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ABSTRACT Unmanned aerial vehicle (UAV) is regarded as an effective technology in future wireless
networks. However, due to the non-convexity feature of joint trajectory design and power allocation (JTDPA)
issue, it is challenging to attain the optimal joint policy in multi-UAV networks. In this article, a multi-agent
deep reinforcement learning-based approach is presented to achieve the maximum long-term network utility
while satisfying the user equipments’ quality of service requirements. Moreover, considering that the utility
of each UAV is determined based on the network environment and other UAVs’ actions, the JTDPA problem
is modeled as a stochastic game. Due to the high computational complexity caused by the continuous action
space and large state space, a multi-agent deep deterministic policy gradient method is proposed to obtain
the optimal policy for the JTDPA issue. Numerical results indicate that our method can obtain the higher
network utility and system capacity than other optimization methods in multi-UAV networks with lower
computational complexity.

INDEX TERMS UAV networks, trajectory design, power allocation, multi-agent deep reinforcement
learning.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) have been
regarded as an important technology in the future wireless
networks [1]. Since theUAVs can be deployed and configured
flexibly, it can be utilized as relays between ground user
equipments (UEs) for cooperative communication. Further-
more, considering that UAVs can smartly alter their spots to
offer on-demand wireless services for ground UEs, UAVs can
be used as aerial base stations (ABSs) for wireless commu-
nication [2]. Thus, multi-UAV networks have been applied to
varied applications, such as remote sensing, traffic monitor-
ing, public safety, and military [3], [4].

In multi-UAV networks, many technical design prob-
lems should be considered, including trajectory design,
resource allocation as well as interference management.
Through appropriately designing the trajectories of UAVs,
UAVs can provide UEs communication services, which may
ease co-channel interference and increase system capacity.
Furthermore, the transmission powers of UAVs should also
be taken into account to meet the trade-off between spectrum
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efficiency and interference management. Thus, the problem
of trajectory design, power allocation, and interference man-
agement should be studied jointly in multi-UAV networks.

The problem of joint trajectory design and power allo-
cation (JTDPA) has drawn much attention, which has been
investigated in [5]–[7]. However, due to the non-convex fea-
ture of the JTDPA issue, it may be challenging to obtain
a global optimal solution. Several methods try to solve
this issue, i.e., the alternating optimization approach [9],
Lagrange dual method [10], and iterative algorithm [11], [12].
Nearly accurate information is always needed to deal with
the JTDPA issue. However, it is challenging to attain the
optimal policy without complete knowledge of the network
environment. Thus, in this work, we propose a reinforcement
learning (RL)method to tackle the JTDPA optimization prob-
lem in the multi-UAV networks.

RL approach [13] has been widely adopted in the arti-
ficial intelligence and wireless communication fields [14].
The authors in [15] utilized an RL method to investigate
the resource management scheme in the Internet of Vehi-
cles communication networks. In [16], the RL approach
was proposed to obtain the joint power control and channel
allocation strategy in dense wireless local area networks.
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Moreover, by combining the deep neural networks with RL,
deep reinforcement learning (DRL) [17] method has been
recently attracted increasing interests in wireless communi-
cation domains. The authors in [18] proposed a DRL-based
relay selection method for cooperative communication in
wireless sensor networks. In [19], a DRL-based method was
studied to solve the joint mode selection and resource man-
agement issue in fog radio access networks. Chen et al.
proposed a DRL scheme to solve resource allocation problem
in the collaborative mobile edge computing network [20].
ADRLmethod was investigated in [21] to obtain the resource
allocation policy for smart cities. Our previouswork proposed
a DRL approach for trajectory design and power allocation
in UAV networks [22]. However, most of these centralized
methods may achieve an expensive computational complex-
ity. Thus, multi-agent DRL (MADRL) may be a possible way
to obtain the policy with a low computational complexity. The
authors in [23] proposed an MADRL approach to deal with
the large-scale crowd path planning issue. In our previous
work [24], an multi-agent dueling-double deep Q-network
method was investigated to tackle the joint user association
and resource allocation problem. In [25], anMADRL strategy
was studied for the large-scale traffic signal control problem.
However, to our best knowledge, little works have been done
to solve the MADRL method for the JTDPA optimization
problem.

In this article, an MADRL method is introduced to tackle
the JTDPA optimization problem in multi-UAV networks.
The main contributions are presented as follows. Considering
the demand of UEs’ quality of service (QoS), the JTDPA
joint optimization issue is formulated to obtain the maximum
cumulative discounted reward. Then, due to the non-convex
and combinatorial nature of the JTDPA optimization issue,
such problem is modeled as a stochastic game, which is
solved by the proposed MADRL approach. Specifically,
the state, action and reward function are defined for all UAVs.
Then, the optimal strategy is achieved by jointly designing the
UAVs’ trajectory and allocating UAVs’ transmission power.
Moreover, considering the continuous action space and large
state space of the stochastic game, multi-agent deep deter-
ministic policy gradient (MADDPG) approach is proposed
to learn the optimal policy. A DDPG algorithm is designed
for each UAV to solve the joint optimization issue. Target
network and experience replay strategies are leveraged to
improve the learning stability. Numerical simulations with
different parameters are presented to show the effectiveness
of our proposed method. Simulation results indicate that the
MADDPG scheme can improve the system capacity and
network utility by over 15% with lower computational cost
in multi-UAV networks, compared with the other learning
optimization approaches.

The rest of this article is organized as follows. System
model and problem formulation are given in Section II.
Section III presents an MADRL method to solve the JTDPA
problem. Simulation results are provided in Section IV.
Section V gives the conclusion of this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In the typical multi-UAV networks, K UAVs are used as
ABSs to offer communication service to M UEs in K
non-overlapping hotspots. The UEs’ set and UAVs’ set are
represented asM and K, respectively. Assume that the num-
ber of UEs in hotspot i is M (i). For the simplicity of discus-
sion, we assume that each UAV can only assist to no more
than one hotspot. Furthermore, since each UE only belongs

to one hotspot, we have
K∑
i=1

M (i) = M . The UEs in the

same hotspot can be served by the same UAV through using
FDMA [26].

Assume that vm = [xm, ym]T,m ∈ M are the 2D coordi-
nates of UE m, where xm and ym are the coordinates of UE m,
respectively. Then, the horizontal coordinate of UAV i is rep-
resented as vi(t) = [xi(t), yi(t)]T, i ∈ K,where xi(t) and yi(t)
are the X and Y coordinates of UAV i at time t , respectively.
The horizontal distance between UE m and UAV i at time t
can be defined as

li,m(t) =
√
[xi(t)− xm]2 + [yi(t)− ym]2. (1)

Next, the vertical flight position of UAV i is denoted by
zi(t) ∈ [Zmin,Zmax], where Zmin and Zmax are the minimum
height and maximum height of UAVs, respectively.

Then, the distance between UAV i and UE m at time t is
obtained as

di,m(t) =
√
zi2(t)+ li,m(t)2. (2)

Due to the limited flying speed of UAVs, each UAV may
have a maximum flight distance, which is defined as

‖vi(t + 1)− vi(t)‖ ≤ VHT , (3)

‖zi(t + 1)− zi(t)‖ ≤ VAT , (4)

where VH and VA are the horizontal-flight and vertical-flight
speeds of UAVs in each time slot T , respectively.
Furthermore, to avoid collision between UAVs, collision

avoiding constraints of UAVs should be taken into account,
which is given by∥∥vi(t)−vj(t)∥∥2+∥∥zi(t)−zj(t)∥∥2≥D2

min, ∀i, j ∈ K, i 6= j,

(5)

where Dmin is the minimum distance between arbitrary two
UAVs.

Note that the time slot T should be small enough so as to
treat the channel as approximate constant. Then, in order to
avoid collision between arbitrary two UAVs, the time slot T
should satisfy the following constraint, that is,

T ≤ Tmax =
Dmin

2
√
V 2
L + V

2
A

, (6)

where Tmax is the maximum value of a time slot.
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Then, the maximum horizontal distance Lhmax and the max-
imum vertical distance Lvmax can be expressed as,

Lhmax = VHTmax , (7)

Lvmax = VATmax . (8)

Next, considering that the radio signals radiated from the
UAVs are comprised of Line-of-Sight (LoS) or non Line-
of-Sight (NLoS). The probability of the LoS connection
between UE m and UAV i at time t can be defined as [27]

PLoSi,m (t) =
1

1+ a exp(−b( 180
π
tan−1(αi,m(t))− a))

, (9)

where a and b are parameters related with the environment,
αi,m(t) is the angle of UAV i. Then, the probability of the
NLoS can be derived as

PNLoSi,m (t) = 1− PLoSi,m (t). (10)

Correspondingly, at time t , the path loss models of the LoS
and the NLoS in dB can be represented as [27],

LLoSi,m (t) = 20 log(
4π fcdi,m(t)

c
)+ ηLoS , (11)

LNLoSi,m (t) = 20 log(
4π fcdi,m(t)

c
)+ ηNLoS , (12)

where fc represents the carrier frequency, ηLoS and ηNLoS are
the mean extra losses for the LoS and NLoS, respevtively.

Next, the expected mean path loss1 can be obtained as

Li,m(t) = LLoSi,m (t)× PLoSi,m (t)+ LNLoSi,m (t)× PNLoSi,m (t). (13)

Assume that the bandwidth B is allocated to each UE
equally. Then, we can derive the bandwidth of UE m in
hotspots i, which is given by

Bi,m = B/M (i). (14)

Furthermore, each UAV’s transmission power is allocated
equally to all UEs in hotspot i, which can be represented as

pi,m(t) = pi(t)/M (i), (15)

where 0 ≤ pi(t) ≤ Pmax is the transmission power of UAV i,
and Pmax is the maximum transmission power.
Next, based on the transmission power of UAV pi(t),

the received SINR of UE m from UAV i can be given by

ϕi,m(t) =
pi,m(t)gi,m(t)

Bi,mN0 +
∑
j6=i
pj,m(t)gj,m(t)

, ∀i, j ∈ K, (16)

where gi,m(t) represents the channel gain between UAV i and
UE m, N0 is the noise power spectral density.
Then, the rate of UE m served by UAV i can be obtained as

φi,m(t) = Bi,mlog2(1+ ϕi,m(t)). (17)

1Other models of UAV communication [28] can also be applied in this
article. Such path loss model will achieve similar performance by using our
proposed method.

The total rate of UAV i can be derived as

φi(t) =
M (i)∑
m=1

φi,m(t) =
M (i)∑
m=1

Bi,mlog2(1+ ϕi,m(t)). (18)

Then, we define the utility wi(t) of UAV i as the difference
between the profit and the transmission cost, that is,

wi(t)=ρiφi(t)−λppi(t)=
M (i)∑
m=1

[
ρiφi,m(t)−λppi,m(t)

]
, (19)

where ρi represents the profit per rate, λp is the cost of UAV’s
transmit power.

B. PROBLEM FORMULATION
In multi-UAV networks, to ensure that all UEs achieve
the QoS requirements from the connected UAVs, the SINR
ϕi,m(t) of UE m should be not less than the minimum QoS
requirement �m, which can be defined as

ϕi,m(t) ≥ �m. (20)

Therefore, the JTDPA optimization issue is to maximize
the overall network utility via the optimization of each UAV’s
trajectory (vi(t) and zi(t)) and transmission power (pi(t)),
which can be formulated as

max
pi(t),vi(t),zi(t)

K∑
i=1

wi(t) =
K∑
i=1

M (i)∑
m=1

[
ρiφi,m(t)− λppi,m(t)

]
,

s.t. (3), (4), (5), (20),

Zmin ≤ zi(t) ≤ Zmax ,

0 ≤ pi(t) ≤ Pmax . (21)

Considering that the JTDPA problem has the non-convex
and combinatorial characteristics, it will be intractable to
deal with the optimization issue. Exhaustive search algorithm
may find the optimal policy with the high computational
complexity. Moreover, since the network information (i.e.,
UEs’ information and channel condition) is hardly to obtain,
which makes it challenging to obtain the optimal policy
with traditional optimization methods. In the next section,
a reinforcement learning method will be proposed to find the
optimal JTDPA strategy.

III. MULTI-AGENT DRL FOR JTDPA OPTIMIZATION ISSUE
In order to obtain the maximum network utility, the tra-
jectory and transmission power of UAVs should be deter-
mined according to the network environment. In this section,
the above issue is modeled as a stochastic game, which is then
tackled with an MADRL approach.

A. GAME FORMULATION
In multi-UAV networks, assume that each UAV decides its
own trajectory and transmission power to acquire its maxi-
mum utility wi(t). The utility of each UAV can be determined
based on the current state of the network environment and
other UAVs’ actions. Then, the network environment turns
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into a new stochastic state [29], which depends on the former
state and actions taken previously. The JTDPA problem (21)
is then modeled as a stochastic game 〈S,A,P,R〉 [30],
• S represents the state space;
• Ai is the action space of UAV i;
• P represents the state transition probability. Pss′ (×iAi)
describes the state transition probability from state s to
state s′ by jointly taking action ×iAi;

• Ri denotes the reward function of UAV i.
In the stochastic game, the state S(t) is defined to reflect

whether the minimum QoS requirement of each UE is satis-
fied or not, that is,

S(t) = {s1(t), s2(t), . . . , sM (t)}, (22)

where sm(t) ∈ {0, 1}. If the UEm achieves the minimumQoS
requirement ϕi,m(t) ≥ �m, sm(t) = 1, else sm(t) = 0. Note
that the state space [] is 2M , which can be very huge with the
large M .
Then, considering that each UAV needs to decide its own

trajectory and transmission power at time t , we define the
action space Ai(t) of UAV i as

Ai(t) = {pi(t), li(t), ϑi(t),1hi(t)}, (23)

where pi(t) ∈ {0,Pmax}, li(t), ϑi(t) ∈ {0, 2π}, and 1hi(t) are
the transmission power, the horizontal distance, the direction
angle, and the vertical travel distance of UAV i, respectively.
From the horizontal trajectory constraint (3), we have li(t) ∈
{0,Lhmax}. Considering the vertical trajectory constraint (4),
1hi(t) = [hi(t)− hi(t − 1)] ∈ {−Lvmax ,L

v
max}.

Moreover, as for the reward function, in order to ensure that
all UEs are served by UAVs, the coverage of UAVs should be
taken into account. If a UE is not in the coverage of any UAV,
a punishment will be imposed on the reward function. In addi-
tion, to ensure that all UEs’ minimum QoS requirements are
satisfied, the state sm(t) of each UE should be considered in
the reward function. Then, based on (5) and (20), the reward
function of UAV i can be defined as

Ri(t) =
M ′(i)∑
m=1

sm(t)
[
ρiφi,m(t)− λppi,m(t)

]
− η1

[
M −

K∑
i=1

M ′(i)

]
− ηi2, (24)

where M ′(i) is the number of UEs covering by UAV i,
η1 represents the punishment factor relating to UAVs’ cov-
erage, ηi2 represents the punishment of UAVs’ collision.
The first part of (24) is the overall network utility. If UE
m achieves the minimum QoS demand, sm(t) = 1, else
sm(t) = 0. The second part of (24) is the punishment of
UAVs’ coverage. If all UEs covered by all UAVs, this section
is equal to zero. The final part of (24) represents the pun-
ishment of UAVs’ overlapping. When the horizontal distance
between arbitrary two UAVs is less than the sum of their cov-
erage radius, each UAV would be obtained a punishment ηi2.
Otherwise, the final part of (24) is equal to zero.

Note that, when UAV i takes an action Ai(t) and other
UAVs take actions A−i(t), UAV i may obtain the reward
Ri(t) = Ri(t,S(t),A∗i (t),A

∗
−i(t)). Here, the action vector

(Ai(t),A−i(t)) is defined as the feasible solution to our game.
When the following inequality is satisfied for each UAV in
any S(t), the Nash equilibrium (NE) state can be achieved in
this game [31]:

Ri(t,S(t),A∗i (t),A
∗
−i(t))≥Ri(t,S(t),Ai(t),A∗−i(t)). (25)

In the NE state, the action of each UAV can be regarded as
the optimal reaction to the actions of other UAVs. All UAVs
achieve no benefit from unilateral deviation [31]. Moreover,
considering that this stochastic game is periodic, the state
of the network environment will be reset after each episode
ends. In each episode, the policies of all UAVs are carried
out to obtain the accumulative rewards from the environment.
If all UAVs can obtain information about the reward function
and the state transition, the NE strategy can be found with
integer programming methods. However, in this stochastic
game, such information is not available for UAVs. Therefore,
in order to deal with this issue, the MADRL approach is pro-
posed to achieve an NE policy at any state through interacting
with the network environment.

B. MULTI-AGENT DRL METHOD
Considering the continuous action space of the JTDPA issue
in multi-UAV networks, a MADDPG approach is proposed
to obtain the optimal joint trajectory design and power allo-
cation policy. The framework of the MADDPG approach for
the JTDPA issue is shown in Figure 1. In our stochastic game,
each UAV is modeled as an DDPG agent, which consists of
actor and critic [32]. The MADDPG approach is utilized to
learn the optimal policy for each UAV to obtain the maximum
expected discounted reward, which is defined as

8(t) =
t+Tp−1∑
t ′=t

γ t
′
−t

K∑
i=1

Ri(t ′), (26)

where γ is the discount factor and 0 ≤ γ < 1, Tp is the total
number of epochs.

Moreover, in order to increase the learning stability, both
actor and critic consist of online network and target network.
Specially, the online critic network of each UAV evaluates
the performance of the actorAi(t) with the state-action value
function Q(S(t),Ai(t)|θ iQ), which is defined as

Q(S(t),Ai(t)|θ iQ) = E [8(t) |S(t),Ai(t) ] , (27)

where E[·] represents the expectation operator, θ iQ is the
weight of the online critic network.
In each UAV, the target networks of actor and critic are

the replica of the corresponding online networks. With the
weights of the most recent corresponding online networks,
the weights of target actor network and target critic network
can be updated through

θ iµ′ = τθ
i
µ + (1− τ )θ iµ′ ,

θ iQ′ = τθ
i
Q + (1− τ )θ iQ′ , (28)
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FIGURE 1. Multi-agent DDPG approach for JTDPA issue.

where τ is the soft updating rate of target networks, θ iµ and θ iQ
denote the weights of online actor network and online critic
network, respectively. θ i

µ′
and θ iQ′ are the weights of target

actor network and target critic network, respectively.
Furthermore, in order to guarantee the non-correlation in

the training data, a experience replay strategy is applied
to store the transition samples (state S(t), next state S ′(t),
action Ai(t), and reward Ri(t)) in the experience replay
buffer B. By randomly sampling mini-batches (state sj, next
state s′j, action a

j
i, and reward r ji ) from the experience replay

buffer B, the online actor network can be updated with the
policy gradient scheme [33], which is given by

∇θ iµ
J (θ iµ) =

1
Mb

Mb∑
j=1

∇θ iµ
µ(sj|θ iµ)∇aji

Q(sj, a
j
i|θ

i
Q), (29)

where j is the index of themini-batches,Mb is the size ofmini-
batches, µ(sj|θ iµ) is the policy of online actor network θ iµ to
map the state sj to action a

j
i.

Moreover, the online critic network of eachUAV is updated
through minimizing the loss function L(θ iQ), which is defined
as

L(θ iQ) =
1
Mb

Mb∑
j=1

[yj − Q(sj, a
j
i|θ

i
Q)]

2
, (30)

where yj = r ji + γQ
′(s′j, a

′
i|θ

i
Q′ )|a′i=µ′(s′j|θ iµ′ )

is the target value

generated by target critic network with weight θ iQ′ .

Then, based on (29) and (30), the weights of online actor
network and online critic network can be updated by

θ iµ ← θ iµ − δ∇θ iµ
J (θ iµ),

θ iQ ← θ iQ − δ∇θ iQ
L(θ iQ), (31)

where δ is the learning rate of the two online networks.
The MADDPG approach for the JTDPA issue is summa-

rized in Algorithm 1. At the beginning of the MADDPG
algorithm, the replay buffer B, the weights of actor and critic
in each UAV are initialized. Notice that the training procedure
comprises ofD episodes, each of which consists of Tp epochs.
Generally, at the beginning of each episode, we first initialize
the state S(t). Then, in each epoch t , the action of each
UAV at state S(t) is generated by its online actor network
µ(S(t)|θ iµ) with a random noise ες , where ς ∼ N (0, 1)
is a random noise and ε is a decay factor decreasing over
time. Based on the action taken above, each UAV set its
three-dimensional trajectory and transmission power. If cer-
tain UAV flies beyond the network area, the UAV will choose
a random direction angle φi(t). Furthermore, once the height
of a UAV zi(t) is lower than Zmin or higher than Zmax , it will
keep the height at Zmin or Zmax . After certain UAV covers a
hotspot, it will stay without making movement and just adjust
the transmission power.

Then, considering the minimum QoS requirement, each
UE reports its state to its associated UAV. Through message
passing, each UAV can obtain the global next state S ′(t)
and reward Ri(t). Then, the tuple (S(t),Ai(t),Ri(t),S ′(t))
is stored in the replay buffer B. After randomly sampling
from the replay buffer B, the online networks of actor and
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Algorithm 1 MADDPG Approach for JTDPA Issue
• Initialize the replay buffer B.
• Initialize online critic network and online actor network
with weights θ iQ and θ iµ, respectively.

• Initialize target critic network and target actor network
with weights θ iQ′ and θ

i
µ′
, respectively.

• episode = 1.
• while episode ≤ D do
• Initialize the environment state S(t) = {0, . . . , 0}.
• for epoch t = 1, . . . ,Tp
• At the state S(t), each UAV selects the action
Ai(t) = µ(S(t)|θ iµ)+ ες .

• Each UAV sets their own trajectories and transmis-
sion power based on the given action Ai(t).

• Each UAV achieves the immediate reward Ri(t)
and obtains the global next state S ′(t) through message
passing.

• The transition (S(t),Ai(t),Ri(t),S ′(t)) is stored in
B.

• Let S(t)← S ′(t).
• for UAV i = 1, . . . ,K
• Mini-batch of transitions (sj, a

j
i, r

j
i , s
′
j) is sam-

pled stochastically from B.
• Update the weight θ iµ of online actor network
with (29).

• Update the weight θ iQ of online critic network by
minimizing loss function L(θ iQ) in (30).

• end for
• Update the weights of the target critic network and
target actor network in (28).

• If all hotspots covered by all UAVs without over-
lapping and the state S(t) = {1, . . . , 1}, then

• If the distance between any two UAVs is greater
than Dmin, then

• episode← episode+ 1.
• break.
• end If
• end If
• end for
• end while

critic can be updated. The target networks of actor and critic
are updated in (28). When the total number of UEs covering
by all UAV is equal to M , all UAVs cover all UEs. Then,
if the horizontal distance between arbitrary two UAVs is not
less than the sum of their coverage radius, all UAVs cover
all hotspots without overlapping. In this case, if the distance
between any two UAVs is not less than Dmin, the algorithm
will go to the next episode until episode > D.
Note that, according to the theorem of Selten, a subgame

perfect NE can exist in all the limited game with perfect
memory [31]. In this stochastic game, the reward of each
UAV is finite. The number of UAVs and the state-action
space are also limited. Thus, this game is a finite game.

Furthermore, due to the experience replay strategy adopted
in theMADDPGmethod, essential historical information can
be stored. Thus, in order to obtain the essential historical
information, each UAV needs to communicate with UEs
to acquire the global state by message passing. Since the
state sm(t) is the only information passing between each UAV
and each UE, the communication overhead is only one bit
(0 or 1), which is relatively low and acceptable. Then, our
proposed MADDPG approach can guarantee to converge to
the subgame perfect NE in this stochastic game.

Considering that the hyperparameter plays a significant
role in deep learning approaches, it is difficult to achieve
the convergence of our MADDPG algorithm with analytical
schemes. Furthermore, since it may be intractable to design
the optimal hyperparameters of our MADDPG algorithm in
advance, a trial-and-error strategy can be adopted. Thus, this
issue is commonly in the literature to prove the optimality
and convergence qualitatively. Here, this article limits the
convergence analysis with quantitative experiment results in
Section IV-A, which is also adopted in the similar literatures
[34], [35]. The performances with various learning rates and
mini-batch sizes are given to ensure the convergence of our
method. With the hyperparameters chosen properly, the con-
vergence of our MADDPG method can be guaranteed.

IV. PERFORMANCE EVALUATION
In this section, the performance of the presented MADRL
approach is numerically evaluated. In a 500m×500m network
environment, the UEs and the UAVs are distributed arbitrar-
ily. The main simulation parameters are shown in Table 1.
Moreover, In the MADDPGmethod, both the actor and critic
networks are designed with the two hidden layer (64 and
32 neurons). ε is set to decay from 2 with a decay rate of
0.9995. More detailed parameters of the MADDPG approach
are presented in Table 2. This simulation is executed on
a server with Intel Core i7 CPU and Tesla P100 GPU.

TABLE 1. Network environment parameters.
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TABLE 2. Main Hyperparameters of MADDPG.

The memory size is 128GB. The software platform of the
server is Ubuntu 16.04 with Tensorflow 0.12.1.

A. TRAINING EFFICIENCY OF DDPG OPTIMIZATION
METHOD
We first evaluate the training performance with different
common learning hyperparameters, such as learning rate and
batch size. In every episode, 50 UEs are arbitrarily distributed
over the square place of [50, 150], [350, 450], and one UAV
starts at an arbitrary position.

Figure 2 demonstrates the training performancewith varied
learning rates δ. In all three cases, the low smoothing training
rewards are obtained at the beginning of training process.
With the training episodes increasing, the training rewards
have an obviously tendency to increase and converge in the
cases of δ = 10−4 and δ = 10−5. Moreover, when the
learning rate δ increases, fewer training episodes are needed
to achieve the minimum QoS requirement of each UE. The
converging speed of δ = 10−4 is faster than that of δ = 10−5.
Nevertheless, if the learning rate is too large, the algorithm
may converge to a local optimum, which can be seen in the
case of δ = 10−3. Thus, considering the training reward and
training speed, the learning rate δ = 10−4 is a proper choice
in the next several experiments.

FIGURE 2. Smoothing training reward with different learning rates δ.

Next, the training performance with different batch sizes
Mb is presented in Figure 3. The smoothing training rewards
are very low at the first 100 training episodes in all cases.With
the training episodes increasing, the rewards of all cases tend
to converge within about 500 training episodes. However,
as the training episodes continue to increase, when the batch
size Mb is too small (i.e, Mb = 16), the training reward has
a tendency to decrease. Furthermore, if the batch size Mb is
relatively large (i.e, Mb = 64), the curve of the smoothing
training reward may be less stable. The training reward of
Mb = 32 has an obviously tendency to increase and converge.
Therefore, the batch size Mb = 32 is a good choice by
considering the training reward.

FIGURE 3. Smoothing training reward with different memory size Mb.

Then, the training performance with different numbers of
UEs is evaluated in one UAV scenario. Figure 4 shows the
average system capacity with various UEs’ numbers M and

FIGURE 4. Average system capacity with different numbers of UEs M and
minimum QoS requirements �m.
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minimum QoS requirements �m. When the minimum QoS
requirement of each UE is achieved, the more the num-
ber of UEs is served, the higher system capacity can be
achieved.When theUEs’ number is small, only a few epoches
needed to achieve theminimumQoS requirement of each UE,
which causes the low capacity. Moreover, the average system
capacity increases with the minimum QoS requirements �m
increasing. The capacity in the case of �m = 2 is always
higher than that of �m = 0 and �m = −2.

B. OPTIMIZATION PERFORMANCE WITH DIFFERENT
METHODS
Finally, the performance with different optimization
approaches is evaluated. We compare our proposed
MADDPGmethodwith the following four other optimization
baselines. A degraded version of our MADDPG method
with the fixed power allocation strategy (pi(t) = Pmax) is
considered, which is denoted as MADDPG-FP. Multi-agent
actor-critic (MAAC) approach is considered without the tar-
get network and experience replay strategies. In the random
scheme, at every time slot, each UAV randomly select a mov-
ing angle, a vertical moving distance, a horizontal moving
distance, and a transmission power within the constraints.
With the greedy strategy, each UAV takes a discretized action
to obtain the maximum immediate reward in a distributed
manner at every time slot.

Figure 5 shows the joint strategy of the three-dimensional
trajectory and power allocation. The performances of the
DDPG (red star) and DDPG-FP (blue star) methods are con-
sidered. Figure 5(a) and Figure 5(b) present one possible joint
strategy in the single-UAV scenario and the two-UAV sce-
nario, respectively. In each episode, each UAV starts from the
same position to provide UEs with the wireless service. In the
two scenarios, both the two approaches demonstrate the same
flying direction of UAV to cover all UEs. Moreover, in the
two-UAV scenario, the two UAVs can cover all UEs in each
hotpot without overlapping by using the two optimization
algorithms. Furthermore, unlike the DDPG-FP strategy with
fixed power allocation, the DDPG approach jointly considers
the tradeoff between spectrum efficiency and interference.
Thus, the DDPGmethod always results in the higher network
utility (913.53 for the single-UAV scenario and 1933.2 for
two-UAV scenario) than that of DDPG-FP (752.37 for the
single-UAV scenario and 1432.9 for two-UAV scenario).

Figure 6 plots the average system capacity (ASC) with
different minimum QoS requirements �m and optimization
methods. In order to meet with the minimum QoS require-
ments �m of all UEs, the five optimization approaches
(DDPG, DDPG-FP, AC, random, and greedy) are consid-
ered. In the greedy strategy, since the UAV takes actions to
maximize the immediate reward at each time slot, the high-
est system capacity can be achieved by comparing with the
other four approaches at all minimum QoS requirements.
With �m increasing, the system capacity achieved by the
greedy method keeps almost unchanged. As for the other
four approaches (DDPG, DDPG-FP, AC, and random),

FIGURE 5. Positions of the UEs and UAVs with the trajectory design and
power allocation strategies (�m = 2).

FIGURE 6. Average system capacity with different minimum QoS
requirements �m (M = 80).

the UAV takes actions to make sure that all UEs are covered
by the UAV with the minimum QoS requirements satisfied.
As �m increases, the average system capacity rises in all the
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four methods (DDPG, DDPG-FP, AC, and random). In the
case of certain high minimum QoS requirement �m, these
four methods may achieve the similar system capacity with
the greedy approach. Furthermore, the DDPGmethod always
obtains a slightly higher capacity than that of the other three
approaches (DDPG-FP, AC, and random).

Finally, the performance of different optimization
approaches with various numbers of UAVs K is evaluated.
Here, the average network utility (ANU), ASC, and com-
putational time (CT) are considered in both the uniform
scenario (Table 3) and non-uniform scenario (Table 4). In the
uniform scenario, 80 UEs are distributed over K hotspots
uniformly. As for the non-uniform scenario, the UEs are
scattered based on the non-uniform distribution. Notice that
when the number of UAV K is equal to one, the single-agent
DRL approaches (DDPG, DDPG-FP and AC) are utilized
to address the JTDPA issue, instead of the multi-agent DRL
methods (MADDPG, MADDPG-FP, and MAAC).

TABLE 3. Performance with the uniform distribution of UEs (�m = 0,
D = 200 and M = 80).

TABLE 4. Performance with the non-uniform distribution of UEs (�m = 0,
D = 200 and M = 80).

Since all UEs are covered with the minimum QoS require-
ments satisfied, all methods can obtain the high ASC and
ANU in both the uniform scenario and non-uniform scenario.
With the UAVs’ number K increasing, the ASC, ANU, and
CT of all methods increase. TheASC andANU in the uniform

scenario are always smaller than that in the non-uniform
scenario, which is closer to the real multi-UAV networks.
Moreover, among the five approaches, since the greedy
method obtains the actions tomaximize the immediate reward
at each time slot, the largest ASC and ANU can always be
achieved with huge computational time. As for the random
approach, the smallest ASC and ANU are obtained by ran-
domly selecting the actions. In the three learning methods,
our MADDPG approach can obtain a higher ASC and ANU
than that of the other two learning methods (MADDPG-FP,
MAAC) with less computational complexity in most cases,
especially in the non-uniform scenario. In the non-uniform
scenario, the ASC and ANU of our MADDPG method are
about more than 15% of that of the other two learning
approaches with K = 3, respectively.
Furthermore, notice that only when all UAVs cover all

hotspots without overlapping and all UEs’ minimum QoS
requirements are satisfied, Algorithm 1 can go to the next
episode. Considering that the maximum epoch is 200 in each
episode. That is to say, even if very few epochs are needed
in theMADDPG approach, the maximum difference between
the epochs in all methods is nomore than 200 in each episode,
which will be a quite small difference in computational time.

V. CONCLUSION
In this article, an MADRL approach is proposed to obtain the
optimal JTDPA policy in multi-UAVs networks. The JTDPA
optimization problem is modeled to achieve the maximum
long-term reward while satisfying the minimumQoS require-
ments of all UEs. Furthermore, considering the non-convex
and combinatorial characteristics of the JTDPA optimiza-
tion issue, an MADRL method is investigated to design
the three-dimensional trajectory and transmission power of
UAVs. By combining the experience replay with target net-
works, the MADDPG algorithm can effectively obtain the
optimal policy with the fast converging speed. Simulation
results indicate that our method can provide better perfor-
mance compared with other approaches.
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