-DA 235.32  191.12 72.97 15.69 155.93 0.82
BINN 222.66  189.23 69.64 14.84 126.2 0.70
I-DA 202.26 181.8 63.42 13.48 82.33 0.52

The results in Table 6 show that the performance of the
basic DA is the worst among the three algorithms. The main
reason is that the basic DA algorithm waste a lot of time in
the early random search stage. The performance of the basic
BINN algorithm is better than the basic DA algorithm, but the
computational time of it is longer than the proposed algorithm
(see Fig. 9(a) and Fig. 7(d)). The main reason is that the
basic BINN algorithm need calculate the activities of all the
neurons in the environment. However, the proposed method
can overcome the shortcomings of both the basic DA and
BINN algorithms, which can reduce the computational time
and obtain an optimal path for the hybrid UAV/UGV system.
For each step of the simulation, the time of the proposed
method is just 0.52s, which can satisfy the requirements of
the real-time path planning task.

VI. CONCLUSION

The real-time path planning task in unknown 3D environment
for the hybrid UAV/UGV system is studied in this paper,
and a new path planning method is proposed. This method
transforms the 3D environment into a neuron topology model
by combining the grid method with the bio-inspired neu-
ral network. Then the improved DA is used to realize the
path planning, where the initial search process of the DA is
optimized by establishing a new 3D dynamic moving model
based on the bio-inspired neural network to improve the
search efficiency.

To verify the effectiveness and real-time performance of
the proposed method, various simulation experiments are
carried out. The simulation results show that the improved
DA proposed in this paper can complete the real-time path
planning task for the hybrid UAV/UGV system efficiently
in different states, such as the static and dynamic environ-
ment, static and dynamic target. Furthermore, the comparison
experiments show that the improvements of the proposed
method are effective. In future work, the real world applica-
tions will be further studied to test the real performance of
the proposed approach, and some new methods for the hybrid
UAV/UGYV system will be presented to further improve the
efficiency of the real-time path planing method.
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