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ABSTRACT Quantile regression is a powerful statistical technique for estimating the quantiles of a
conditional distribution on the values of covariates. It has been widely used in many fields. In this paper,
an improved interior point algorithm for quantile regression is proposed. The algorithm introduces multiple
centrality corrections technique into the interior point algorithm for quantile regression. The purpose of
introducing the multiple centrality corrections technique is to reduce the overall solution time required
to solve a quantile regression problem. The computational experiments results constitute evidence of the
improvement obtained with the use of multiple centrality correction technique combined with the interior
point algorithm.

INDEX TERMS Quantile regression, multiple centrality corrections, interior point algorithm.

I. INTRODUCTION
Most applied statistics can be regarded as an exposition of
linear models and their associated least squares methods. The
reason why the least squares method is popular is that the
computational simplicity and its many excellent properties
when the observed errors are normally distributed. However,
in reality, the basic assumptions of the least squares method
are often not satisfied, and the estimation obtained by the
least squares method in this case will no longer have excellent
properties.

Quantile regression is a powerful statistical technique used
to estimate and draw inferences about conditional quantile
functions. Median regression [1] as introduced in the 19th
century is a special case. In contrast to conventional mean
regression that minimizes sums of squares residuals, median
regression minimizes sums of absolute residuals; quantile
regression simply replaces symmetric absolute loss by asym-
metric linear loss.

Quantile regression was first proposed by Koenker and
Bassett [2], since their groundbreaking work, quantile regres-
sion has provoked great concern in theoretical and empirical
respects. Quantile regression is insensitive to outliers, and
it can give a more complete picture of the conditional

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

distribution than a single estimate of the center. Due to the
significant advantages of quantile regression, it has become
an attractive statistical tool in regression analysis. It has been
widely used in economy, finance, environment, eletrical engi-
neering and other fields (for example [3]–[7]). Applications
of quantile regression to problems with large sample sizes are
almost routine. In statistics, as the data increases, the model
becomes more complex and the pressure on calculations
increase. A lot of innovations are possible in this case, as is
the calculation of quantile regression.

Linear programming and the related simplex method,
like many other important statistical ideas, emerged during
the World War II. Danzig mentioned in his memoir [8]
that his simplex method thought appeared in 1947 when
he tried to solve a class of military planning problems.
Charnes et al [9] seemed to be the first to explicitly use
simplex method to solve the median regression problem.
Barrodale and Roberts [10] proposed a modification of the
simplex method for linear programming, which is appli-
cable to the primal formulation of the median regression
problem. The algorithm of Barrodale and Roberts [10] was
the first to exploit the bounded variables dual form of the
median regression problem. Some slight modifications of the
Barrodale and Roberts algorithm [10] are described
in Koenker and d’Orey [11]. The modified algorithm
can be used to compute quantile regression models of
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Koenker and Bassett [2] and the associated empirical quantile
functions. In practical applications, simplex method performs
very well for medium-scale quantile regression problems.
However, for problems with more than a few thousand obser-
vations, simplex method begin to live up to their slothful
theoretical reputation [12]. This may be partially due to
the theoretical results of the worst-case performance of the
simplex method, which show that for certain pathological
problems, the number of simplex iterations required for the
solution can increase exponentially as the size of the problem
increases. In summary, these have strongly promoted the
exploration of improved methods for large-scale quantile
regression problems.

Simplex method is a non-polynomial algorithm. It might
have to make a very large number of steps which depends
exponentially on the problem dimension [13]. The first
linear programming polynomial algorithm was proposed
by Khachiyan [14]. Following Khachiyan’s work [14], the
ellipsoid method was the only algorithm for solving lin-
ear programming whose runtime had been proved to be
polynomial until Karmarkar’s algorithm [15]. Mathematician
Karmarkar [15] proposed a new polynomial-time algorithm
for linear programming, which has polynomial computational
complexity. Although a single iteration of the Karmarkar’s
algorithm is expensive, optimality is achieved after a rela-
tively small number of iterations, which makes the algorithm
computationally attractive. The publication of Karmarkar’s
article [15] opened up a new field of research, now known
as interior point methods. The basic idea of interior point
algorithm is to find a new interior point which makes the
objective function descend along the feasible direction from
an initial point in the feasible region, and then from the new
interior point, find the subsequent interior point which makes
the objective function descend along the feasible direction,
and iterate repeatedly, so that the objective function gradu-
ally tends to the optimal value. Following Karmarkar [15],
many interior point algorithms have been proposed. These
approaches, as shown by Karmarkar [15] and subsequent
authors, provide significantly better worst-case performance
than simplex algorithms, and show impressive practical per-
formance in the large-scale linear programming that appears
in commercial and extensive numerical experiments. Among
these numerous interior point algorithms, the primal-dual
interior point algorithm has been proved theoretically to have
polynomial computational complexity, fast convergence and
good robustness, so it has become one of the most widely
used and efficient algorithms. Kojima et al. [16] developed
the theoretical background of this method and gave the first
complexity results. Kojima et al. [17] made further progress.
They provided good theoretical results and extra safeguards
for the primal-dual algorithm, which could be translated into
computational practice.

Among the various primal-dual interior point methods,
the predictor-corrector interior point algorithms are the
most applicable and efficient methods both theoretically
and computationally. The first predictor corrector interior

point algorithm was proposed by Mehrotra [18]. After that,
Yu et al. [19] presented a polynomial predictor-corrector
interior-point algorithm for convex quadratic programming
based on a modified predictor-corrector interior-point algo-
rithm. Zhao [20] provided a unified way to enlarge the
neighborhoods of predictor–corrector interior-point algo-
rithms for linear programming. Xiaoni and Sanyang [21]
presented a globally convergent infeasible-interior-point
predictor-corrector algorithm the second-order cone pro-
gramming by using the Alizadeh– Haeberly–Overton search
direction. Yang et al. [22] presented a Mehrotra-type
predictor–corrector infeasible-interior-point method for
symmetric optimization based on a new one-norm neigh-
borhood. A corrector-predictor interior-point algorithm is
proposed for symmetric optimization by Pirhaji et al. [23].
Interior point method is a very appealing approach to the
optimal power flow (OPF) problem mainly due to its speed
of convergence and ease of handling inequality constraints.
Therefore, Capitanescu et al. [24] analyzed the ability of the
predictor–corrector algorithm to solve various classical OPF
problems. Pinheiro et al. [25] proposed a predictor–corrector
primal–dual modified log-barrier interior–exterior point
method with global convergence and cubic fitting strate-
gies for solving the Reactive Optimal Power Flow (ROPF)
problem.

Mehrotra-type predictor–corrector algorithm was espe-
cially noteworthy for its efficiency and fast convergence,
such that new variations started to be developed from it.
In addition,Mehrotra-type predictor–corrector algorithms are
the base of the interior point methods software packages
due to its practical efficiency [26]. Therefore, Portnoy and
Koenker [12] applied the Mehrotra’s predictor corrector inte-
rior point algorithm to the quantile regression problems.

In practice, what really reduces the efficiency of the
primal-dual algorithm is the huge difference between com-
plementary products. If the order of complementary products
is different, then the complementary products are either too
small or too large relative to their average value, which is
undesirable. There is a theoretical basis for the view that
large difference between complementary products will lead
to an iteration away from the region where Newton’s method
for centering converges fast. This, in practice, is reflected
in the fact that only small steps are allowed in the pri-
mal and dual spaces. Gondzio [27] proposed a remedy to
this problem. He proposed the multiple centrality correc-
tions (mcc) technique in a primal-dual method for linear
programming, aiming to improve the centrality of the cur-
rent iteration and achieve larger stepsizes in primal and dual
spaces. According to a large number of numerical experi-
mental results in Gondzio [27], the use of multiple centrality
corrections technique can reduce computation time compared
to the widely used predictor-corrector interior point algo-
rithm. The variation of this version is considered to be one
of the most effective variations of interior point algorithm.
Following Gondzio [27], there has been intense interest in
multiple centrality corrections technique. See, for example,
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Torres and Quintana [28] extended the multiple centrality
corrections technique developed by Gondzio [27] from lin-
ear programming to nonlinear OPF. And a large number
of numerical results show that mcc technology is fast and
robust, and is superior to the successful prediction cor-
rection technology. Wu and Chang [29] proposed a fuzzy
multiple centrality correction algorithm based on the mul-
tiple centerality correction technology to perform multiple
corrections on complementarity conditions in the nonlinear
predictor-corrector primal-dual interior point algorithm so as
to realize the optimal power flow. Capitanescu et al. [30]
presented and texted the mcc interior point algorithm on
various OPF variants. The results obtained suggest that the
mcc algorithm is a highly viable alternative to the success-
ful predictor corrector algorithm. Min and Shengsong [31]
presented a new algorithm to solve nonlinear optimal power
flow problems. The OPF problem is solved by a primal–dual
interior point method with multiple centrality corrections
as a sequence of linearized trust region sub-problems. The
computational results show that the proposed algorithm is
very effective to OPF applications. And comparison with the
predictor–corrector primal–dual interior point method is also
made to demonstrate the superiority of the multiple centrality
corrections technique. Colombo and Gondzio [32] revisited
the technique of multiple centrality correctors and presented
further development of multiple centrality correctors for inte-
rior point methods. Huang and Jiang [33] presented the non-
linear weight multiple centrality corrections interior point
method for optimal power flow. Berti et al. [34] presented
a proposal for a variation of the predictor-corrector interior
point method with multiple centrality corrections.

The multiple centrality corrections techniques are intended
for the current point to progress in the neighbor of the central
path. Accordingly, it makes it possible to obtain larger steps
in the next iteration, moving in the direction of convergence.
This version is considered by many researchers to be one of
the most effective changes to the predictor-corrector interior
point method [34]. Therefore, in this paper, we introduce
the multiple centrality corrections techniques into the interior
point algorithm for quantile regression to improve the current
interior point algorithm for quantile regression. The computa-
tional experiment results constitute evidence of the improve-
ment obtained with the use of multiple centrality corrections
technique combined with the interior point algorithm.

This remainder of this article is organized as follows:
Section II is devoted to describing quantile regression and
converting it to the linear programming form. In Section III,
multiple centrality corrections technique is described and
incorporated into the predictor-corrector interior point algo-
rithm for quantile regression. The computational experiments
results are presented in Section IV. Lastly, Conclusions are
given in Section V.

II. QUANTILE REGRESSION
Quantile regression is one of the research frontiers of econo-
metrics. It constitutes a family of statistical techniques

intended to estimate and draw inferences about conditional
quantile functions. It is an extension of mean regression.
In recent years, it has become more and more useful not only
in econometrics, but also in biomedicine, finance, eletrical
engineering and environmental science.

A. QUANTILE REGRESSION
If X is a real random variable, it can be described by its
distribution function

F(x) = P(X ≤ x). (1)

Meanwhile, for any 0 < τ < 1, the τ th quantile of X can be
expressed as

F−(τ ) = inf {x : F(x) ≥ τ }, (2)

where median F−1(1/2) plays the ‘‘middle’’ role.
The quantile arises from a simple optimization problem: a

point estimation of a random variable with an F distribution
function. If the loss function is piecewise linear

ρτ (u) = u(τ − I (u < 0)), (3)

for any 0 < τ < 1, we can find x̂ to get the minimum
expected loss value. The earliest reasearch in this issue was
Fox and Rubin [15]. Then, let’s find the minimum of the
following objective function

Eρτ (X − x̂) = (τ − 1)
∫ x̂

−∞

(x − x̂)dF(x)

+ τ

∫
+∞

x̂
(x − x̂)dF(x). (4)

Taking the derivative with respect to x̂ and setting the derivate
to 0, we get

F(x̂)− τ = 0. (5)

Because F is monotonic, any element from set {x : F(x) = τ }
will minimize the expected loss value. When equation (5)
has a unique solution, let x̂ = F−1(τ ), otherwise, take the
minimum value from the solution set as the solution. For the
asymmetrical linear loss function, the optimal point estima-
tion is the quantile. In the case of symmetry, the quantile is
the median.

Considering the quantile as a solution to a simple optimiza-
tion problem, we seek a more general method to eatimate the
quantile function model. The ordinary least squares method
provides a temple for this idea. The sample mean is the
solution to the problem

min
µ∈R

n∑
i=1

(yi − µ)2. (6)

If x is given, the conditional mean of y can be expressed as
µ(x) = xTβ, and we can eatimate β by solving

min
β∈R

n∑
i=1

(yi − xTi β)
2. (7)
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Similarly, since the τ th quantile of the sample is the solution
to the problem

min
α∈R

n∑
i=1

ρτ (yi − α), (8)

we can then express the τ th conditional quantile function as

Qy(τ |x) = xTβ(τ ), (9)

and we can get β̂(τ ) by solving

min
β∈Rn

n∑
i=1

ρτ (yi − xTi β). (10)

The above content is the central idea in Koenker and
Bassett [2].

B. LINEAR PROGRAMMING FORM FOR QUANTILE
REGRESSION
As shown in the previous subsection, quantile regression
places asymmetric weight on positive and negative residuals,
and then solves the modified L1 problem (10). Our goal is
to find an estimation of the coefficient β. Since the objec-
tive function is not differentiable, the traditional method of
differentiating the objective function is no longer applicable.
A feasible method for estimating the parameters β of quantile
regresssion is the linear programming method.

Let both u and v denote n dimensional vectors, and u =
[y− Xβ]+, v = [Xβ − y]+, where y = (y1, y2, . . . , yn)T and
[z]+ represents the non-negative part of z, i.e. (u, v) ∈ R2n+ .
Then the modified L1 problem (10) can be rewritten in linear
programming form

min
(u,v,β)

OTp β + τe
T u+ (1− τeT v), (11)

under the constraints{
XTβ + u− v = y
(u, v) ∈ R2n+ ,

(12)

where e represents an n dimensional unit vector, and Op
represents p dimensional zero vector.
Let matrix A be expressed as

A = [X
...I
...− I ], (13)

then linear programming problem (11) and (12) become

min
(u,v,β)

τeT u+ (1− τ )eT v

s.t.

{
Ab = y
(u, v) ∈ R2n+ ,

(14)

where b = (βT , uT , vT )T . According to duality theory,
the dual programming of (14) can be written as

max yT d, (15)

subject to

AT d = c, (16)

where d = (d1, d2, . . . , dn), c is a p+ 2n dimensional vector

c = (0, 0, . . . , 0, τ, τ, . . . , τ, (1− τ ), (1− τ ), . . . , (1− τ )).

(17)

After simplication, the dual programming becomes

max yT d

s.t.

{
XT d = 0
d ∈ [τ − 1, τ ]n.

(18)

With a = d + 1 − τ , the dual programming can be further
simplified to

max yT a

s.t.

{
XT a = (1− τ )XT e
d ∈ [0, 1]n,

(19)

where [0, 1]n represents the n field Cartesian product of the
unit interval. The dual programming formulation accords
well with the standard formula of interior point algorithm for
linear programming with bounded variables.

III. MULTIPLE CENTRALITY CORRECTIONS TECHNIQUE
The real breakthrough in the study of interior point
algorithm was in 1984. Karmarkar [15] proposed a
new polynomial-time algorithm for linear programming,
which has polynomial computational complexity. Following
Karmarkar, there are many variations of interior point algo-
rithms. Among these numerous interior point algorithms,
the primal-dual interior point algorithm has been proved
theoretically to have polynomial computational complexity,
fast convergence and good robustness, so it has become one
of the most widely used and efficient algorithms. Among
the various primal-dual interior point methods, the predictor-
corrector interior point algorithm proposed by Mehrotra [18]
is themost applicable and efficientmethods both theoretically
and computationally.

In the multiple centrality corrections techniques, spe-
cial attention is paid to restoring the centrality of the next
iteration, while increasing the stepsizes in the primal and
dual spaces. The multiple centrality corrections techniques
achieve two complementary goals: (1) larger step size is
achieved in the primal and dual spaces; (2) the centrality of
the current iteration has been improved. Thismultiple central-
ity corrections technique is considered bymany researchers to
be one of the most effective changes to the predictor-corrector
interior point method [34].

In this paper, we introduce the multiple centrality correc-
tions technique into the interior point algorithm for quantile
regression to improve the current interior point algorithm
for quantile regression. The computational experiment results
constitute evidence of the improvement obtained with the use
of multiple centrality corrections technique combined with
the interior point algorithm. Next, We briefly describe the
predictor-corrector interior point method.
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A. PREDICTOR-CORRECTOR INTERIOT POINT ALGORITHM
First, we consider the following linear programming with
bounded variables

max
x
cT x

s.t.


Ax = b
x + s = u
x, s ≥ 0,

(20)

where A ∈ Rm×n, rank(A) = m, c, x, s, u ∈ Rn and
b ∈ Rm. According to duality theory, the corresponding dual
programming of (20) can be written as

max
(y,z,w)

cT y− uTw

s.t.

{
AT y+ z− w = c′

z,w ≥ 0,
(21)

where z,w ∈ Rn and y ∈ Rm. The KKT (Karush-Kuhn-
Tucker) conditions associated with (20) and (21) can be
expressed as

Ax = b

x + s = u

AT y+ z− w = c

XZe = µe

SWe = µe (22)

where X = diag(x), (that is, if i = j,Xi,j = xi, otherwise,
Xi,j = 0), Z = diag(z), S = diag(s) andW = diag(w).
Almost all current codes based on the primal- dual method

are performed in a more or less similar way: in each iteration
they factor the KKT equations using some direct method, and
then solve the predictor term and the corrector term twice
in the Newton step [18]. Predictor-corrector interior point
algorithms seek the solution of linear programming problem
by applying Newton’s method to (22). The predictor direction
is obtained by solving the following linear equation system
with µ = 0
A 0 0 0 0
I 0 I 0 0
0 AT 0 I −I
Z 0 0 X 0
0 0 W 0 S



1ax
1ay
1as
1az
1aw



=


b− Ax
u− x − s

c− AT y− z+ w
µe-XZe
µe− SWe

 , (23)

where direction1a is also known as the affine-scaling direc-
tion, which is responsible for optimization. The maximum
feasible affine-scaling primal stepsize (αP) and dual stepsize
(αD) must ensure that the primal and dual variables stay

feasible. The corrector direction 1c is the solution of the
following linear equation system


A 0 0 0 0
I 0 I 0 0
0 AT 0 I −I
Z 0 0 X 0
0 0 W 0 S



1cx
1cy
1cs
1cz
1cw



=


0
0
0

µe−1Xa1Zae
µe−1Sa1Wae

 , (24)

where 1Xa = diag(1ax), 1Za = diag(1az), 1Sa =
diag(1as), 1Wa = diag(1aw) and µ > 0 is the centering
parameter, which prevents the complementary products xizi
and siwi from converging to zero. The choice of µ can be
refered to Mehrotra [18].

The predictor-corrector direction is given by1 = 1a+1c,
where 1a is responsible for reducing primal and dual infea-
sibulities as well as the duality gap, while 1c is responsible
for keeping the current iteration away from the boundary of
the feasible domain. The iteration will stop when the duality
gap is less than a specified tolerance.

B. MULTIPLE CENTRALITY CORRECTIONS TECHNIQUE
In practice, what really reduces the efficiency of the
primal-dual interior point algorithm is the huge difference
between complementary products. If the order of the com-
plementary products is different, then the complementary
products are either too small or too large relative to their
average value, which is undesirable. There is a theoretical
basis for the view that large difference between complemen-
tary products will lead to an iteration away from the region
where Newton’s method for centering converges fast. This,
in practice, is reflected in the fact that only small steps are
allowed in the primal and dual spaces.

Jansen et al. [35] remedied this problem by defining a
series of traceable targets. The sequence goes from an arbi-
trary internal point to a point near the center path. The
algorithm generates iterates that simultaneously get closer to
optimality and closer to centrality. Based on Jansen et al. [35],
Gondzio [27] proposed the multiple centrality corrections
technique in a primal-dual method for linear programming,
aiming to improve the centrality of the next iteration and
achieve larger stepsizes in primal and dual spaces.

Suppose that a predictor direction1p has been determined
for a primal solution (x, s) and dual solution (y, z,w) at a
given iteration, and that maximum feasible primal stepsize
(αP) and dual stepsize (αD) to maintain the nonnegativity
of primal and dual variables have been computed. We want
to find a corrector direction 1m, which allows for larger
stepsizes α̃P and α̃D in primal and dual spaces for direction
1p +1m.
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Assume that the required increase of stepsizes is δa, then
the stepsizes αP and αD expand to

α̃P = min(αP + δa, 1)

α̃D = min(αD + δa, 1) (25)

The trial point is often defined as

(̃x, s̃) = (x, s)+ α̃P(1Px,1Ps)

(̃y, z̃, w̃) = (y, z,w)+ α̃D(1Py,1Pz,1Pw). (26)

In order to improve the centrality of the next iteration
(x̂, ŝ, ŷ, ẑ, ŵ), a requirement is attached to the1m term, which
is to drive the trial point (26) back near the central path.
There’s a lot of freedom in choosing a target that is close to
the central path. One natural guess is to drive the trial point
to the analytic center by defining the target as

v = (µe, µe) ∈ R2n. (27)

However, the point (27) is usually an unreachable target.
In practice, we usually compute the complementarity prod-
ucts for the trial point (26)

ṽ = (X̃ z̃, S̃w̃) ∈ R2n, (28)

and then project them on a hypercubeH = [βminµ, βmaxµ]2n

to define the target

vt = π (̃v|H ) ∈ R2n, (29)

where βminµ and βmaxµ are the relative threshold values for
outlier complementarity products. Then the corrector direc-
tion 1m can be computed from

A 0 0 0 0
I 0 I 0 0
0 AT 0 I −I
Z 0 0 X 0
0 0 W 0 S



1mx
1my
1ms
1mz
1mw

 =


0
0
0
0

vt − ṽ

 .
(30)

The correcting process can be easily repeated the desired
number of times. It continues until

α̂P < αP + rδa or α̂D < αD + rδa, (31)

where r is the minimum acceptable increase of stepsizes.
The steps of the multiple centrality correction technique

can be described as follows:
Step (1): Initialization parameters. 1P is the predictor direc-

tion (Mehrotra’s predictor corrector direction 1 =
1a + 1c); αP and αD are the stepsizes along αP
in the primal and dual spaces, respectively; K is
the maximum number of corrections allowed; Set
corrections counter k = 0.

Step (2): If k < K , go to Step (3).
Step (3): Computer the trial point (26).
Step (4): Define the target (29).
Step (5): Computer the corrector 1m from (30).
Step (6): Perform the ratio test for the composite direction

1 = 1p + 1m. If (31) is not satisfied, then k = k

+ 1, 1P = 1. Otherwise, 1 = 1P and terminate
corrections.

The algorithm proposed in this paper introduces multiple
centrality corrections technique into the interior point algo-
rithm for quantile regression. It has the following advantages.
First, it uses real objects and trial points whose centrality
quality can be measured at low cost: if the latter is found
unsatisfactory, the point is reliably corrected. What we want
to emphasize here is that the main purpose of the revision is
to improve centrality. Another advantage of this method is
that the calculation of each corrector term requires the same
effort.This effort is determined by the solution of the equation
system (30). The remaining operations, that is, calculating the
trial point in the complementary product space, projecting
them onto H , calculating the new direction 1, performing
ratio tests on it, doesn’t contribute much.

IV. COMPUTATIONAL EXPERIMENTS
At present, computational methods for quantile regression
mainly include simplex algorithm, interior point method,
smoothing method and proximal algorithm. Each of them has
its own advantages. None of them can fully dominate the
others. In this paper, we introduce the multiple centrality cor-
rections techniques to the interior point method for quantile
regression to improve the current interior point method for
quantile regression. Therefore, in this paper, only the compar-
ison between the interior point method combing the multiple
centrality corrections techniques for quantile regression and
the current interior point method for quantile regression is
given.

In this section, we present the computational experiments
performed when incorporating the multiple centrality cor-
rections technique in the predictor-corrector interior point
algorithm for quantile regression. Three experiments are con-
structed to verify the performance of the modified interior
point algorithm for quantile regression. The computational
experiments were run on a Lenovo G470 with 2.50 GHz
and 10240MB RAM, with Windows 7 operating system. All
solution times in this article are in seconds.

A. TEST DATA
PCx [36] is a linear programming solver that implements a
variant of predictor-corrector interior point algorithm with
multiple centrality corrections technique. The results reported
in this article were obtained by PCx. MPS (Mathematical
Programming System) is a file format for presenting and
achieving linear programming and mixed integer program-
ming problems. Almost all commercial LP solvers accept this
format, as does PCx. Therefore, in this article, we first convert
quantile regression problem into a linear programming form,
then useMPS format file to represent the linear programming,
and finally use PCx to solve it.

Portnoy and Koenker’s approach [12] was designed for
‘‘long, thin problems’’, that is for problems with large sam-
ple size, but only a relatively small number of parameters.
When the parametric dimension of the model is large, the
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original implementation of interior point methods can be
quite slow [37]. Therefore, without loss of generality, in this
article, we take the parameter dimension p = 5 as an example.
In this section, we illustrate the performance of the pro-

posed modified interior point algorithm for quantile regres-
sion by comparing it with Portnoy and Koenker’s interior
point method [12] for quantile regression through different
simulations. In three computational experiments in this arti-
cle, data were drawn from Gaussian distribution, t distribu-
tion and Chi-square distribution, respectively.

B. OBTAINED RESULTS
To obtain a better sense of the performance of the
predictor-corrector interior point algorithm with multiple
centrality corrections technique for quantile regression.
we present three computational experiments performed
when incorporating multiple centrality corrections technique
in predictor-corrector interior point algorithm for quantile
regression.

1) EXPERIMENT 1
In this experiment, we selected the observed values of
samples subject to Gaussian distribution. In the following
Figures 1 to 5, we give the solution time using the predictor-
corrector interior point algorithm with multiple centrality
corrections technique for quantile regression at quantiles
0.1, 0.25, 0.5, 0.75 and 0.9, respectively. For compari-
son purpose, we also provide the solution time using the
predictor-corrector interior point algorithm [12] for quantile
regression. These two algorithms are represented by ‘‘mcc’’
and ‘‘pc’’, respectively. The difference between the two algo-
rithms lies in the multiple centrality corrections technique
of Gondzio [27], and the other settings in PCx are used by
default.

FIGURE 1. Timing comparison of two algorithms for quantile regression:
times are in seconds for Gaussian data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.1.

In Figures 1 to 5, timing comparison of two algorithms at
quantiles 0.1, 0.25, 0.5, 0.75 and 0.9 is presented, respec-
tively. When τ = 0.1, according to the solution time of
the two algorithms, mcc shows reductions in solution time
in 19 test problems, of which, 14 problems display reduction

FIGURE 2. Timing comparison of two algorithms for quantile regression:
times are in seconds for Gaussian data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.25.

FIGURE 3. Timing comparison of two algorithms for quantile regression:
times are in seconds for Gaussian data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.5.

FIGURE 4. Timing comparison of two algorithms for quantile regression:
times are in seconds for Gaussian data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.75.

rates greater than 5%, the largest reduction is observed at
design point n = 1200, corresponding to a reduction rate
of approximately 15.8%. We can see very intuitively from
Figure 1, there are 19 black squares above the corresponding
red circles.When τ = 0.25, mcc shows reductions in solution
time in 18 test problems, of which, 13 problems display
reduction rates greater than 5%. The largest reduction in
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FIGURE 5. Timing comparison of two algorithms for quantile regression:
times are in seconds for Gaussian data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.9.

solution time is observed at design points in n : 1200, 1400,
corresponding to a reduction rate of approximately 13.6%.
Only when n = 2200, mcc shows increment in solution time.
As shown in Figure 2, the red circle is above the correspond-
ing black square when n = 2200. When τ = 0.5 mcc shows
reductions in solution time in 15 test problems, of which,
11 problems display reduction rates greater than 5%. The
largest reduction in solution time is observed at n = 2200,
corresponding to a reduction rate of approximately 21.4%.
As can be seen from Figure 4, there are 15 black squares
above the corresponding red circles. This indicates that mcc
gets reductions in solution time in 15 test problems. When
τ = 0.9, mcc shows reductions in solution time in 18 test
problems. The largest reduction in solution time is observed
at design point n = 1000, corresponding to a reduction
rate of approximately 16.2%. As shown in Figure 5, there
are 18 black squares above the corresponding red circles.
At the remaining three design points, the black squares and
the corresponding red circles coincide, indicating that the
solution time required by the two algorithms is the same at
these three design points.

2) EXPERIMENT 2
In this experiment, we selected the observed values of sam-
ples subject to Student t distribution. Similar to the previous
Experiment 1, in the following Figures 6 to 10, the compar-
ison of solution time of the two algorithms at quantiles 0.1,
0.25, 0.5, 0.75 and 0.9 is presented, respectively.

As shown in Figure 6, there are 21 black UpTriangles
above the corresponding blue asterisks, indicating that mcc
shows reductions in solution time in 21 test problems. When
τ = 0.1, according to the solution time of the two algo-
rithms, 14 problems display reduction rates greater than 5%,
the largest reduction is observed at n = 4000, corresponding
to a reduction rate of approximately 18.4%. When τ = 0.25,
mcc shows reductions in solution time in 21 test prob-
lems, of which, 16 problems display reduction rates greater
than 5%. The largest solution time reduction rate is approx-
imately 19.4%. From Figure 7, we can see very intuitively

FIGURE 6. Timing comparison of two algorithms for quantile regression:
times are in seconds for t data. Timings were made at 21 design points in
n : 1000,1200, . . . ,4800,5000, τ = 0.1.

FIGURE 7. Timing comparison of two algorithms for quantile regression:
times are in seconds for t data. Timings were made at 21 design points in
n : 1000,1200, . . . ,4800,5000, τ = 0.25.

that all black UpTriangles are above the corresponding blue
asterisks, which indicates that mcc takes less solution time.
As can be seen from Figure 8, all black UpTriangles are
above the corresponding blue asterisks, this indicates that
mcc gets reduction in solution time in 21 test problems.
When τ = 0.5, according to the solution time of the

FIGURE 8. Timing comparison of two algorithms for quantile regression:
times are in seconds for t data. Timings were made at 21 design points in
n : 1000,1200, . . . ,4800,5000, τ = 0.5.
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two algorithms, the largest reduction in solution time
is observed at design point n = 1000, corresponding
to a reduction rate of approximately 14.3%. Similarly,
in Figure 9 and 10, all black UpTriangles are above the
corresponding blue asterisks. The maximum solution time
reduction rate is 9.5% and 12.8% respectively.

FIGURE 9. Timing comparison of two algorithms for quantile regression:
times are in seconds for t data. Timings were made at 21 design points in
n : 1000,1200, . . . ,4800,5000, τ = 0.75.

FIGURE 10. Timing comparison of two algorithms for quantile regression:
times are in seconds for t data. Timings were made at 21 design points in
n : 1000,1200, . . . ,4800,5000, τ = 0.9.

3) EXPERIMENT 3
In this experiment, we selected the observed values of sam-
ples subject to Chi-square distribution. Similar to the previous
experiments 1 and 2, in the following Figures 11 to 15,
we give the comparison of the results obtained by the
two algorithms at quantiles 0.1, 0.25, 0.5, 0.75 and 0.9,
respectively.

In Figures 11 to 15, we present a comparison of the
solution time of the two algorithms for Chi-square data at
quantiles 0.1, 0.25, 0.5, 0.75 and 0.9, respectively. When
τ = 0.1, according to the solution time of the two algo-
rithms, mcc shows reductions in solution time in 19 test prob-
lems, of which, 15 problems display reduction rates greater
than 5%, the largest reduction is observed at design point

FIGURE 11. Timing comparison of two algorithms for quantile regression:
times are in seconds for Chi-square data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.1.

FIGURE 12. Timing comparison of two algorithms for quantile regression:
times are in seconds for Chi-square data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.25.

FIGURE 13. Timing comparison of two algorithms for quantile regression:
times are in seconds for Chi-square data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.5.

n = 2000, corresponding to a reduction rate of approxi-
mately 15.4%. From Figure 11, we can see very intuitively
that there are 19 black stars are above the corresponding
magenta DownTriangles. In Figure 11, when n = 3800,
the black star coincides with the corresponding magenta
DownTriangle, and the solution time of the two algorithms
is the same; when n = 1200, the magenta DownTriangle
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FIGURE 14. Timing comparison of two algorithms for quantile regression:
times are in seconds for Chi-square data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.75.

FIGURE 15. Timing comparison of two algorithms for quantile regression:
times are in seconds for Chi-square data. Timings were made at 21 design
points in n : 1000,1200, . . . ,4800,5000, τ = 0.9.

is above the corresponding black star, pc takes less solution
time. When τ = 0.25, mcc shows reductions in solution time
in 20 test problems, of which, 14 problems display reduction
rates greater than 5%. The largest reduction in solution time
is observed at design point in n = 1000, corresponding to a
reduction rate of approximately 25%. As shown in Figure 12,
there are 20 black stars above the corresponding magenta
DownTriangles. When τ = 0.5, mcc shows reductions in
solution time in 20 test problems, of which, 16 problems
display reduction rates greater than 5%. The largest reduc-
tion in solution time is observed at n = 2600, which is
approximately 17.9%. As shown in Figure 14, all black stars
are above the corresponding magenta DownTriangles. When
τ = 0.75, the maximum solution time reduction rate is
11.1%.When τ = 0.9, mcc shows reductions in solution time
in 20 test problems, of which, 12 problems display reduction
rates greater than 5%, the largest solution time reduction rate
is 10.0%. As shown in Figure 15, there are 20 black stars
above the corresponding magenta DownTriangles.

V. CONCLUSION
In this paper, we introduce the multiple centrality corrections
technique to predictor–corrector interior point algorithm for

quantile regression. Multiple centrality corrections technique
can increase the step sizes in primal and dual spaces and
improve the centrality of the current iteration. The compu-
tational experiments results show that compared with the
previous interior pointmethod for quantile regression, the cal-
culation time required to calculate the quantile regression
problem is reduced after the introduction of the multiple
centrality corrections technique. This proves the superiority
of using multiple centrality corrections technique combined
with interior point algorithm for quantile regression.

Due to the numerous calculation methods of quantile
regression, the improvement techniques of the quantile
regression calculation method proposed in this paper are still
very limited. Therefore, using more abundant methods to
improve the efficiency of the algorithms for quantile regres-
sion is the focus of future research. In addition, applying
quantile regression to different practical fields is also the
focus of future research.
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