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ABSTRACT In modulation classification domain, handcrafted feature based method can fit well from a
few labeled samples, while deep learning based method require a large amount of samples to achieve the
superior classification performance. In order to improve the modulation classification accuracy under the
constraint of limited labeled samples, this paper proposes a few-shot modulation classification method
based on feature dimension reduction and pseudo-label training (FDRPLT), which combines handcrafted
feature based method with deep learning based method. First, an optimal low-dimensional feature subset is
created by the combination of the handcrafted features and autoencoder-extracted features post-processed by
a feature selection algorithm. Then, a fully connected network (FCN), trained on a small number of labeled
signals, is designed for the automated annotating, where unlabeled samples can be annotated and used for the
later convolution neural network (CNN) training. The simulation results show that the classification accuracy
of eight kinds of modulation types can reach to 98.3% when the SNR is 20dB.

INDEX TERMS Autoencoder, feature dimension reduction, modulation classification, pseudo-label.

I. INTRODUCTION
Automatic modulation classification (AMC) refers to rec-
ognizing the modulation type of target signal automatically.
As an important research topic in recent years, AMC has
been widely used in many fields, such as communication
reconnaissance, blind signal processing, surveillance and
threat analysis.

In general, the existing methods of AMC can be divided
into two categories: traditional handcrafted feature based
methods and deep learning based methods. In recent years,
both these two kinds of methods have achieved outstanding
performance. In traditional handcrafted feature based meth-
ods domain, the authors of [1]–[3] classified modulation
signals by using high-order cumulants, and the authors
of [4], [5] classified signals by extracting cyclic spectrum
features. The authors of [6], [7] used information entropy
features for AMC. In deep learning based methods domain,
authors summarized the typical AMCmethods based on deep
learning in recent years in [8]. The authors of [9], [10]
started using supervised learning for AMC in 2016 firstly,
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they used convolution neural network (CNN) to construct
an end-to-end learning model, and successfully identified
11 digital signals with different modulations, including Wide
Band Frequency Modulation (WBFM), Double Side Band
(DSB), Binary Phase Shift Keying (BPSK) and 16Quadrature
Amplitude Modulation (QAM). In [11], Short time Fourier
transform (STFT) is utilized to convert signals from time
domain to time-frequency domain, and then CNN is used to
extract the time-frequency features. The experiment shows
that several kinds of modulation types including 2 Frequency
Shift Keying (FSK), 4FSK and 8FSK can be classified with
an accuracy rate more than 90% even when the signal to
noise ratio (SNR) is low to −4dB. The authors of [12]
proposed a joint noise estimation algorithm with a clever
network structure, where the original signal and SNR are
input into neural network at the same time. The simulation
result shows that the classification accuracy under different
frequency offset is very close to the performance limit under
different SNR. The authors of [13] extracted time-frequency
plane features from the Smoothed Pseudo Wigner-Ville
Distribution (SPWVD) and Born-Jordan distribution (BJD)
transformation of signals by using CNN, and then classified
them into 8 modulation types including BPSK, QPSK and
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Orthogonal Frequency Division Multiplexing (OFDM). The
experiment indicates that the classification accuracy can still
reach 92.5% when the SNR is low to −4dB.

Although the deep learning based methods surpass the
traditional handcrafted feature based method in classification
performance in recent years, it requires significantly larger
number of labeled samples for training. Once the number of
labeled samples is insufficient, the classification performance
of the deep learning based methods will decline sharply.
With the diversification of signal acquisition methods and
the rapid development of storage technology, it is simple to
obtain a large number of unlabeled signals. However, it is very
difficult to obtain the same amount of labeled signals, because
thework of data labelling requires a lot ofmanpower, material
resources and time. Besides, there exist a large number of
signals in the electromagnetic spectrum in real environment.
It is unrealistic to label all these signals one by one after
collection due to the time requirement for rapidly changing
situations. Therefore, it is particularly important to study the
few-shot modulation classification problem with insufficient
labeled signals.

Based on a large number of results from expert research,
it is found that traditional handcrafted feature based methods
do not need a large number of labeled samples, while
deep learning based methods need massive labeled samples,
that is because handcrafted method reduces the signal to
a low-dimensional by processing the signal sequence in a
fixed mode while deep learning method generally process
time sequence or timefrequency transformation plane having
highdimensional data. Generally, the number of samples
required by classifier is proportional to the feature dimension.
Hence, dimension reduction is a core to solve few-shot
problem. If low-dimensional features can be used to represent
the original time sequence, the training samples needed by the
classifier can be greatly reduced.

Nowadays, the research on few-shot modulation classifica-
tion is still in its infancy, but some semi-supervised learning
algorithms have appeared in other fields. Semi-supervised
learning solves the problem of how to improve the model per-
formance when the number of labeled samples is insufficient.
The primary principle of semisupervised learning is to use
unlabeled data for optimization. Although unlabeled samples
have no label information to use, it is obtained from the same
source independently and in the same distribution as labeled
samples. For this reason, the information they contain is of
great benefit to optimize model. Semi-supervised learning
methods mainly include self-training learning method [14],
generative learning method [15] and semi supervised support
vector machine [16].

In order to make full use of unlabeled signals for
few-shot modulation classification, this paper proposes a
classification scheme based on feature dimension reduction
and pseudo-label training (FDRPLT). It mainly consists
of three parts: pseudo-label annotator training, pseudolabel
labeling and deep neural network training. In the first part,
handcrafted features and unsupervised learning features are

extracted and selected. Then, a fast converging classifier is
trained by a small number of samples with low-dimensional
features. In the second part, the classifier is used to generate
label for unlabeled samples. In the last part, all real-label
samples and pseudo-label samples are sent into deep neural
network for training. The experimental results show that our
algorithm has an excellent performance under the condition
of small samples. Specifically, the classification accuracy of
this method can reach 98.3% with the SNR at 20dB.

The rest of this paper is organized as follows. Section II
introduces the framework of our algorithm. Section III
describes the design of pseudo-label annotator. Section IV
shows the labeling process and Section V introduces the deep
neural network structure. Section VI shows the simulation
result and the last section VII concludes this paper.

II. FRAMEWORK OF FDRPLT
The mainly contribution of FDRPLT is find a connection
with traditional handcrafted feature based method and deep
learning based method. The key idea of FDRPLT is to design
a pseudolabel annotator to provide sufficient reliable labeled
samples for deep learning based methods. As shown in Fig. 1,
the algorithm is divided into three parts. The first part is the
generation of pseudo-label annotator. The traditional method
and unsupervised autoencoder are used to extract features
of original time sequences. After merging these two types
of features, a feature selection algorithm is used to generate
the optimal feature subset. Then, a fast converging classifier
is trained by a small number of low-dimensional labeled
signals. The second part is pseudo-label generation, which
uses the pseudo-label annotator trained in the first part to
label the unlabeled samples. Then, samples with pseudo-label
are combined with samples having real-label to optimize the
classifier until meet the iteration conditions. The third part
is deep neural network training, where all real-label samples
and pseudolabel samples are combined to train a deep neural
network, and the trained network is used to predict test
signals.

The core of this algorithm is the generation of pseudo-
label annotator, only when the classification performance of
annotator is as high as possible can the performance of deep
neural network be guaranteed. As long as the performance
of annotator is excellent, it can provide deep neural network
with sufficient and reliable training samples.

III. GENERATION OF PSEUDO-LABEL ANNOTATOR
Pseudo-label annotator is to improve the signal classification
accuracy to a higher level as much as possible when there
is only a small number of labeled samples, so as to ensure
the reliability of pseudo-label samples provided for deep
neural network. Because samples required by classifier
increase exponentially with the feature dimension, this paper
resolves the constrain imposed by limited number of sam-
ples using self-designed pseudo-label annotator and boosts
the classification performance using the optimized feature
set.
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FIGURE 1. Algorithm block diagram.

A. FEATURE EXTRACTION
1) HANDCRAFTED FEATURES
In AMC domain, many researchers have done a lot of
feature engineering and designed many effective features
for modulation classification. Inspired by previous research
result, in this paper, we extract three kinds of features
with strong representativeness and high discrimination as
signal handcrafted features, including highorder cumulants,
information entropy features and time-frequency features.

a: HIGH-ORDER CUMULANTS FEATURES
In order to extract high-order cumulants, high-order moment
of signal should first be calculated. The high-order moment
of x(n) can be calculated by the following equation:

Mpq = E[x(n)p−q(x∗(n))q] (1)

In this paper, the following high-order cumulants are
selected through [17], [18], which have been proved
to have good discrimination performance in modulation
classification:

C40 = M40 − 3M2
20 (2)

C42 = M42 −M2
20 − 2M2

21 (3)

C60 = M60 − 15M40M20 + 30M3
20 (4)

C61 = M61 − 5M40M21 − 10M20M41 + 30M21M3
20 (5)

C63 = M63 − 6M41M20 − 9M21M42 + 18M21M2
20 + 12M3

21

(6)

b: ENTROPY FEATURES
Entropy is an index that used to evaluate the mean uncertainty
of signal or system. This paper intends to extract power
spectrum entropy, singular entropy and energy spectrum
entropy of signal as features [19], [6]. Assuming that the
length of time sequence X is L, the discrete Fourier transform
of sequence X is:

y(k) =
L−1∑
n=0

x(n)e−i
2π
N nk
=

L−1∑
n=0

x(n)W nk
N (7)

where W = e−i
2π
N , k represents the k-th spectrum of Fourier

transform, N represents the number of transformed points.
Generally, N is the integer power of 2 and close to the length
of sequence X . Power spectrum of the spectrum sequence Y
at y(k) is calculated:

S(k) =
1
N
|y(k)|2 , k = 0, 1, 2 . . .N − 1 (8)
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Denote

pk =
S(k)

N−1∑
k=0

S(k)

(9)

By substituting (9) into the Shannon entropy calculation
equation, the power spectrum Shannon entropy can be
obtained. For random variables X , the equation of Shannon
entropy is shown as follows,

H (X ) =
m∑
i=1

p(xi) log
1

p(xi)
(10)

whereH represents the entropy value, pi represents the signal
probability distribution.

In recent years, singular spectrum analysis is a very popular
method to study nonlinear time sequence. Suppose a discrete
time sequence is:

X = [x1, x2, x3 . . . xN ]

Firstly, the sequence is segmentedwith lengthm. The phase
space matrix is reconstructed as follows:

M =


x1 x1+n . . . x1+(m−1)n
x2 x2+n . . . x2+(m−1)n
. . . . . . . . . . . .

xN−(m−1)n xN−(m−1)n+n . . . xN


K∗J

(11)

The singular value decomposition of (11) can be obtained
as:

MK∗J = UK∗K6K∗JVT
J∗J (12)

whereU and V are orthogonal matrices,U is the left singular
matrix, and V is the right singular matrix. 6 is a diagonal
matrix:

6 =


σ1 . . .

σ2 . . .

. . . σk . . .

. . .


K∗J

where σk represents the singular value of matrix M , and
all values in 6 except the diagonal elements are zero. The
non-zero elements on the diagonal form the singular value
spectrum of the sequence, given by:

σ =
{
σ1, σ2, . . . σi, . . . σj |j < K

}
pi is denoted as the ratio of non-zero singular value σi to

the sum of all non-zero singular values:

pi =
σi
r∑
i=1
σi

(13)

The singular value Shannon entropy can be calculated by
substituting (13) into (10).

The power spectrum exponential entropy can be obtained
by substituting (12) into the equation of exponential entropy.
The equation of exponential entropy is shown in (14):

H = E[e1−pi ] =
∑

pie1−pi (14)

For the sequence X , its energy spectrum is defined as
follows:

S(ω) =
1
N
|X (ω)|2 (15)

where X (ω) represents the Fourier transform of X . Denote pi
as:

pi =
S(i)
N∑
i=1

S(i)

(16)

The energy spectrum exponential entropy can be obtained
by taking (16) into the (14).

c: TIME-FREQUENCY FEATURES
The Maximum value of the power density of the normalized-
centered instantaneous amplitude can reflect the spectral
characteristics of different signals [20], which is defined as
follow:

γmax =
max |FFT |acn(i)||2

Ns
(17)

acn(i) = an(i)− 1 (18)

an(i) = a(i)/ma (19)

ma =
1
Ns

Ns∑
i=1

a(i) (20)

where Ns represents the length of the signal sequence and ma
represents the mean value of the instantaneous amplitude.

2) UNSUPERVISED LEARNING FEATURES
Unsupervised feature extraction method can extract features
without using label information, which is helpful for the
small sample problem. Autoencoder is a kind of unsupervised
learning algorithm which can learn the sparse representation
of data. Many scholars have applied it to modulation
classification in recent years. For example, the authors of [21]
used two parallel autoencoders to complete modulation
classification, and the authors of [22] used convolution
autoencoder to directly act on time sequence to extract
features.

Generally, the structure of an autoencoder includes an
encoder and a decoder. The encoder projects the input
samples into the hidden layer with a lower dimension and
the decoder converts it back to the original feature space and
aims to faithfully reconstruct the input data [23]. The function
for the autoencoder is to find a low dimensional feature
representation of the original high dimensional, complex
input.

The autoencoder’s structure of our algorithm is shown
in Fig. 2, it mainly composed of convolution layers and fully
connected layers. In this paper, we use fully connected layers
to reduce and enhance the feature dimension. Before feeding
the input into the autoencoder, we add noise to the signals
intentionally. Since the original non-noise signal need to be
reconstructed after the signal passed through the autoencoder,
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FIGURE 2. Autoencoder structure.

the features extracted by autoencoder have the anti-noise
ability and are more robust.

Assuming that the original input signal and the noise-added
input signal for the autoencoder network is x and x∗, the loss
function of autoencoder can be simplified as,

J (x, x∗) =
∑∥∥h(f (x∗))− x∥∥22 (21)

where f (x) represents the encoder function, h(x) represents
the decoder function. By minimizing the loss function,
the middle layer features can serve as the low-dimensional
representation of the high-dimensional signals.

B. FEATURE SELECTION
Different from feature extraction method described in the
previous section, feature selection method refers to selecting
the most relevant feature subset from the original feature
sets. Compared with feature extraction method, feature
selection method focuses more on revealing the causal
relationship between features and categories. In modulation
classification domain, whether to use traditional handcrafted
feature or deep learning auto-extracted feature has been
controversial, because both of these two methods have
their own advantages. Thus, a better approach would be
to first combine these two types of features together and
drop irrelevant or redundant features using feature selection
algorithm afterwards. A good feature selection algorithm can
not only help us reduce the number of samples required
for the classifier, eliminate redundant or irrelevant features,
but also improve the running speed of model, accelerate
the convergence speed of algorithm and reduce hardware
requirements.

Given the condition of the limited labeled samples and
vast unlabeled samples, a semi-supervised feature selection
algorithm is considered for the feature selection purposes.
In recent years, scholars have proposed a variety of feature
selection algorithms, such as [24]–[30], among which the
authors of [29] proposed information entropy theory to
design the symmetric uncertainty of random variables,
which is used to measure the redundancy between features
and the correlation between features and categories, and
it had good performance in many datasets. The authors
of [30] made the most use of unlabeled samples for feature
selection.

In this paper, a semi-supervised feature selection algorithm
is designed based on the Fast Correlation-based Filter
solution (FCBF) [29] and Semi-supervised Representative

FIGURE 3. Feature selection algorithm.

Feature Selection (SRFS) [30]. The flow chart of this
algorithm is shown in Fig. 3, the feature selection process is
mainly divided into two steps.

The details of feature selection algorithm are shown as
follows:

1) DELETE IRRELEVANT FEATURES
Labeled signals can use label information to directly calculate
the mutual information between feature and label as a
standard to measure the importance of feature. Suppose the
feature is random variable X and the signal label is C ; p(x),
p(c) and p(x, c) represent the probability density functions
of X ,C, (X ,C) respectively. Then the mutual information of
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random variables X and C is defined as:

I (X ,C) =
m∑
i=1

n∑
j=1

p(xi, cj) log2
p(xi, cj)
p(xi)p(cj)

(22)

Although no label information can be used, self-
information contained in the unlabeled signal can also guide
feature selection. In information theory, entropy can be
used to measure information contained in themselves. The
calculation of entropy is shown in equation (10).

After mutual information and selfinformation of each
feature are calculated, the F_Rel correlation is used to
determine whether feature Fi is irrelevant. The equation of
F_Rel is shown as follows,

F_Rel(Fi,C) = βI (Fi,C)+ (1− β)H (Fi) (23)

where β is greater than 0 and less than 1, which can be used
to adjust the proportion of mutual information and entropy.

In this paper we set β = 4
√

N
N+M , where N represents the

number of labeled signals and M represents the number of
unlabeled signals.

If F_Rel is greater than the threshold value, it means that
the feature is related to categories and carries a large amount
of information, then Fi will be added to the relevant feature
subset; if F_Rel is less than the threshold value, Fi will
be deemed as irrelevant feature to be deleted. This paper
designs the relevance threshold value α =

⌈
D

2 log2 D

⌉
, where

D represents the number of features.

2) DELETE REDUNDANT FEATURES
In the first step, {F1,F2 . . . . . .FM } was obtained after the
irrelevant features were deleted, and the features to be
selected were arranged in descending order according to
the F_Rel correlation. The higher the value of F_Rel, the
higher the rank would be. Then, F1_Rel correlation between
features and categories, as well as F2_Rel correlation
between features and features, are calculated from front to
back, the equation of F1_Rel is shown as follow,

F1_Rel(Fi,C) = βUI (Fi)/(Hi)+ (1− β)SU (Fi,C) (24)

where UI (Fi) represents the mean mutual information value
of feature Fi and all other features, and its equation is as
follows:

UI (Fi) =
1
n
(H (Fi)+

∑
j=1:n,j6=i

I (Fi;Fj))

=
1
n
[H (Fi)+

∑
j=1:n,j6=i

H (Fi,Fj)−
∑

j=1:n,j6=i

H (Fj)] (25)

where SU (Fi,Fj) is the symmetric uncertainty of features Fi
and Fj, and its calculation formula is shown as follow,

SU (Fi,Fj) = 2[
I (Fi;Fj)

H (Fi)+ H (Fj)
] (26)

The calculation formula of F2_Rel is as follow,

F2_Rel(Fi,Fj) = βSU (Fi,Fj)+ (1− β)USU (Fi,Fj) (27)

where USU(Fi,Fj) represents the unsupervised symmetric
uncertainty of features Fi and Fj, and its calculation equation
is as follows,

USU (Fi,Fj) = 2[
UI (Fi;Fj)

H (Fi)+ H (Fj)
] (28)

UI (Fi;Fj) = UI (Fi)− UI (Fi
∣∣Fj )

= UI (Fi)−
UI (Fi)
H (Fi)

H (Fi,Fj)+ UI (Fi) (29)

In this paper, we set (30), (31) as the redundant discrimi-
nant condition.

F1_Rel(Fi,C) ≥ F1_Rel(Fj,C) (30)

F2_Rel(Fi,Fj) ≥ F1_Rel(Fj,C) (31)

If these conditions aremet,Fj will be regarded as redundant
feature for deletion. In the process of deletion, features ranked
first in F_Rel will be retained first, and the final remaining
features after iteration consist the optimal feature subset.

C. ANNOTATOR TRAINING
After feature extraction and selection, a shallow fully
connected network (FCN), used as a pseudo-label annotator,
is trained on a small number of labeled samples with the
pre-extracted low dimensional features. The reason why FCN
is chosen as the annotator is that FCN not only has strong
learning ability, but also has small parameters and is easy
to converge. The structure of FCN is shown in Fig. 4. The
number of neurons in the input layer is as same as the feature
dimension. After input a small number of labeled samples
with optimal feature subset, batch normalization (BN) layer
is used to normalize features firstly. Because the features
sent into FCN are composed of traditional handcrafted
features and autoencoder-extracted features, it is necessary
to preprocess the features. BN layer is to forcibly impose
the distribution of input value of any neuron back to the
standard normal distribution with mean value of 0 and
variance of 1 by certain normalization means. In this way,
the input value falls into the interval where the nonlinear
function is more sensitive to the input, that is to say, it can
make the gradient larger and avoid the problem of gradient
disappearing. Moreover, the larger gradient means that the
learning convergence speed is fast and the training speed is
greatly accelerated. The output of the BN layer is fed into
fully connected layer, with the number of neurons in the fully
connected layer being 16,32 and 16 respectively. The output
of the fully connected layer is fed into SOFTMAX layer.
All the neuron layers use ReLU as the activation function.
In addition, in order to improve the network generalization
ability, Dropout layer is used to interfere with training after
the second and third fully connected layers to prevent network
overfitting and improve network generalization ability in

140416 VOLUME 8, 2020



Y. Shi et al.: Few-Shot Modulation Classification Method Based on FDRPLT

FIGURE 4. FCN structure.

test set. In this paper, Dropout ratio is set to 0.1.

Ltotal =
1
N

∑N

m=1

∑C

i=1
LReal_Label(ymi , f

m
i )

+µ
1
N ′
∑N ′

m=1

∑C

i=1
LPseudo_Label(ymi , f

m
i ) (32)

IV. PSEUDO-LABEL LABELING
After training the pseudo-label annotator, it is used to
predict all unlabeled samples. Then all real-labeled samples
and pseudo-labeled samples are combined to optimize the
annotator until the iterate condition is met. The loss function
of pseudo-label annotator is shown in equation (32).

Where LReal_Label(ymi , f
m
i ) represents the loss resulting

from the samples have real-label, LPseudo_Label(ymi , f
m
i ) rep-

resents the loss resulting from the pseudo-labeled samples. N
represents the number of real-labeled samples, N ′ represents
the number of pseudo-labeled samples. µ is used to control
the proportion of these two types of loss. In general, µ is
greater than 0 and less than 1.

In the labeling process, sometimes it is inevitable to label
unlabeled samples with false label. Therefore, the reliability
of pseudo-label has a decisive impact on the final classifica-
tion performance. Since the output of SOFTMAX layer is the
prediction probability of each category, so this paper designs
a reliable condition as follows:

p2 + p3 ≤ p1 (33)

where p1 represents the maximum probability of the output of
SOFTMAX layer, and p2, p3 represents the second and third
probability of the output of SOFTMAX layer respectively.
The labeling criteria is defined such that samples will be
labeled only when the maximum probability of output of
SOFTMAX is greater than the sum of the second probability
and the third probability. Through this condition based on
output probability, the reliability of pseudo-labels can be
guaranteed to a certain extent.

V. CNN TRAINING
After reliable unlabeled samples are labeled with pseudo-
label, all real-label samples and pseudo-label samples are
combined and sent to deep neural network for training.
Self-designed CNN is selected as the deep neural network in
this paper. Different from traditional neural network, CNN
can extract features by convolution layer automatically. The
structure of CNN is shown in Fig. 5. In order to take
full advantage of the feature extraction ability of CNN,
IQ sequence is input into CNN directly. The structure of CNN
consists of three convolution layers and three fully connected
layers. The number of filters of the three convolution layers
is 256, 128 and 64 respectively, the filter size of these three
convolution layers is 1× 9. The convolution layers complete
the feature extraction function. Then the extracted features
are transformed into a onedimensional sequence and sent
into the fully connected layer. The dimension of the three
fully connected layers are 256, 128 and 64 respectively.
The third fully connected layer sends the features to the
SOFTMAX layer for classification, outputs the prediction
results. Finally, all the network parameters are optimized
through back propagation algorithm. Besides, in order to
prevent the network overfitting, Dropout is used after the first
and second fully connected layer, the Dropout ratio is set to
0.2. All neurons use ReLU as the activation function.

VI. SIMULATION RESULT
In our simulation, BPSK, 4PSK, 8PSK, 8QAM, 16QAM,
64QAM, 4PAM and 8PAM modulation signals are consid-
ered to test the classification performance. The length of
samples, L, is equal to 128. The data format of signal is
2× 128, including Inphase channel and Quadrature channel.
The training set includes 10000 samples for each type of
signals and the random SNR is from−10dB to 20dB with an
interval of 2dB. There are totally 80,000 samples, including
800 labeled samples and each type has 100 samples, the rest
are unlabeled samples. The test set generates 100 samples for

VOLUME 8, 2020 140417



Y. Shi et al.: Few-Shot Modulation Classification Method Based on FDRPLT

FIGURE 5. CNN structure.

FIGURE 6. Signal feature curve.

each SNR point, ranging from−10dB to 20dB and an interval
of 2dB. There are 16 SNR points and 12,800 signals totally.
All signals are generated by MATLABR2016a simulation.

The network training is based on TENSORFLOW and
KERAS deep learning framework in python. The hardware
for calculation support is Intel(R) Core (TM) i7-8700 CPU,
and the GPU is NVIDIA GeForce 1060Ti.

A. HANDCRAFTED-FEATURE EXTRACTION
In this section, the performance of handcrafted features
proposed in the section III is evaluated. In the experiment, 100
samples are taken from each SNR point between−10dB and
20dB for eight modulation types. Ten kinds of handcrafted
features are extracted and averaged. Representative features
were plotted as shown in Fig. 4. Besides, in the analysis
of signal singular spectrum, because the length of signal
L is equal to 128, and the base sequence is randomly
generated without periodicity, so we set the segment lengthm

equal to 43. In the calculation of discrete Fourier transform,
the number of Fourier transform points is required to be
close to the sequence length, so we set the number of Fourier
transform points N equal to 128.
We can see from Fig. 6 that with the continuous rise

of SNR, the difference in the eigenvalues of different
modulation types gradually increase and tend to be stable,
which is helpful for classification. However, at the same
time, it can be seen that each feature has an indistinguishable
modulation type, so all features are integrated and then
selected automatically by the feature selection algorithm
in this paper. It can be seen from the experiment that
the handcrafted features selected in this paper have good
discrimination ability.

B. AUTOENCODER FEATURE EXTRACTION
In this section, ability of extracting features of the autoen-
coder is tested by experiments. 10000 unlabeled signal

140418 VOLUME 8, 2020



Y. Shi et al.: Few-Shot Modulation Classification Method Based on FDRPLT

FIGURE 7. Input, output and sparse representation of autoencoder.

samples of each type, totally 80,000 unlabeled samples
will be used for unsupervised training. The structure of the
autoencoder is shown in section III. Batchsize in the network
training is set to 500, and 100 epochs for iterating. MSE is
used as the loss function and Adam is used for optimization.
The data format of network input and output is 2×128. After
training, network parameters are saved, then all signals are
input into the network for calculation. Signals are compressed
by the encoder layer, and then the output of encoder and
decoder are visualized. The results of signal compression
and reconstruction are shown in Fig. 7, where shows what
the 2 × 128 input vector looks like, what the 2 × 128
output representation looks like, and what the 1∗30 sparse
representation looks like.

It can be seen from Fig. 7 that the waveform of signals
have not changed significantly after the reconstruction of
the autoencoder, which means that the loss between input
and output is small after the signal reconstruction through
the autoencoder, and the low-dimensional 1∗30 features of
the middle layer can represent the original IQ data to a
certain extent. The training history of the autoencoder is
shown in Fig. 8. We can see that the training loss, continues
to decrease through the training process, indicating that the

FIGURE 8. Loss of autoencoder.

mapping between input and output signal is successfully
established.

In order to verify the performance of the autoencoder
designed in this paper, this section compares the autoencoder
proposed in [21], [22] and [32]. The number of output
neurons of the hidden layer are all set to 30, and the loss curve
of each autoencoder is shown in Fig. 9.
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FIGURE 9. Comparison between different autoencoder.

As we can see from the comparison experiment
in Fig.9 that the autoencoder in this paper has better
reconstruction ability than other autoencoders. From another
point of view, the feature extraction ability of our autoencoder
is also the strongest.

C. PSEUDO-LABEL ANNOTATOR TRAINING
In this section, we trained a pseudo-label annotator. Firstly,
using the autoencoder trained in section B to extract
low-dimensional features, then merging all low-dimensional
features with handcrafted features extracted in section A,
totally 40-dimensional features into the feature selection
algorithm. Finally, generating the optimal feature subset and
using a small number of labeled signals to train the FCN.

In this experiment, themerged feature set sent to the feature
selector is {f1, f2, f3 . . . . . . f39, f40}, amongwhich the first ten-
dimensional features {f1 . . . . . . , f10} are handcrafted features,
representing {Singular spectrum Shannon entropy, Power
spectrum Shannon entropy, C40,C42,C60,C61,C63, Energy
spectrum Shannon entropy, Singular spectrum Exponential
entropy, The Maximum value of the power density of the
normalizedcentered instantaneous amplitude}, and the last
thirty-dimensional features are the hidden layer features
extracted by the autoencoder.

During feature selection, we set paraments β = 0.31, α =
4, the optimal subset is {f3, f7, f8, f9, f10, f12, f16, f19, f21, f27,
f32, f36, f37}, 13 features in total, and the feature proportion
of selected features is 32.5%.

After feature selection, 800 labeled signals with
13-dimensional features were sent into the FCN for training.
After training, the classification accuracy of the FCN is
shown in Fig. 10, in which Fig. 10(a) shows the classification
confusion matrix when the SNR is 20dB. The classification
accuracy of each signal under different SNR is shown in
Fig. 10(b). It can be seen that under the condition of high
SNR, except 64QAM and 8PAM, the other signals can be
accurately recognized.

When the feature selection algorithm is not used, the FCN
is trained by 800 labeled samples with different feature

subset. The confusion matrix at 20dB is shown in the
Fig. 11, where Fig. 11(a) represents the confusion matrix
trained by 800 samples with 10-dimensional handcrafted
features, Fig. 11(b) represents the confusion matrix trained
by 800 samples with 30-dimensional autoencoder-extracted
features, and Fig. 11(c) represents the confusion matrix
trained by 800 samples with 40-dimensional merged features.

It can be seen from Fig. 11 that the classification
performance of these three methods above are inferior to
the algorithm in this paper, whether a single method is
adopted or the features are not selected after merging. The
highest classification accuracy is 93.1% at 20dB when only
used 10-dimensional handcrafted features, and 89.8% at
20dB when only used 30-dimensional autoencoder-extracted
features. The highest classification accuracy is 83.7% at 20dB
when used 40-dimensional fusion features. The classification
accuracy of this paper can reach more than 90% when
SNR is greater than 14dB, and the highest classification
accuracy can reach 95.8% when SNR is 20dB. It can be
seen that the signal classification accuracy is improved
after feature fusion and selection. Besides, when the feature
dimension is high, the performance of signal classification
decreases, for example, when the labeled samples with
40-dimensional features are trained directly, the highest
classification accuracy of signals is only 83.7%, that is
because the high-dimensional features cannot be fitted well
by classifier under the condition of small samples. The
classification accuracy of these four kinds of methods at each
SNR point is shown in Fig. 12.

In addition, this section selects three kinds of feature selec-
tion algorithms for comparison to verify the effectiveness
of our feature selection algorithm, namely, mRMR [31],
FCBF and SRFS. mRMR and FCBF are supervised feature
selection algorithms just using label information, SRFS is
semi-supervised feature selection algorithm based on graph
theory. Considering the above three algorithms need to set
the correlation threshold α and control variable β, we set
the correlation threshold α = 4, β = 0.38, which
are as same as the algorithm in this paper. Since it is
necessary to evaluate the advantages and disadvantages of
the feature subset through classification algorithm and these
three feature selection methods compared are independent of
classification algorithm. 800 labeled signals with different
feature subset selected by each algorithm are sent into the
FCN for training and observe its classification accuracy, so as
to compare the performance of different feature selection
algorithm.

The number of selected features, feature subset and
selection time of each algorithm are shown in Table 1. It can
be seen that the selecting time of mRMR and FCBF is very
short, but it has a large feature subset. Since SRFS algorithm
needs to build a directed acyclic graph and select only one
representative feature from each sub graph, its subset is
concise but time-consuming.

The proportion of selected features of each algorithm is
shown in Fig. 13, in which the feature proportion selected
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FIGURE 10. Classification performance at 20dB.

FIGURE 11. Comparison experiment.

FIGURE 12. Classification rate of different methods.

by mRMR is 65%, that selected by FCBF is 47.5%, that
selected by SRFS is 17.5%, and that selected by this paper
is 37.5%.

A small number of labeled samples with different feature
subsets selected by each algorithm are sent to FCN for
training. The classification accuracy curves under different
SNR are shown in Fig. 14. It can be seen that the feature

FIGURE 13. Proportion of selected features.

subsets selected by this algorithm have some advantages over
the other three algorithms in the classification performance
of FCN. When the SNR is 20dB, the highest classification
accuracy of the FCN based on mRMR, FCBF and SRFS
feature subset are 90.5%, 92.1%, and 93.9% respectively,
which is lower than 95.8% of the proposed algorithm in this
paper.
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TABLE 1. Comparison of each selection algorithms.

FIGURE 14. Classification rate of different feature selection algorithms.

Finally, this section compares FCN with XGBOOST and
KNN [33], 800 labeled samples with 13-dimensional optimal
features are used to train them, then the convergence speed
and the highest classification accuracy is shown in Table 2.
XGBOOST compared in this paper belongs to the KERAS
database.

It can be seen that the classification accuracy of FCN has
some advantages over XGBOOST, KNN when the training
time is basically same.

D. PSEUDO-LABEL LABELING
When the FCN training is finished, it is used to annotate
the reliable unlabeled samples with pseudo-labels, then
combined real-label samples and pseudo-label samples to
retrain FCN until met the iteration condition, µ is set to
0.5 during network training. The top accuracy of FCN at 20dB
is shown in fig 14. As can be seen from Fig. 15, the top
classification accuracy of FCN does not increase significantly
with the iteration and fluctuates around 96%, indicating
the parameters of FCN are small and have been well
fitted.

The samples number with iteration is shown in Table 3.
It can be seen that the total number of pseudo-label samples
does not reach 80000, which is due to the setting of reliable
threshold. The proportion of number of each modulation

FIGURE 15. Top accuracy of FCN.

FIGURE 16. Number of different modulation types.

types is shown in Fig. 16. This lies in the fact that
pseudo-label annotator can mark all kinds of signals to some
extent and it is unlikely to happen that a certain type cannot
be labeled.

E. CNN NETWORK TRAINING
Finally, all real-label samples and pseudolabel samples are
sent into CNN for training, with a total of 68238 samples.
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TABLE 2. Performance of different classifier.

TABLE 3. Number of samples with iterations.

FIGURE 17. CNN training accuracy and loss.

FIGURE 18. CNN classification accuracy.

Batchsize in the process of CNN training is set to 500, and 100
epochs for iterating. Crossentropy is used as the loss function,
and Adam is used for optimization. The validation ratio is set
to 0.1. In addition, a smaller learning rate is set as 0.001 to
avoid model weights distorted too quickly. The performance
of CNN training on training set and validation set is shown
in Fig. 17, in which Fig. 17(a) shows the training loss of CNN
and Fig. 17(b) shows the training accuracy of CNN. It can be
seen that with the network continues to iterate, the training

accuracy and validation accuracy continues to increase and
the training loss and validation loss continues to decrease.
In order to prevent the network from overfitting, the early
stopping condition is set such that the training stops when the
validation loss does not decrease in 10 epochs. As a result,
the training stopped at the 24th epoch when validation loss is
stable.

It can be seen from Fig. 18(a) that after training CNN,
the top classification accuracy reaches 98.3% when the SNR
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is 20dB, which is still improved compared with 96.3% of the
pseudo-label annotator. But if 800 real-label samples are used
to train CNN merely, the classification accuracy of the CNN
model is not ideal. Because the data size is too small to fit the
CNN with a large number of parameters, the network has a
serious problem of overfitting. The classification accuracy of
each signal type at each SNR point is shown in Fig. 18(b).

FIGURE 19. Confusion matrix at 20dB.

The confusion matrix at 20dB is shown in Fig. 19. Com-
pared with Fig. 10(a), it can be seen that the classification
accuracy of CNN for 64QAM and 8PAM has improved,
which shows that the method based on deep learning is more
effective when labeled samples are sufficient.

FIGURE 20. Comparison between pseudo-label CNN and other methods.

F. COMPARISON EXPERIMENT
In order to verify the overall performance of the algorithm in
this paper, other methods about AMC are compared in this
section. Fig. 20 shows the classification performance at dif-
ferent SNR in comparison with High Order Cumulants [34]
and ACGAN [35].

Through the comparison results, we can see that FDRPLT
has some advantages in classification accuracywhen the SNR
is high. In addition, the scheme proposed in this paper is
simple and each module can be replaced flexible.

VII. CONCLUSION
This paper addresses the problem of few-shot modulation
classification. We proposed a model named FDRPLT which
combines the traditional handcrafted feature based method
with the deep learning based method. First of all, according to
the handcrafted feature based method, unsupervised learning
based method and feature selection method, we generate
a classifier with high classification performance under the
constraint of labeled samples. Then we use the classifier to
provide sufficient samples for CNN training. The simulation
result shows that our scheme can achieve a good performance
under the condition of small samples, when the SNR is 20 dB,
the top classification accuracy of 8 modulation types can
reach 98.3%.

Based on a lot of experiments, it is found that the perfor-
mance of the model is closely related to the pseudo-label
annotator. If the pseudo-label annotator can not raise
the classification accuracy to a comparatively high level,
the effective pseudo-label samples will obtain less, then the
overall classification accuracy of deep neural network will
descend. If the classification accuracy of the pseudo-label
annotator can be further improved, the whole classification
accuracy of the algorithm will be further improved, which is
why our model have poor performance at low SNR. In this
case if there is a better pseudo-label annotator or deep neural
network, our FCN and CNN can be replaced flexibly. In the
process of practical application, on one hand, we can monitor
the distribution of pseudo-label samples, so as to know
whether the deep learning method has enough samples for
support. On the other hand, we can continuously improve the
handcrafted feature set and unsupervised feature extraction
algorithm, studying more discriminating features and select-
ing more complex models as pseudo-label annotator, so as to
improve the performance of deep learning methods.
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