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ABSTRACT As a key equipment of manufacturing, the intelligence of CNC machine tools affects the
development and progress of intelligent manufacturing. At the same time, the rapid development of various
technologies in recent years, such as cloud computing and edge computing, has brought new methods to
improve the intelligence of CNC machine tools. This article proposes a new architecture of intelligent
machine tools based on edge-cloud collaboration (IMT-ECC). The hierarchical structure of IMT-ECC is
introduced and consists of three layers, data acquisition, network communication and edge-cloud collabo-
ration. Combining the real-time characteristic of edge computing and complex problem processing ability
of cloud computing, the edge-cloud collaboration is designed to improve the intelligence of machine tools
through data collaboration, information collaboration and knowledge collaboration. Finally, the feasibility
of the new intelligent machine tool architecture based on edge-cloud collaboration is verified by experiments
with gantry heavy-duty CNC machine tools.

INDEX TERMS Machine tool 4.0, edge-cloud collaboration, edge computing, cloud computing, intelligent
machine tool.

I. INTRODUCTION
With the continuous growth of national economy and the
continuous innovation of science and technology, the
development of machinery manufacturing industry has
achieved a qualitative leap. As the ‘‘master machine’’ in the
industry, CNCmachine tools have been receiving widespread
attention. At the same time, ‘‘Industry 4.0’’, ‘‘Future
Factory’’ and ‘‘Made in China 2025’’ have deeply combined
information technology with manufacturing [1]. They make
CNC machine tools more intelligent, interconnected and
autonomous [2].

Most CNC machine tools in the industry have obvious
disadvantages in terms of status perception, information inter-
action, data processing and real-time feedback [3]. All these
characteristics are required by the intelligent manufactur-
ing industry. Therefore, Machine Tool 4.0 proposes a new
definition of machine tools-intelligent machine tools, which
are more intelligent, well connected, more adaptive and
more autonomous [4]. Compared with CNC machine tools,
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intelligent machine tools can make judgments and decisions
on the manufacturing process. In intelligent machine tools,
the data during processing will be collected and aggregated.
Then the data is analyzed and processed to realize real-time
feedback control of machine tools [5]. The processing of
data relies on information technology. At the same time,
real-time feedback is used to realize the automatic control
and autonomous adjustment of machine tools. It can more
effectively control the processing quality of machine tool
and achieve emergency response during processing. In order
to realize the intelligence and autonomy of the intelligent
machine tools, reliable and fast communication is necessary.
It can be used to realize effective and correct information
interaction with machine tools. At the same time, real-time
feedback control puts forward higher requirements for data
processing and response efficiency.

During the manufacturing process, the machine tool
accumulates a large amount of data. The data has an important
impact on dynamically understanding the status of machine
tool and improving the productivity of machine tool [5].
Techniques such as edge computing and cloud computing
are indispensable for processing, modeling, and feedback of
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machine data. Edge computing is a system that is distributed
near objects or data sources. It has the functions of commu-
nication, storage, and computing processing. It can provide
key technologies such as fast connection, real-time services,
data processing, security protection and privacy encryption.
Edge computing can be offloaded model algorithms, decision
information and related data from the cloud. Edge computing
is widely used due to its low latency and real-time access
[6]. It can also relieve flow pressure. However, computing
and storage resources for edge computing are insufficient.
When performing complex calculations, edge computing will
increase the delay instead. Cloud computing can use storage
resources to save large amounts of raw data, while using
computing resources for big data processing [5]. Cloud com-
puting is rich in computing and storage resources. It is easy to
perform complex operations, such as optimization of models,
algorithmic iterations, and other relatively flexible deploy-
ment methods. But with the Internet of Things, countless
terminal devices are connected to the network, and data is
exploding. A wide range of data sources, large amounts
of data, and rapid data changes bring huge challenges
to cloud computing. They make the data hugely delayed
from generation to decision to execution through the cloud.
Therefore, edge computing or cloud computing can’t meet the
requirements of intelligent machine tools respectively.

Since cloud computing has abundant computing and
storage resources, it can perform complex big data process-
ing and analysis. But its real-time performance needs to be
strengthened. At the same time, edge computing is close to
the data source. Its real-time performance is more advanta-
geous, and simple data processing can be performed. In order
to realize self-awareness, self-comparison, self-prediction
and self-configuration of machine tools [7], this article pro-
poses a new architecture of intelligent machine tools based
on edge-cloud collaboration (IMT-ECC). It can improve the
deficiencies of CNC machine tools in status perception,
information interaction, data processing and real-time feed-
back. The new architecture takes advantage of the real-time
response characteristics of edge computing, and timely feeds
back decisions to the machine tool. Therefore, the machine
tool can dynamically adjust processing parameters, improve
production efficiency and production quality, and enhance
intelligence. Finally, the implementation of IMT-ECC on
a gantry heavy CNC machine is introduced to verify the
proposed method in the article.

The rest structure of this article is organized as follows:
Section 2 introduces related work about the intelligent
research of CNC machine tools and the application scenar-
ios of edge-cloud collaboration; Section 3 introduces the
architecture of intelligent machine tool based on edge-cloud
collaboration and related functional modules, which pro-
vides methodological guidance for the design of IMT-ECC;
Section 4 details the main connotations of the edge-cloud col-
laboration technology. Section 5 verified the rationality and
feasibility of the proposed architecture through experiments;
Conclusions are shown at the end of the paper.

II. RELATED WORKS
A. INTELLIGENT MACHINE TOOLS
With the development of information technology, the
intelligence of CNC machine tools has been continuously
improved. In Industry 4.0, researchers have different under-
standings of intelligent machine tools in their research direc-
tions. Liu et al. [1] considered that Machine Tool 4.0 gave a
new definition of machine tools. They were more intelligent,
well connected, more accessible and adaptable. Besides, they
had a higher degree of autonomy. Chen et al. [8] believed
that intelligent machine tools included a variety of advanced
manufacturing technologies. They contained sensor systems
and communication networks. It is capable of trainingmodels
and algorithms, and can make autonomous decisions and
controls. Intelligent machine tools have the characteristics
of high precision, high efficiency, low consumption, high
reliability and good safety in the manufacturing process.
At the same time, intelligent machine tools have a good
ability to learn, accumulate and utilize knowledge. ‘‘Made in
China 2025’’ also proposes to organize the development of
high-end CNC machine tools with deep perception, intel-
ligent decision-making and automatic execution [1], [9].
Thus, intelligent machine tools can realize automatic con-
trol of production lines, automatic scheduling of workpieces,
automatic monitoring and automatic detection of workpiece
quality. It can also realize online wear monitoring of tools,
automatic compensation and automatic alarming. Therefore,
intelligent machine tools can be self-monitoring, and analyze
information related to processing status of machine tools and
environment. Then they can realize self-decision and
self-control.

B. TECHNOLOGIES FOR INTELLIGENT MACHINE TOOLS
In order to make machine tools more flexible and adapt-
able, researchers have also made great efforts to enhance
connectivity of machine tools and increase digitization and
intelligence of machine tools [4]. Zhao et al. [10] estab-
lished a digital dual-drive cyber-physical system. They also
proposed a machine tool automatic control method through
context-aware micro-point punching. Kim et al. [11] pre-
sented a knowledge evolution system based on agent in
the machine-to-machine environment. The system automat-
ically collects data and generates knowledge during process-
ing through perception, communication and decision agents.
Then it makes decisions based on knowledge. Liu et al.
[12] improved the intelligence of machine tools by imple-
menting the comprehensive thermal error compensation of
the machine tool system. The simulation data was used to
analyze the impact on physics-based predictive model under
the influence of screw discretization and single or multiple
heat sources. Zhou et al. [3] used technologies such as CPS
and fog computing to enhance the autonomy and collabora-
tion of machine tools. In order to make the current machine
tools more intelligent and autonomous, Zhang et al. [7] pre-
sented a data-driven architecture with additional CPS, which
was used to intelligently control CNC machine tools during
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the manufacturing process. The architecture is designed and
achieved through multiple layers of CPS to collect data from
sensor networks. Then optimal control rules are obtained by
analyzing the data. Xu [13] established a CPS model of CNC
machine tools by analyzing a large amount of data generated
during the work process. This model can be used to optimize
the process of the machine.

C. APPLICATION OF EDGE-CLOUD COLLABORATION
Edge computing and cloud computing work together in
different scenarios. Edge-cloud collaboration can reduce
latency, increase scalability, increase access to information,
and make business development more agile. Li et al. [14]
thought the management of traditional resources was more
flexible and sufficient to predict the demand for resources.
However, the neglect of cloud resource billing had made the
cost of leasing in the cloud too high. So, they proposed an
adaptive resource allocation algorithm to minimize costs in
edge-cloud systems. Wang et al. [15] presented a framework
based on tensor with edge computing and cloud computing. In
this framework, cloud computing was used for a large amount
of data processing to gain decision information such as rule
sets. Edge computing was applied to process small local
data with real-time feedback. Zamora-lzquierdo et al. [16]
proposed a platform using edge-cloud collaboration for the
management of precision agriculture. The platform met the
needs of soilless cultivation at full cycle room temperature.
Tang et al. [17] used the edge-cloud system to realize the
dynamic allocation of resources. They used the best algo-
rithm to schedule data from the cloud to the edge server,
and then matched the resources of the edge tasks. Li et al.
[18] used the edge-cloud system to implement a copy man-
agement strategy with time and resource constraints, which
saved resources and had fault tolerance. Shao et al. [19] used
edge-cloud collaboration to process data-intensive IoT work-
flows. Based on the edge-cloud collaboration, Yang et al.
[20] proposed an evolutionary architecture of the intelli-
gent cloud manufacturing system, using layered gateways for
real-time response. The ‘‘Industrial Internet Platform White
Paper (2017)’’ pointed out that high-frequency data acqui-
sition in industrial production brought huge pressure. The
pressure was mainly reflected in the performance and cost
of network transmission, platform storage and computing
processing. The edge-cloud collaboration realized the syner-
gistic linkage between edge computing and cloud computing,
and jointly released the data value. The cloud has abundant
computing and storage resources. Models can be established,
analyzed and optimized in the cloud. The edge is close to
machine tools. The data can be directly processed and fed
back at the edge, which improves the response speed of
machine tools. The collaboration of cloud computing and
edge computing enables machine tools to self-perceive and
self-process, self-decision and self-control. At the same time,
edge computing can respond to low-latency applications in
a timely manner. The edge-cloud collaboration improves the
intelligence of machine tools.

III. ARCHITECTURE OF INTELLIGENT MACHINE TOOLS
BASED ON EDGE-CLOUD COLLABORATION
The overall architecture of machine tools is shown in
Figure 1, which can be divided into three parts: data acquisi-
tion, network communication, and edge-cloud collaboration.
Data acquisition is mainly achieved by multi-source sensors
deployed on machine tools. The sensors acquire the static
properties and working parameters of machine tools, cutting
tools and workpieces in real time. Then the data will be
transmitted to the edge platform near machine tools, which
performs preliminary data processing operations. And the
edge transfers the historical data of machine to the cloud for
long-term storage. The cloud can not only perform complex
data processing (such as data modeling and model optimiza-
tion) on the data collected during machine operation. It can
also offload models or intelligent algorithms to the edge,
which use newly acquired data as input to improve response
speed. Decisions would be made in the cloud and transferred
to machine tools. The CNC controller controls the machin-
ing process of machine tools according to the decision.
As a result, the machine data collected by a data acquisition
module will change accordingly. A data acquisition module,
an edge computing platform and a cloud platform realize the
information exchange through the network communication.
The information is from bottom to top and then forms a closed
loop from top to bottom.

A. DATA ACQUISITION
In order to understand the structure and operating status of
machine tools, as well as processing information, it is nec-
essary to obtain various data from machine tools. The data
of machine tools is mainly obtained through various sensors
and measuring devices deployed on the surface or internal
of machine tools, such as RFID tags, temperature sensors,
acoustic emission sensors, and piezoelectric acceleration sen-
sors. The relevant parameters of a machine tool include
attribution data, machining data, and measurement data. The
attribution data is physical data of machine tools, cutting
tools and workpieces. It includes manufacturer, date of man-
ufacture and tool type of cutting tools, manufacturer and
machine type of machine tool. The machining data is the
data generated in real time during the processing of machine
tools, such as cutting force, strain field as well as temperature
field. The data represents the actual status of machining
process from different aspects and will change the machining
process. Measurement data refers to measurement results
which reflect machining performances, such as geometrical
accuracy and surface roughness of workpieces, wear data of
cutting tools. The parameters of the machine tool are shown
in Table 1.

B. NETWORK COMMUNICATION
Whether transmitting data to the edge after being collected
by sensors, or interconnecting between edge and cloud is
inseparable from fast and stable network communication.
Network communication is shown in Figure 2. As can be
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FIGURE 1. Architecture of intelligent machine tool.

TABLE 1. Parameters of the machine tool.

seen from Figure 2. Network communication can be divided
into three parts: device-edge network, edge-edge network
and edge-cloud network. In edge-cloud collaboration, edge
devices transmit the collected data to the edge platform
through the device-edge network. The protocols includemod-
bus, MQTT, ZigBee, RS-232, RS-485, OPC UA and TSN
protocols. Information exchange takes place among different
endpoints via fieldbus technology and industrial Ethernet
technology. Fieldbus technology can realize interconnec-
tion between intelligent devices, actuators and controllers in
the industrial field. At the same time, it enables network
communication between industrial field devices and control
systems. The edge-edge network mainly implements infor-
mation exchange between different edge platforms through
fieldbus protocols such as EtherCAT and Ethernet Powerlink.

Industrial Ethernet is a kind of industrial production Ether-
net that integrates TCP/IP protocol, such as Profinet, Eth-
erNet/IP, etc. In order to realize the collaboration between
edge and cloud, the edge-cloud network mainly relies on the
public Internet, such as HTTP, TCP/IP protocols to transmit
information.

C. EDGE-CLOUD COLLABORATION
The most significant distinction between IMT-ECC and
traditional CNCmachine tools depends on edge-cloud collab-
oration. Edge-cloud collaboration refers to the collaborative
work of edge computing and cloud computing. Among them,
edge computing platform includes data fusion, lightweight
model algorithms, logic control and database modules. Cloud
computing platform includes database, big data analysis,
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FIGURE 2. Network communication.

model algorithm optimization, cloud services, data informa-
tion and strategy modules. The collaboration between edge
computing and cloud computing has realized the functions
of efficient data processing, real-time feedback and decision-
making of machine tools. It has improved the intelligence of
machine tools.

The data obtained from machine tools is first cached in the
database on the edge. Since the data is multi- source, the data
needs to be processed at the edge and the edge transfers the
machine’s raw data and all processed data to the cloud for
storage and backup. Then a knowledge base of the machine
tool will be formed in the cloud. Due to abundant computing
resources in the cloud, big data analysis and processing of
machine tool data can be performed. After processing, the
relevant status of machine tools can be obtained, so that the
operating parameters of machine tools can be adjusted in
time. The cloud can train models and optimize algorithms
based on demand to retrieve and predict relevant parameters
of machine tools. At the same time, visual tools such as
augmented reality can be used to communicate status of
machine tools to the operator, so that the operator canmonitor
the machine. Since the rapid response to machine tools can
improve the intelligence of machine tools, and the edge is
close to the device, which can respond with low latency.
Therefore, the models and algorithms optimized by the cloud
are offloaded to the edge. Then the processed data at the edge
is used as the input of intelligent algorithms. The output of
algorithms controls the CNC controller of a machine tool
through the logic control module. Then, a CNC controller
adjusts the machine parameters to achieve fast response and
feedback control.

IV. DEVELOPMENT METHODOLOGIES FOR
EDGE-CLOUD COLLABORATION
Edge-cloud collaboration is the fundamental element that
distinguishes an intelligent machine tool from a traditional
CNCmachine tool. In edge-cloud collaboration, the edge data
will be uploaded to the cloud and stored as historical data.

The cloud uses historical data to train the model, while
the edge transmits the data collected in real time to the
cloud to continuously optimize the model. After that, the
cloud offloads the trained model to the edge, and the data
is processed directly at the edge to solve real-time tasks.
At the same time, the cloud can also call different lightweight
algorithms at the edge in an orderly manner through logical
control statements to process tasks at the edge. The realiza-
tion of edge-cloud collaboration of machine tools is mainly
reflected in three aspects: data collaboration, information
collaboration, and knowledge collaboration.

A. DATA COLLABORATION
Data is an abstract representation of the quantity, attributes,
location and interrelationship of objective things. It is the
source of information and knowledge. In industrial produc-
tion, a large amount of data is generated all the time. Speed,
energy consumption, temperature and machine deformation
are all data during the production process. Whether it is to
understand the machining status of the machine tool, or to
carry out data-driven evaluation for the running status of
complex processes, data is indispensable and the foundation
of the research.

Data collaboration refers to the data interaction between
edge and cloud. Because the speed of data acquisition in
the industrial field is too fast, the amount of data collected
is huge, and the storage resources of the edge are limited.
A large amount of data will bring great pressure to the edge
and even cause loss of important machine tool parameters.
The cloud has abundant storage resources. But during the
production process, the delay of data transmission will not
meet the real-time requirements of operations in the industrial
field. Therefore, the cloud and the edge require data collabo-
ration. The principle of data collaboration between cloud and
edge is shown in Figure 3.

Figure 3 shows that a machine tool acquires data through
various sensors, CNC controllers, RFID and measure-
ment devices. A sensor signal needs to be processed by
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FIGURE 3. Principle of data collaboration.

FIGURE 4. Data acquisition.

FIGURE 5. Data of CNC machine tools during production process.

analog-to-digital conversion and Fourier transform before it
becomes readable and operable data, as shown in Figure 4.
Data acquired from machine tools can be divided into attri-
bution data, machining data and measurement data. Details of
data are shown in Figure 5. All data of machine tools is first
transferred to the edge through the device-edge network, and
the edge will cache all data. In data collaboration, data will
be processed in different ways. For all data of machine tools,
it is used to construct the database. Therefore, the real-time
requirement is not strong, and it can be periodically transmit-
ted to the cloud. At the same time, the edge regularly deletes
data to release storage resources. The cloud receives the data

uploaded from the edge and stores it in the database. The
database stores processing data with time stamps as historical
data, then provides it to the cloud for in-depth analysis. A part
of the data needs to be transferred to the cloud in real time for
model training. A part of data such as real-time, security, and
privacy data is stored at the edge, which is easy to read for
quick response through timely processing in the next process.
Data will be stored and backed up in the cloud.When the edge
computing fails, the data stored in the cloud will not be lost.
At the same time, the data is also convenient for the edge to
remotely view real-time and local data and conduct historical
query.

B. INFORMATION COLLABORATION
Information is specific data formed by processing, which can
deepen the receiver’s understanding of external and objective
things. It can also provide a basis for the receiver’s decisions
and actions. In industrial sites, machine tools acquire large
amounts of data through sensors and measuring devices. But
the raw data is sometimes confusing, irregular, and redundant.
It is impossible to grasp the status of machine tools through
these data. So it is necessary to process the raw data to obtain
machine tool information.

The machine tool information more intuitively displays the
attributes and machining status of machine tools, making it
easier to make further decisions on machine tools. Since the
data collaboration between edge and cloud cannot control
machine tools dynamically in real time, information collab-
oration is also required. Information collaboration refers to
the effective transmission and sharing of information between
different subjects or different organizations. The principle
of information collaboration between edge and cloud in the
new architecture of intelligent machine tools is shown in
Figure 6. It can be seen that after all the raw data of machine
tools is cached at the edge, the edge performs preliminary
data processing on part of raw data to obtain information of
machine tools. The data processing process at the edge is
shown in Figure 7.

Data processing is mainly divided into four parts,
namely data cleansing, data preprocessing, data standard-
izing and data classifying. Data cleansing and preprocess-
ing make the data obtained from machine tools reliable,
accurate and effective. The specific process is shown in
Figure 8 and Figure 9. Data cleansing is mainly achieved by
deleting the duplicate data in the raw data, interpolating the
missing data and removing the noisy data. Data standardizing
is responsible for converting all manufacturing data after pre-
liminary processing into a unified data format. It can facilitate
data storage, reading and identification. Data classifying is
based on the primary key of each data item, and divides data
from different sources into related categories.

The attribution data, machining data andmeasurement data
obtained from machine tools can be processed at the edge
to obtain various status information of machine tools. They
include machine status, spindle status, axes status, cutting
tools status, surface qualities and so on. These information
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FIGURE 6. Principle of information collaboration.

FIGURE 7. Data processing in information collaboration.

FIGURE 8. Data cleansing.

can be uploaded to the cloud through the edge-cloud network.
The cloud stores the new status information of machine tools
in the database. The cloud will compare new status with
historical status of machine tools to dynamically monitor
whether machine tools are working properly. The status infor-
mation shows that a machine tool is abnormal. On the one

hand, the cloud will transmit abnormal information to the
employees through the human-machine interface (HMI) to
repair and maintain the machine tool. On the other hand,
the cloud feeds back the decision information for process-
ing the abnormal machine tool to the edge. The decision
information uses logic control module on the edge to drive
a CNC controller to adjust the relevant operating parameters
of machine tools, or to cut off the power in time and stop
the industrial production to reduce losses. The machine tool
does not start working until the status returns to normal.
Information collaboration between edge and cloud realizes
information transmission, control, feedback, and dynamically
obtains the machining status of machine tools. It also effec-
tively controls the machining process of machine tools in real
time, and improves the machining accuracy and productivity
of machine tools.

C. KNOWLEDGE COLLABORATION
Knowledge is structured information used to solve problems.
In the new architecture of intelligent machine tools, a large
amount of data and information will be uploaded to the cloud.
However, raw data is chaotic and the amount of data is large.
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FIGURE 9. Data preprocessing.

At the same time, the machining data and status information
of machine tools are constantly changing with the machining
process, which makes machine tool information rich and
disorderly in the cloud. Unprocessed data and information
cannot be dug deeply to gain a deeper understanding of
the characteristics of the machine tool. And it is difficult
to intelligently control the machine tool. Therefore, it is
necessary to extract useful information from complex data
and information, which is knowledge. Knowledge can assist
machine tools in tracing the process, mining related factors,
reducing errors and detecting faults.

Through data collaboration, the data of machine tools can
be effectively saved and the database of machine tools can be
formed. Through information collaboration, the machining
status of machine tools can be dynamically acquired in real
time, and the parameters of machine tools can be adjusted
initially. However, it is impossible to build a model for a
machine tool by relying solely on these two kinds of collabo-
ration. Nor can it delve into the correlation between machine
tool parameters. Besides, it is difficult to accurately adjust the
operating parameters of machine tools. And it is impossible to
implement fault detection and precise positioning of machine
tools. Therefore, knowledge collaboration is also required
to greatly improve the intelligence of machine tools. The
knowledge collaboration between edge and cloud is shown

in Figure 10. In order to achieve knowledge collaboration,
first, the edge transmits all raw data of a machine tool to the
cloud for long-term storage, and builds information models
of the machine tool. Second, the cloud uses data uploaded
from the edge to train accurate optimization models through
long-term learning. In addition, the cloud continues to receive
real-time data collected from industrial sites for new models
training. It further improves the optimization effect of mod-
els. At the same time, it avoids the failure of old models due
to external input changes. Thus, the compatibility of models
have been improved. Then, the cloud transfers the trained
models or algorithms to the edge to update the edge optimiza-
tion models. Third, when models or algorithms are complex,
the data needs to be transmitted to the cloud for further
processing, and then fed back. At this point, the edge and the
cloud cooperate in processing. The edge can use lightweight
algorithms to process data first. Then emergency decisions
can bemade directly at the edge and responded to themachine
in time (for example, when a serious failure of the machine
tool requires emergency braking). At the same time, the edge
transfers the results (knowledge) to the cloud after prelimi-
nary data processing (such as data cleaning, feature extrac-
tion, feature reduction, etc.). Transmitting data to the cloud
after processing at the edge reduces flow pressure and speeds
up the transmission. And then the cloud performs different
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FIGURE 10. Principle of knowledge collaboration.

FIGURE 11. Information model of machine tool.

in-depth processing based on different results. Finally, the
decision information is fed back to the edge. Fourth, there are
many different lightweight algorithms on the edge. According
to the needs of the actual problem, the cloud writes logical
control statements (knowledge) to orderly call the algorithms
on the edge, which forms a complete processing flow and
deals with problems at the edge.

In knowledge collaboration, the information model of
machine tools needs to be constructed, as shown in Fig-
ure 11. In the information model, machine tool is the high-
est parent class of all classes. Different components of
machine tools such as cutting tools, axes, and controllers
are used as the first-level subclass of the parent class.
Under each level of sub-categories, the components can be
divided carefully to form the second-level sub-categories.
For example, the axis in the first-level subclass can be
divided into the spindle, linear X-axis, Y-axis, and Z-axis

to form the second-level subclass and so on. At the same
time, each subclass has its own attributes. They represent
the real-time data and static attributes of the subclass. When
data is continuously uploaded from the edge, the informa-
tion model will also change and restructure accordingly.
At the same time, intelligent models and algorithms as
knowledge also provide powerful support for controlling
machine tools. For example, the cloud can train an aug-
mented reality (AR) algorithm to retrieve real-time processed
video, spindle speed and axis position. At the same time,
the algorithm enables AR-based monitoring and simulation.
A fuzzy inference system can be trained to search for cutting
depth, feed speed and spindle speed. Also it can predict
surface roughness. The principle of converting information
into knowledge is shown in Figure 12. It can be seen from
Figure 12 that new information is continuously acquired to
train the model, and the model that finally meets the demand
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FIGURE 12. Information conversion into knowledge.

is knowledge. Through the mutual cooperation among data
collaboration, information collaboration and knowledge col-
laboration, it can master the machining status of the machine
tool in real time and dynamically adjust themachining param-
eters. It can also make independent decisions and control, and
realize the machining process of the machine tool accurately
and efficiently.

V. CASE STUDY
A. IMPLEMENTATION
In this section, the application of IMT-ECC architecture
is illustrated by taking the intelligent architecture of the
ZK5540A gantry heavy-duty CNC machine tool as an exam-
ple. The machine tool based on edge-cloud collaboration
includes machine tool entity, HNC-848 CNC controller,
data acquisition systems, edge computing platform, network
communication and cloud platform.

In the intelligent architecture, data of the machine tool
is mainly obtained through a variety of sensors. ZK5540A
has abundant embedded sensors, which are grating ruler,
travel switch, current sensors, voltage sensors and liquid level
sensors. The data collected by these sensors will be obtained
from the CNC controller in the machine tool. Through these
data, basic information of the machine tool can be got. But the
basic information cannot fully reflect the processing status
of the machine tool. So in addition to the internal sensors,
many sensors (such as temperature sensors, acoustic emission
sensors, and piezoelectric accelerometers) are also installed
on the machine. These sensors can acquire more processing
data of the machine tool. Then the processing status of the
machine tool can be obtained through processing. It is helpful
for controlling the machining process of the machine tool and
diagnosing the failure of the machine tool. In the ZK5540A
machine tool, the ARM board with edge computing frame-
work called EdgeX Foundry is used as a hardware device.
At the same time, node-red is also installed in the EdgeX
Foundry framework for data processing at the edge. On the
cloud platform, Hadoop, Spark, TensorFlow and Tomcat are
installed. These software use edge upload data to model and
continuously optimize, and at the same time output decision

FIGURE 13. IMT-ECC for the ZK5540A.

information through the model. Then the human-machine
interface is used to display the results to the operator. This
way they can make decisions about troubleshooting and man-
ufacturing planning, or feedback the decision information to
the edge to control the machine parameters. The practical
IMT-ECC for the ZK5540A gantry heavy-duty CNCmachine
tool will be shown in Figure 13.

In the intelligent architecture of the ZK5540A gantry
heavy-duty CNC machine tool, the edge computing platform
is close to the machine tool. So the data processing is more
timely, and the response speed can be improved. At the same
time, the data is initially processed at the edge and then
transmitted to the cloud. On the one hand, it can reduce the
pressure of network traffic and calculation quantity on the
cloud platform. Therefore, the data collected by sensors will
be transmitted to the edge through device-edge network. The
data will be stored in the core data of core services in the
EdgeX Foundry. And node-red can be connected to the core-
data database on the edge to acquire machine data. There
are Python function nodes in the node-red, which can be
used to write programs to process data directly at the edge
to obtain machine status information. All processed data and
obtained information will be stored in the edge, and the status
information will be judged in node-red. When the machine
tool abnormally needs emergency braking, node-red directly
feeds the decision information to the machine tool through
the command in core services, which adjusts the machine
tool related parameters. At the same time, all processed or
unprocessed data and information in the edge database will
be transmitted to the cloud platform through export services.
After the cloud platform deeply mines the data, it returns
the decision information to the edge. The edge and cloud
exchange data and information through protocols based on
TCP/IP or HTTP. Then the edge controls the machine tool
through command.

B. EXPERIMENT AND ANALYSIS
This article has performed experiments about thermal error
compensation on a gantry heavy-duty CNC machine tools
(ZK5540A) to verify the feasibility for the new architecture.
Many factors will influence the machining accuracy of the
machine tool, but the main factor is thermal error. 70% of
machining workpiece errors are caused by thermal errors.
In order to improve the machining accuracy of the machine
tool, it is particularly important to be able to control the
thermal error in time. In the method of reducing errors caused
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FIGURE 14. Test results of the three models.

by heat, thermal error compensation is reliable. In the thermal
error compensation experiment, it is mainly divided into three
steps: acquiring temperature data and thermal error value,
establishing a model to predict thermal error, and performing
thermal error compensation on the machine tool according
to the predicted value. These steps are achieved through
data acquisition in IMT-ECC, network communication and
edge-cloud collaboration.

In the experiment, the ZK5540Amachine tool continuously
collects temperature data and displacement deviation data
during processing through the CCD displacement sensors

TABLE 2. Average effective accuracy rate of the three models.

FIGURE 15. Thermal error compensation.

and FBG temperature sensors. After thermal error data and
temperature data of the machine tool are acquired, they
are first transmitted to the edge through the modbus proto-
col. These data will be stored in core-data. The edge uses
MQTT Exporter and MQTT to transfer data to the cloud for
storage and backup. The MQTT Exporter is a microservice
of export services in the EdgeX Foundry framework, which
is used to export data. And MQTT is based on TCP/IP
protocols. Then the cloud uses historical temperature data
and thermal error data to train a thermal error prediction
model. As the temperature and thermal errors are non-linear
relationships, two layers of convolutional neural networks,
multiple linear regression, and BP neural networks are used
to train the data in the cloud to build a model. Then the newly
collected data is used to test the model. The test results of the
threemodels are shown in Figure 14, and the average effective
accuracy rate of the three models is shown in Table 2.

As we can see from the Table 2, the average effective accu-
racy of the two-layer convolutional neural network is 90.54%,
the average effective accuracy of the BP neural network is
96.58%, and the average effective accuracy of the multiple
linear regression is 93.92%. As can be seen from Figure 14,
the thermal error value predicted by the BP neural network
gets closer to the actual value. That is, the trainedmodel of BP
neural network can predict thermal errors more accurately.
In this experiment, a BP neural network was used to build
the model. And the newly acquired machine tool temperature
data and thermal error data were continuously optimized to
the model. After the model be trained, the cloud offloads
the thermal error prediction model into node-red under the
EdgeX Foundry framework. The temperature data collected
in real time will be stored in the core-data, and node-red is
connected to the database. The real-time temperature data
is used as input to the thermal error model at the edge.
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After the data is processed by the model in node-red, the pre-
dicted thermal error will be output. Then node-red uses the
restful API to write control statements into the command
of core services. After that, the predicted thermal error is
fed back to the CNC controller of the machine tool through
the command. The CNC controller compensates by changing
the cutting path according to the thermal error predicted.
Figure 15 shows that the maximum thermal error before
compensation is 84.5um, and the maximum thermal error
after compensation is 25.1um, and the overall thermal error
after compensation is much lower than that before compen-
sation, which proves the feasibility of the new architecture
of ZK5540A gantry heavy-duty CNC machine tool based on
edge-cloud collaboration.

VI. CONCLUSION AND FUTURE WORK
This article proposes a new intelligent machine tool
architecture based on edge-cloud collaboration. First,
the overall framework of the intelligent machine tool is
presented, and the function of each module in the architecture
is introduced. In IMT-ECC, cloud servers are used to optimize
model algorithms, while edge computing is used to fuse, pro-
cess, and analyze data. Edge computing and cloud computing
collaborate to effectively process data while responding with
real-time feedback. Then, themain connotation of edge-cloud
collaboration in the architecture is described in detail and
comprehensively. It is divided into three progressive levels:
data collaboration, information collaboration and knowledge
collaboration. By analyzing the specific implementation of
each level of collaboration, the detailed process of dynami-
cally adjusting machine tool parameters and improving prod-
uct accuracy through edge-cloud collaboration is clarified.
Finally, in order to prove the feasibility of the IMT-ECC
architecture, the edge-cloud collaboration architecture of the
ZK5540A heavy-duty CNC machine tool was developed.
And thermal error compensation experiments were conducted
to verify the new machine tool architecture. Experiments
show that the new IMT-ECC architecture is feasible, which
makes the machine tool more intelligent.

In the future, we will focus on the following research
points: 1) Protocol standardization: Due to the variety of
data collected from industrial sites, the protocols for different
types of data are also different. In order to collect data,
different protocols need to be converted separately at the
edge. Therefore, it is necessary to develop a microservice
that can make different protocols ‘‘plug and play’’ instead of
processing each protocol separately. It can greatly improve
the efficiency and convenience of data acquisition. 2) The
interconnection between edge terminals. There are many
devices on the industrial site. Different edge devices are inter-
connected and managed by the cloud platform to improve
the intelligence of the industrial site. 3) Security and privacy:
Edge computing migrates computing from the cloud to the
edge. Data is directly processed and decided locally. To a
certain extent, the long-distance transmission of data in the
network is avoided, and the risk of privacy leakage is reduced.

However, because edge devices obtain first-hand data, they
can obtain a large amount of sensitive private data. To ensure
data security, different levels of access control need to be set
to prevent illegal intrusion.
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