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ABSTRACT Conventional speaker verification systems become frail or incompetent while facing attack
from spoofed speech. Presently many anti-spoofing countermeasures have been studied for automatic
speaker verification. It has been known that the salient feature is of a more important role rather than the
selection of classifiers in the current research field of spoofing detection. The effectiveness of constant-Q
transform (CQT) has been demonstrated for anti-spoofing feature analysis in many research literatures
on automatic speaker verification. On the basis of CQT-based information sub-features, i.e. octave-band
principal information (OPI), full-band principal information (FPI), short-term spectral statistics informa-
tion (STSSI) and magnitude-phase energy information (MPEI), three concatenated features are proposed
by investigating their information complementarity in this paper, the first one is constant-Q statistics-
plus-principal information coefficients (CQSPIC) by combining OPI, FPI and STSSI; the second one is
constant-Q energy-plus-principal information coefficients (CQEPIC) by combining OPI, FPI and MPEI
and the third one is constant-Q energy-statistics-principal information coefficients (CESPIC) by combining
OPI, FPI, MPEI and STSSI. In this paper, we set up deep neural network (DNN) classifiers for evaluation
of the proposed features. Experiments show that the proposed features can outperform some commonly
used features meanwhile the proposed systems give better or comparable performance comparing with
state-of-the-art performance on ASVspoof 2019 logical access and physical access corpus.

INDEX TERMS Constant-Q transform, anti-spoofing countermeasure, automatic speaker verification.

I. INTRODUCTION
Over the past decades, speaker verification technology has
gradually matured in commercial products [1], [2]. The
speaker verification is designed to determine whether a voice
is from a claimant speaker. However, when an imposter forges
speech signals to imitate an enrolled speaker, the speaker ver-
ification system becomes vulnerable to the spoofing attack.
A conventional speaker verification system is relatively
insensitive to spoofed speech since the model is trained only
for ordinary speaker classification without considering the
special situation of the spoofing attack. In order to render the
speaker verification system practically viable, an indispens-
able countermeasure must be developed against the spoof-
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ing situation. For this purpose, seeking a feature that is of
discrimination between natural speech and spoofed speech
becomes a critical factor [3]. There are four main challenging
attacks from different sources: synthetic speech [3]–[5], voice
converted speech [6]–[8], replay speech [9]–[11] and imper-
sonation [12]. In this paper, we mainly focus on the first three
attacks.

For synthetic speech detection, the goal of the feature
design is to unveil the artificial characteristics of the speech
that is produced using text-to-speech (TTS) method [3], [4],
[7], [13]. The artificial characteristics is an essential property
of the synthetic speech. On the other hand, long-term average
spectra (LTAS) is a salient feature to represent the physical
characteristics of the speaker, in particular, the vocal tract
resonances [14]. Many features such as linear frequency cep-
stral coefficient (LFCC), linear prediction cepstral coefficient
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(LPCC), perceptual PLPCC, mel frequency cepstral coeffi-
cient (MFCC) and inverted MFCC have been investigated
for the synthetic speech detection [15]. The source of the
synthetic speech is a totally artificial product.

Voice conversion [8] is another way of spoofing attack to
speaker verification system. In speaker verification attacks,
voice conversion is a process which converts or transforms
an impostor’s voice to an enrolled speaker’s one [16]. The
vulnerabilities of traditional speaker verification system may
show up when the vocal tract information of target speaker
is utilized for spoofing purpose. The speech generated by
state-of-the-art voice conversion algorithm is of high-quality
imitative effect to fool both human listener and automatic
system. Because the converted speech originates from gen-
uine speech, traditional detection may not be so effec-
tive to discriminate between converted speech and genuine
speech. Most countermeasures adopts training examples to
capture specific processing artifacts in order to learn the
classification model, which is used to detect similarly treated
speech. The weakness of the countermeasures is the con-
straint of the model to a particular voice conversion algorithm
and is unlikely to be generalised to others. The source of the
voice conversion is semi-artificial.

In contrast to speech synthesis and voice conversion which
requires substantial artificial dedication, replay is just to play-
back a pre-recorded speech sample [17], [18]. The replay
attack is a very low technology spoof and the most easily
available for any impostor without prior speech processing
knowledge. Replay gives a comprehensive risk to automatic
speaker verification technology by using audio playback
device. For replay speech detection, the challenging task is
to discriminate between authentic human speech and replay
speech [19], [20]. Physically replay speech go through both
recording and playback channels, it leads to the channel
distortion of the speech and thus the replay speech may have
compressed spectral component in low and high frequency
regions. The source of the replay is totally pure human
speech.

The spoofing detection includes frontend feature extrac-
tion and backend classification. Countermeasures of spoofing
attack are mainly focused on feature exploration. The classi-
fication for detection are normally built on traditional classi-
fication techniques such as Gaussian mixture model (GMM),
support vector machine (SVM), deep neural network (DNN),
convolution neural network (CNN), and recurrent neural
network (RNN).

There are two clusters of features used for anti-spoofing
detection: deep-learning generated feature and handcrafted
feature. It is believed that the fusion of the handcrafted and
deep-learning generated features can hopefully achieve a
breakthrough improvement. The deep-learning feature per-
forms overwhelming advantage on accuracy improvement,
however it is based on certain training process and only
suitable in the scope of training database circumstances. The
handcrafted feature has demonstrated its efficacy in many
spoofing detection literatures, it can be categorized into three

categories: long-term spectral statistics based feature [21],
phase spectrum based feature [22], [23] and power spectrum
based feature. In [24], [25], two types of long-term spec-
tral statistics, i.e. first and second order statistics over the
entire utterance in each of discrete Fourier transform (DFT)
frequency bin, are concatenated to form a single vector rep-
resentation of an utterance. In [9], [21] six long-term statisti-
cal parameters were introduced, which were obtained from
DFT frequency bin and they are the minimal value, max-
imal value, average value, median, difference between the
maximal and minimal values and standard deviation, respec-
tively. The six statistical parameters can be concatenated
to form a statistical feature. Typical phase spectrum based
features are the cosine normalized phased feature, group
delay, instantaneous frequency, and instantaneous frequency
cosine coefficients [22], [23]. Although the performance of
phase spectrum based feature is worse than traditional power
spectrum based features, both features are of certain com-
plementary information. Therefore, phase spectrum based
features are often combined with power spectrum based
features [26], [27].

There are many variants of the power spectrum based fea-
ture such as scattering cepstral coefficients [28], mel-warped
overlapped block transformation and speech-signal fre-
quency cepstral coefficients [5], and constant-Q cepstral coef-
ficients (CQCC) [29], [30]. CQCC is the most widely used
feature; it was firstly applied in synthetic and voice converted
speech detection [29], then used in replay speech detec-
tion [31]–[33]. CQCC adopts a constant-Q transform (CQT)
for the spectral analysis. The CQT employs geometrically
spaced frequency bins. Founded upon the basis of CQT,
the CQCC has been reported to achieve effective performance
for speech synthesis and voice conversion spoofing detec-
tion [29]. Traditional features such as MFCC ignores the
resolution variability for different frequency regions, it may
bring difficulty to the spoofing detection since the resolution
in different frequency region can be critical in revealing the
information of the spoofing characteristics [31]. In contrast
to the Fourier transform which imposes regular spaced fre-
quency bins and hence leads to variable Q factor, the CQT
ensures a constant Q factor across the entire spectrum. This
trait allows the CQT to provide higher spectral resolution at
lower frequencies while providing a higher temporal reso-
lution at higher frequencies, as a result the distribution of
the CQT time-frequency resolution is consistent with human
hearing characteristics.

The current work is an extension of our previous work [34].
In this paper, based on CQT, we introduce four sub-features
and investigate their information complementarity, so that
three concatenated features are their concatenated form.
In the concatenated features, each sub-feature is designed
to be of complementary information to one another. The
first sub-feature is the short-term spectral statistics infor-
mation (STSSI) that is considered to carry the statis-
tic information at frame level, in which the first- and
second-order statistics over different CQT-spectral bins are
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obtained. The second sub-feature is the octave-band princi-
pal information (OPI), which is to provide the octave prin-
ciple information, where octave segmentation and discrete
cosine transform (DCT) are applied. The third sub-feature
is the full-band principal information (FPI), it formulates the
full-band principle information from the CQT spectrum. And
the fourth sub-feature is the magnitude-phase energy infor-
mation (MPEI). Finally, the four sub-features are combined
to generate their delta and acceleration coefficients as features
for spoofing detection. We refer the feature as constant-Q
statistics-plus-principal information coefficient (CQSPIC) by
combining OPI, FPI and STSSI. In the same way, we refer
another feature as constant-Q energy-plus-principal informa-
tion coefficients (CQEPIC) by combiningOPI, FPI andMPEI
and the third one as constant-Q energy-statistics-principal
information coefficients (CESPIC) by combining OPI, FPI,
MPEI and STSSI. In this paper, we adopt DNN as the means
for the features evaluation.

The remainder of the paper is organized as follows. The
CQT is briefly introduced in Section II. In Section III,
we describe in detail the proposed features. Section IV gives
the experimental results and corresponding analysis, which
is based on ASVspoof 2019 corpus. Finally, Section V con-
cludes the paper.

II. CONSTANT-Q TRANSFORM
CQT is related to the DFT and closely pertinent to the
complex Morlet wavelet transform [35], [36]. Different from
DFT, the ratio of center frequency to bandwidth, Q, is con-
stant. For a discrete time domain signal x(n), its CQT Y(k, l)
is defined by:

Y(k, l) =
l+bNk/2c∑

j=l−bNk/2c

x(j)a∗k (j− l − Nk/2) (1)

where k = 1, 2, . . . ,K is the frequency bin index, a∗k (n)
denotes the complex conjugate of ak(n), and b·c denotes
rounding towards negative infinity. The basic functions ak (n)
are complex-valued time-frequency atoms and are defined by

ak (n) =
1
C
ω(

n
Nk

) exp
[
i(2πn

fk
fs
+ φk )

]
(2)

where fk is the centre frequency of the bin k, fs is the sampling
rate, and ω(t) is a window function (e.g. Hann window). φk is
a phase offset. C is a scaling factor and phase offset. C is a
scaling factor and

C =
bNk/2c∑

m=bNk/2c

ω

(
m+ Nk/2

Nk

)
(3)

Since a bin spacing corresponding to the equal tempera-
ment is desired, the center frequency fk obeys

fk = f12
k−1
B (4)

where f1 is the centre frequency of the lowest-frequency
bin,B is the number of bins of per octave.

From the above introduction, we can get bandwidth δf :

δf = fk+1 − fk

= f12
k
B − f12

k−1
B

= f12
k−1
B

(
2

1
B − 1

)
(5)

So we can obtain:

Q =
fk
δf
=

1

2
1
B − 1

(6)

From formula (6), we can see that Q and B has direct
proportional relation, the more B, the more Q.

Recently, CQCCwas reported to be sensitive to the general
form of spoofing attack so that it becomes an effective spoof-
ing countermeasure [29]. There are five modules in CQCC
extraction. They are CQT, Power Spectrum, Log, Uniform
Resampling and DCT. In particular, the role of each module
is briefed as follows. CQT is used to convert speech from
the time domain to the frequency domain; Power Spectrum
is used to calculate octave power spectrum; Log is used to
obtain octave power spectrum in logarithm scale; Uniform
Resampling is used to convert logarithm octave power spec-
trum into linear logarithm power spectrum; and DCT is used
to extract principal information by attempting to decorrelate
the intermediate coefficients in order to deduce the dimen-
sion. Figure 1 depicts the extraction of the CQCC feature.

FIGURE 1. Diagram of CQCC extraction.

III. CONCATENATED FEATURES
CQT that is initially applied in the music processing employs
geometrically spaced frequency bins. This ensures a constant
Q factor across the entire spectrum and results in a higher
frequency resolution at lower frequencies while providing a
higher temporal resolution at higher frequencies. The prop-
erty of the CQT spectrum distribution coincidentally reflects
the human auditory system. This paper investigates the cou-
pling of the CQT with traditional cepstral analysis. In this
paper, we aim to seek effective features with different com-
plementary characteristics for spoofing detection on the basis
of the advantages of CQT. Consequently, we propose three
concatenated features, i.e. CQSPIC that includes three char-
acteristics: STSSI, OPI and FPI,CQEPIC that includes OPI,
FPI and MPEI, and CESPIC that includes OPI, FPI, MPEI
and STSSI. Next, we will introduce the four sub-features first
and then the three concatenated features.
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A. STSSI
In spoofing detection, we face a situation where there is
insufficient prior knowledge about the characteristics to dis-
tinguish a spoofed speech from genuine speech. It is known
that the two kinds of speech signals have two different sta-
tistical characteristics. It has been reported that first order
statistics is useful to the countermeasures for presentation
attacks as natural speech and synthetic speech differ in terms
of both spectral statistics and time statistics [25]. On the other
hand, the amplitude of the frequency components changes
over time due to the non-stationary property of speech signal.
Furthermore, natural speech and synthetic speech could be
different in terms of such dynamics. Variance of speech spec-
tral amplitude over an utterance for each spectrum is proven
to be beneficial to spoofing detection [25]. Indeed, one of the
successful approaches to classify natural and synthetic speech
signals is the use of dynamic temporal derivative information
of short-term spectrum as opposed to static information [37].
Information about the channel characteristics can be mod-
eled through spectral statistics. Mean of cepstral coefficients
and the second order spectral statistics have been shown to
make the speaker verification system more robust to channel
variability, while channel information is desirable for the
detection of spoofing attacks [24]. It has been well known
that channel information is important for speech synthesis,
voice conversion and replay attacks.

In [24], [38], long-term spectral statistics (LTSS) is
reported to be effective for spoofing detection in speaker
verification system. It is believed that the mean and variance
of the spectral amplitude distributed over either a long-term
period of certain spectrum or a range of frequencies at a time
frame can provide good traits to distinguish the two different
kinds of speech signals. However, LTSS is not suitable for
small training database due to insufficient feature data gener-
ated. In this subsection, on the basis of CQT, we introduce a
short-term statistics at frame level for the purpose of solving
the small training data issue and build complementary char-
acteristics [34].

FIGURE 2. Diagram of short-term statistics information extraction.

As mentioned above, there are two short-term statistics,
one is first-order statistics (mean) and the other is second-
order statistics (variance). There are four modules in STSSI
extraction: CQT, magnitude spectrum, short-term statistics
and log. The module of CQT is also used to convert speech
from the time domain to the frequency domain, magnitude
spectrum module is used to calculate magnitude spectrum,

short-term statistics module is to estimate STSSI from mag-
nitude spectrum, and log module is used to obtain mean and
variance in logarithmic scale. Figure 2 shows a block diagram
of short-term statistics information extraction. To estimate
STSSI cross frequency bins at frame-level, one is to estimate
the statistics over full frequency-band, the other is to com-
pute the statistics over each individual subband such as the
octave-band. To generalize the statistics formula, we give the
subband statistics as follows. Supposing |Y(k, l)| is a frame
magnitude spectrum of Y(k, l), Themean of the CQT spectral
amplitude over subband, ms, is defined by

ms(l) =
1

Ks − Ks−1

Ks∑
k=Ks−1+1

|Y(k, l)| s = 1, ...., S (7)

And the variance of the CQT spectrum amplitude over
sub-band is defined by

σ 2
s
(l) =

1
Ks − Ks−1

Ks∑
k=Ks−1+1

(|Y(k, l)| − ms(l))2 (8)

where σ 2
s
(l) represents variance of |Y(k, l)|, S denotes the

number of subbands, K0, . . . ,KS is the frequency index of
subbands where K0 = 0 and KS = K . Thus, the full-band
STSSI becomes the special case of the subband STSSI when
S = 1. In addition, l represents the time frame index.

FIGURE 3. Difference between how to estimate LTSS and STSSI from
magnitude spectrum.

Figure 3 shows the difference between LTSS and STSSI.
From Figure. 3, we can see the difference between LTSS
and STSSI. LTSS is obtained cross different frames while
STSSI is obtained cross frequency bins. So we can say that
LTSS has frequency statistical characteristics while STSSI
has temporary-spectral statistical characteristics. Our exper-
iment shows the octave-band statistics of STSSI is not com-
petent with full-band STSSI statistics for spoofing detection.
It may be because that there are insufficient frequency bins
to approximate the statistics in an octave-band. Subsequently,
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in this paper, we only focus on reporting the performancewith
full-band STSSI statistics.

B. OPI
An octave is the doubling or halving of a certain frequency.
The speech frequency range can be separated into unequal
segments called octaves. A band is defined to be an octave
in width when the upper band frequency is twice the lower
band frequency. In contrast to DFTwhere frequency region of
each frequency bin is equal, the frequency region of different
frequency bin in CQT is different. The centre frequency bin of
CQT complies with a nonlinear distribution with (4), we have

fnB+k = 2
nB+k−1

B f1 = 2nfk = 2f(n−1)B+k n = 1, . . . ,N (9)

where N denotes the number of octave-bands. So we have
K = N ∗ B. From (9) we can see that fB+1 = 2f1,
f2B+1 = 2fB+1, . . . , fNB+1 = 2f(N−1)B+1. Therefore, B
frequency bins (i.e. f1, f2,. . . , fB) between f1 and fB+1 form the
first octave band; B frequency bins between fB+1 and f2B+1
(i.e. fB+1, fB+2, . . . , f2B) form the second octave band;. . . , and
B frequency bins between (i.e. f(N−1)B+1, f(N−1)B+2, . . . , fNB)
between f(N−1)B+1 and fNB+1 form theN−th octave subband.
As a result, there are B frequency bins in each of octave-band
with CQT. The higher an octave-band is, the larger frequency
region the corresponding frequency bin occupies.
In this subsection, on the basis of CQT, we introduce

OPI [34]. In OPI, octave segmentation [39] is applied, and
it is followed by a DCT to generate principal information.
In particular, OPI includes five modules: CQT, Power spec-
trum, Octave segmentation, Log and DCT. The p-th principal
coefficients of the n-th octave-band is given using discrete
cosine transform as follows:

Xnp(l) =
nB∑

k=(n−1)B+1

log
(
|Y(k, l)|2

)
cos

[
π

B

(
k +

1
2

)
p
]

p = 1, 2, . . . ,P (10)

P denotes the number of principal coefficients correspond-
ing to an octave-band, and P ≤ B. Finally, the X1{1:P},
X2{1:P}, . . . ,Xn{1:P}, . . . ,XN {1:P} are concatenated to form a
N ∗B dimension of OPI vector at the l − th frame. Figure 4
depicts the procedure of the OPI. In our experiment, we set B
to be 96, P to be 12, and N to be 9.

C. FPI
In this subsection, we introduce FPI as complementary char-
acteristics of the OPI [34]. In CQCC, the frequency bin of
CQT domain is resampled by converting geometric space to
linear space. Different from the CQCC with linearized log
power spectrum resampling, the FPI directly applies DCT on
logarithm power spectrum in CQT domain so that the human
auditory property can be preserved and thus considered into
the feature. In CQT, the property of the higher frequency
resolution in low frequency and higher temporal resolution
in higher frequency causes the CQT transform domain has
some similar trait with human auditory system. MFCC is
a good example to adopt the human auditory property by

FIGURE 4. Procedure of the OPI extraction.

reorganizing the linear frequency bin into the Mel-frequency
domain. In this paper, we consider to directly use the CQT
geometrical distribution by applying DCT transformation in
the CQT geometrically frequency domain. So that we intro-
duce the FPI. For the FPI feature extraction, there are four
modules including CQT, Power Spectrum, Log and DCT.
In the FPI, the r-th principal coefficients are given via DCT
as follows:

Zr (l) =
K∑
k=1

log
(
|(Y (k, l)|2

)
cos

[
π

K
(k +

1
2
)
]

(11)

r = 1, 2, . . . ,R where R is the number of principal
coefficients.

Figure. 5 shows the block diagrams of the FPI procedure.

FIGURE 5. Block diagram of FPI extraction.

D. MPEI
In our previous study [40], the idea of magnitude and phase
energy was proposed. In this study, we introduce how to
extract MPEI from magnitude and phase spectrum in detail
and give its calculation equation step by step. Figure 6 shows
how to extract MPEI from magnitude and phase spectrum.
From Figure 6, it can be seen that there are four modules
in MPEI extraction, which are CQT, magnitude and phase
spectrum, magnitude-phase energy and log Magnitude and
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FIGURE 6. Framework of MPEI extraction.

phase spectrum can be obtained at the base of CQT, then
magnitude and phase energy can be calculated, finally, MPEI
can be obtained by log operation.

Next, we take Y(k, l) mentioned above as an example to
show how to calculate MPEI, in which k and l represent
frequency bin and time frame index, respectively.

Further, Y(k, l) can be written as band is given using
discrete cosine transform as follows:

Y(k, l) = |Y(k, l)| ejθ (k,l) (12)

Suppose EM (l) stands for magnitude energy at frame l,
we can obtain

EM (l) =

∑K
k=1 |Y(k, l)|

2

K
(13)

Suppose EP(l) stands for magnitude energy at frame l,
we can obtain

EP(l) =

∑K
k=1

∣∣θ ′(k, l)∣∣2
K

(14)

where

θ ′(k, l) = princ(θ (k, l)) (15)

where princ (·) represents the principal value operator, map-
ping the phase θ (k, l) onto −π ≤ θ(k, l) ≤ π .
On the basis of EM (l) and EP(l), supposing MPEI (l) is

MPEI at the frame l, we can obtain

MPEI (l) = [log(EM (l)) log(EP(l))] (16)

E. CONCATENATION
The proposed CQSPIC is formed by combining the three
sub-features: STSSI, OPI and FPI. OPI and FPI are comple-
mentary because they represent octave spectral information
and full-band spectral information respectively. STSSI rep-
resents statistics information, it is of substantial complemen-
tarity with both OPI and FPI. The purpose to combining the
sub-features is to strengthen the genuine spoofing discrimi-
native ability for the spoofing detection.

Firstly, the static coefficient of the STSSI, OPI and FPI
are concatenated; then delta and double-delta of the concate-
nated coefficients are applied to produce the final CQSPIC.
Figure 7 illustrates the block diagram of CQSPIC extraction.

In the same way, we can obtain another two concate-
nated features, i.e. CQEPIC and CESPIC, which are shown
in Figure 8 and Figure 9, respectively.

FIGURE 7. Block diagram of the extraction of the proposed CQSPIC.

FIGURE 8. Block diagram of the extraction of the proposed CQEPIC.

FIGURE 9. Block diagram of the extraction of the proposed CESPIC.

From Figure 8, it can be seen that CQEPIC is formed
by combining the three sub-features: MPEI, OPI and FPI.
We believe that MPEI is of substantial complementarity with
both OPI and FPI. The aim to combine MPEI, OPI and FPI is
to enlarge the genuine-spoofing discriminative ability for the
spoofing detection.

Different from CQSPIC and CQEPIC, it can be observed
that CESPIC is formed by combining the four sub-features:
MPEI, STSSIvar, OPI and FPI from Figure 9. Note that only
STSSIvar is used here. The reason is that STSSImean has
the same information with magnitude energy information
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in MPEI. In which, MPEI and STSSIvar can be of substantial
complementarity with both OPI and FPI. The objective to
combining MPEI, STSSIvar, OPI and FPI is also to enhance
the genuine-spoofing discriminative ability for the spoofing
detection.

F. CLASSIFIER IN SPOOFING DETECTION
The ultimate purpose of the spoofing detection is to distin-
guish between spoofed speech and genuine speech. Given a
speech signal, x = [x(0), . . . , x(n), . . . , x(N )], the task of
spoofing detection is to determine whether x is a human natu-
ral speech or synthetic/converted/replayed speech. Utterance
based spoofing detection actually becomes a classification
problem, where two hypothesis H0 and H1 is defined below

H0: x is a human natural speech;
H1: x is a synthetic/converted/replayed speech.
The log-likelihood ratio (LLR) generated by the difference

of log-likelihoods of input speech given trained genuine (H0)
and spoofing (H1) are used as score of spoofing detection.

LLR = log{p(x|H0)} − log{p(x|H1)} (17)

This is done by selecting effective feature in frontend
processing and the reliable classifier in backend process-
ing. To verify the effectiveness of the anti-spoofing features,
we have to investigate the feature performance on a reli-
able and effective backend classifier. Presently GMM, SVM,
DNN and RNN are popularly used for the spoofing detection.

DNN has been reported to outperform GMM in many
classification applications [41], [42]. In this paper, we use
DNN to evaluate the performance of the features on which
we study for spoofing detection. Figure 10 shows the block
diagram of our platform based on the proposed features and
DNN classifier to discriminate between genuine and spoofed
speech.

We train the DNN using labelled speech and use the trained
DNN to discriminate an input utterance between natural and
spoofed speech. Figure 10 briefs the CQSPIC spoofing detec-
tion system. In particular, the input utterance goes through
CQSPIC feature extraction, delta or acceleration usage fol-
lowed by the splice application where eleven spliced frames
centred by the current concatenated to form the input feature,
and then DNN classifier is applied, so the posterior probabil-
ity of the input frame is computed. The final detection result
is obtained by averaging the posterior. probabilities over all
of the frames in an utterance. During training, the output is
compared with the target value, and back-propagation algo-
rithm is applied for DNN parameter update. For detection,
according to the two output values, the final result (natural or
spoofed) can be obtained. The performance of DNN depends
on particular feature.

IV. PERFORMANCE EVALUATION
In this paper, the experiments for evaluating the anti-spoofing
performance of the proposed features are carried out on
ASVspoof 2019 logical access and physical access cor-
pus [43]. Tandem detection cost function (t-DCF) [44] and

FIGURE 10. Our spoofing detection system based on the proposed
features and DNN classification.

equal error rate (EER) are used as the primary and secondary
metric to measure the performance.

In CQT computation, all configuration parameters are set
to be the same as those in [29]. In the evaluation, we trained
DNN models with stochastic gradient descent (SGD) as
spoofing detection platform using computational network
toolkit (CNTK) [45]. In particular, different DNNmodels are
trained corresponding to different features such as CQSPIC,
CQEPIC and CESPIC. In this evaluation, the input layer of
the DNN is the feature coefficients of eleven spliced frames
centred by the current frame. The feature coefficients of
each frame can be the static feature coefficient, or its delta,
or acceleration (i.e. double delta), or their combining feature.
In this paper, we use S, D and A to represent static, delta
and acceleration coefficients respectively. In our experiments,
for OPI, we set P = 12; N = 9, as a result, there are
108 dimensions of static OPI. For FPI, R is set to 30, it means
the FPI has 30 dimensions of its principal vector. In addi-
tion, the dimension of static STSSI and MPEI is set to 2,
respectively. It means that the static dimension of CQSPIC,
CQEPIC and CESPIC is 140, 140 and 141, respectively.

A. SYNTHETIC SPEECH DETECTION
ASVspoof 2019 logical access corpus contains speech
synthesis and voice conversion attacks produced through
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logical access. It is constituted by three subsets: training,
development and evaluation sets, Table 1 gives the details for
the three subsets.

TABLE 1. The details of the three subsets in ASVspoof 2019 logical Access
corpus.

1) FEATURE EVALUATION UNDER CONSISTENT PLATFORM
We use 25,380 utterances from the training set of ASVspoof
2019 logical access database to train DNN models, which
have two hidden layers with 1024 nodes per layer and one
output layer with 2 nodes indicating genuine and spoofed
speech, which has shown they can give best performance on
the development set comparison with other networks with
different layer number and different nodes.

Table 2 gives the experimental results on ASVspoof 2019
logical access development set using different coefficient
configurations of CQSPIC, CQEPIC and CESPIC in terms of
t-DCF and EER. FromTable 2, it can be seen that: (1) In terms
of t-DCF, CQSPIC-SD an CQSPIC-SDA can give the best
performance on the development set for CQSPIC. (2) For
CQEPIC, coefficient configurations A, SD and SDA can give
the best performance on the development set. (3) CESPIC-SD
gives the best performance on the development set in terms
of t-DCF for CESPIC.

TABLE 2. Experimental results on ASVspoof 2019 logical Access
development set usinig differentcoefficient configurations of CQSPIC,
CQEPIC and CESPIC in terms of T-DCF and EER (%).

However, the coefficient configuration that can obtain the
best results on the development set can’t obtain the best
results on the evaluation set. We adopt ASVspoof 2019 log-
ical access evaluation set for a further comparison. Table 3
shows the experimental result (t-DCF and EER) on
ASVspoof 2019 logical access evaluation set using different
coefficient configuration of CQSPIC, CQEPIC and CESPIC.
It can be seen that the coefficient configuration DA can
give the best performance on the evaluation set for the three
proposed features in terms of t-DCF and EER.

2) PERFORMANCE COMPARISON AMONG DIFFERENT
TYPES OF DISCRIMINATIVE INFORMATION
Table 4 shows the experimental results comparison among
the proposed features and different types of discriminative

TABLE 3. Experimental results on ASVspoof 2019 logical Access
evaluation set usinig differentcoefficient configurations of CQSPIC,
CQEPIC and CESPIC in terms of T-DCF and EER (%).

TABLE 4. Experimental results on ASVspoof 2019 logical Access
evaluation set among the proposed features and different types of
discriminative information.

information on ASVspoof 2019 logical access evaluation set.
In which, FPI-DA, OPI-DA and (FPI+OPI)-DA have their
respective DNN classifiers and the training method is the
same as mentioned above. From Table 4, several conclusions
can be obtained: (1) In terms of t-DCF, the performance of
FPI+OPI is better thanOPI in terms of t-DCF, though FPI and
FPI+OPI have the equal t-DCF, FPI+OPI give a little better
performance than FPI in term of EER. From the performance
comparison between FPI+OPI and OPI, and FPI+OPI and
PFI, we can know that OPI and FPI can be complementary
with each other. (2) The performance of CQSPIC, CQEPIC
and CESPIC is better than FPI+OPI in terms of t-DCF, which
means that STSSI, MPEI and MPEI+STSSIvar is helpful for
OPI+FPI to detect spoofing. It also confirms that our pro-
posed idea is correct. (3) CESPIC performs a little better than
CQSPIC and CQEPIC, the reason is that MPEIvar is useful to
capture the artifacts in voice converted speech and synthetic
speech. It can be concluded that the four sub-features have
very reasonable complementarity each other from the exper-
imental results

TABLE 5. Experimental results comparison between DNN and GMM for
the proposed features on ASVspoof 2019 logical Access evaluation set.

3) COMPARISON WITH GAUSSIAN MIXTURE MODEL
Table 5 shows the experimental results comparison between
DNN andGMM for the proposed features on ASVspoof 2019
logical access evaluation set. From Table 5, it can be found
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that DNN can give much better performance than GMM on
ASVspoof 2019 logical access evaluation set for CQSPIC,
CQEPIC and CESPIC. Additionally, it is interesting to find
that CQSPIC-DA can perform slightly better than CQEPIC
and CESPIC under the model of GMM unlike that CQESPIC
can give the best performance under the model of DNN.

4) COMPARISON WITH SOME COMMONLY USED
HANDCRAFTED FEATURES
Table 6 gives the experimental results comparison among
the proposed features and some commonly used handcrafted
features on ASVspoof 2019 logical access evaluation set.
In which, every feature has its own DNN classifier. From
the above experimental results, we can see that the pro-
posed CQSPIC, CQEPIC and CESPIC greatly outperform the
conventional features. The reason may be that the proposed
features have several types of discriminative information for
spoofing detection.

TABLE 6. Experimental results comparison among the proposed features
and some commonly used features on ASVspoof 2019 logical Access
evaluation set.

5) COMPARISON WITH SOME KNOWN SYSTEMS
Table 7 gives the experimental results comparison among
the proposed systems and some known single systems on
ASVspoof 2019 logical access evaluation set. In which,
MFCC-ResNet, Spec-ResNet and CQCC-ResNet represent
ResNet-based end-to-end systems with MFCC, log power
spectrum based on DFT and CQCC as the inputs [46], respec-
tively. Dfea_LPS [47] represents deep feature that is extracted
from a trained deep feature extractor with log power spectrum
based on DFT as input.

From Table 7, it can be found that the proposed systems
perform better than the selected systems. It means that our
systems based on proposed features have more discriminative
information to capture the artifacts in the evaluation set of
ASVspoof 2019 logical access. This also can confirm that the
proposed concatenated features are correct, which can work
in the field of synthetic speech detection.

B. REPLAY SPEECH DETECTION
The trait of the replay speech is of the fluctuations of micro-
phone signal caused by transients or changes due to mul-
tiple analogue-to-digital conversion and digital-to-analogue
conversion. The multiple conversions between analogue and
digital signals lead to an apparent artifacts of this kind of

TABLE 7. Experimental results comparison among the proposed systems
and some known systems on ASVspoof 2019 logical Access evaluation set.

spoofed speech. On the other hand, the multiple channel
distortions due to the replaying process causes the frequency
distribution different from the genuine speech signal.

In this subsection, CQSPIC, CQEPIC and CESPIC are
evaluated on ASVspoof 2019 physical access [40]. Table 8
summarizes ASVspoof 2019 physical access. In which,
the corpus also has three subsets: train, development and eval-
uation sets. According to the training rules aforementioned,
a series of classifiers based on DNN are trained, then the
trained classifiers are used to evaluate the proposed features
on the development set. Unlike the classifiers trained for
synthetic and voice converted speech, we found that 4 hidden
layers with the node number 1024 can give the best perfor-
mance, the reason may be that there are 54,000 utterances
in ASVspoof 2019 physical access training set while there
are only 25,380 utterances in ASVspoof 2019 logical access
training set.

TABLE 8. The details of the three subsets in ASVspoof 2019 physical
Access corpus.

1) FEATURES PERFORMANCE EVALUATION WITH
ASVspoof 2019 PHYSICAL ACCESS
Table 9 gives the experimental results (t-DCF and EER) on
ASVspoof 2019 physical access development set using differ-
ent feature combinations of CQSPIC, CQEPIC and CESPIC.
From Table 9, it can be seen that CQSPIC-SD, CQEPIC-S
and CESPIC-S can give the best performance in their own
coefficient configurations in terms of t-DCF or EER.

Table 10 shows the experimental results onASVspoof 2019
physical access evaluation set using different coefficient
configuration of CQSPIC, CQEPIC and CESPIC in terms
of t-DCF and EER. From the experimental results, we can
see that the proposed CQSPIC-SD, CQEPIC-SD and
CESPIC-SD greatly outperforms other coefficient config-
urations of CQSPIC, CQEPIC and CESPIC, respectively.
Comparison with Table 9, it can be found that CQEPIC
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TABLE 9. Experimental results on ASVspoof 2019 physical Access
development set usinig differentcoefficient configurations of CQSPIC,
CQEPIC and CESPIC in terms of T-DCF and EER (%).

TABLE 10. Experimental results on ASVspoof 2019 physical Access
evaluation set usinig differentcoefficient configurations of CQSPIC,
CQEPIC and CESPIC in terms of t-DCF and EER (%).

and CESPIC have different coefficient configurations on the
development set and evaluation set.

TABLE 11. Experimental results on ASVspoof 2019 physical Access
evaluation set among the proposed features and different types of
discriminative information.

2) PERFORMANCE COMPARISON AMONG DIFFERENT
TYPES OF DISCRIMINATIVE INFORMATION
Table 11 gives the experimental results comparison among
the proposed features and different types of discriminative
information on ASVspoof 2019 physical access evaluation
set. From XI, it can be observed that FPI performs better
than OPI; the combination of the two, OPI+FPI, outper-
forms over individual OPI and FPI separately, this shows
the positive complementarity of the two sub-features. It also
can be seen that OPI+FPI+STSSI gives better performance
thanOPI+FPI, andOPI+FPI+MPEI is better thanOPI+FPI,
and OPI+FPI+MPEI is also better than OPI+FPI, it proves
the statement that STSSI and MPEI is useful to discriminate
replay speech and genuine speech. However, on the basis of
OPI+FPI, the joint MPEI and STSSIvar is worse than MPEI
and STSSI on replay spoofing detection. The reason may
be that SISSIvar has conflict with MPEI for replay speech
detection.

3) COMPARISON WITH GAUSSIAN MIXTURE MODEL
Table 12 shows the experimental results comparison
between DNN and GMM for the proposed features and
on ASVspoof 2019 physical access evaluation set. From
Table 12, it can be found that GMM performs better than
DNN on ASVspoof 2019 physical access evaluation set
for CQSPIC, CQEPIC and CESPIC in terms of t-DCF and
EER. In addition, the same as CQEPIC performs better than
CQSPIC and CESPIC under the model of DNN, CQEPIC
also gives the best performance among the three proposed
features under the model of GMM.

TABLE 12. Experimental results comparison between DNN and GMM for
the proposed features on ASVspoof 2019 physical Access evaluation set.

4) COMPARISON WITH SOME COMMONLY USED
HANDCRAFTED FEATURES
Table 13 gives the experimental results comparison among
the proposed features and some commonly used handcrafted
features on ASVspoof 2019 physical access evaluation set.
In which, every feature has its own DNN classifier.

TABLE 13. Experimental results comparison among the proposed
features and some commonly used features on ASVspoof 2019 physical
Access evaluation set.

From the experimental results in Table 13, we can see
that the proposed CQSPIC, CQEPIC and CESPIC greatly
outperform the conventional handcrafted features MFCC
and CQCC. Additionally, they also give better performance
than eCQCC. The reason may be that the proposed features
have several types of discriminative information for spoofing
detection.

5) COMPARISON WITH SOME KNOWN SYSTEMS
Table 14 shows the experimental results comparison among
the proposed systems and some known single systems on
ASVspoof 2019 physical access evaluation set. In which,
ZTWCC represents zero time windowing cepstral coeffi-
cients [48], LFCC-LCNN and DCT-LCNN represent light
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TABLE 14. Experimental results comparison among the proposed
systems and some known systems on ASVspoof 2019 physical Access
evaluation set.

CNN-based end-to-end systems with LFCC and DCT spec-
trum as the inputs [49], respectively; in the same way,
spec-ResNet and CQCC-ResNet represent ResNet-based
end-to-end systems with the inputs of log power spectrum
based on DFT and CQCC [46], respectively.

From Table 14, it can be found that our systems outperform
the systems based on handcrafted features such as CQCC,
LFCC and ZTWCC. However, our system are a little worse
than LFCC-LCNN, Spe-ResNet and CQCC-ResNet. It means
that our systems have more discriminative information in
replay speech detection. In addition, comparison Table 7 and
Table 12, it can be found that our systems perform a little
worse than the end-to-end systems such as Spe-ResNet and
CQCC-ResNet in replay speech detection while our systems
can give better performance in synthetic speech detection.

V. CONCLUSION
On the basis of the advantages of CQT, we have proposed
three concatenated features, CQSPIC, CQEPIC and CESPIC,
by extracting information from short-term spectral statistics,
magnitude and phase energy, octave-band and full-band for
spoofing detection in speaker verification system. The com-
plementarity of the sub-features has been investigated for
the different types of spoofing attacks: synthetic speech and
replay speech. It is conclusive that the combination of OPI,
FPI and STSSI (MPEI, MPEI plus STSSIvar) is effective and
useful for spoofing detection. The experimental results show
that the proposed concatenated features outperform some
commonly used handcrafted features in spoofing detection
meanwhile the proposed systems can give comparable per-
formance with some known systems.
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