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ABSTRACT This paper presents a novel hardware-efficient central pattern generator (CPG) model to realize
a bio-inspired gait of a hexapod robot. The CPG model consists of a network of cellular automaton (CA)
oscillators; thus, it can be implemented as a network of sequential logic circuits. Detailed analyses of
nonlinear oscillation dynamics show that the oscillator that is driven by multiple asynchronous clocks is
more suitable to realize the gait of the robot than an oscillator that is driven by a single clock or multiple
synchronous clocks. Moreover, detailed analyses of nonlinear network dynamics show that the clocks among
the CA oscillators should be asynchronous to appropriately realize the gait. Using the analyses, systematic
procedures to design the CPG model are proposed. The proposed CPG model is implemented in a field
programmable gate array (FPGA); our experiments validate that the CPG model implemented in an FPGA
can realize the bio-inspired gait of a hardware robot. Further, we show that the proposed CPG model utilizes
fewer circuit elements and lower power than a conventional CPG model.

INDEX TERMS Asynchronous cellular automaton, central pattern generator (CPG), field programmable
gate array (FPGA), hexapod robot, nonlinear dynamics, synchronization.

I. INTRODUCTION
Various species of animals, such as ants, spiders, snakes, and
fish perform locomotion using flexor and extensor muscles
that are driven by multiple signals with rhythmic patterns.
Studies in the field of biological motor control system show
that such rhythmic patterns are produced by central pat-
tern generators (CPGs) in the central nervous systems [1].
Inspired by this biological principle, many mathematical
and electronic circuit models of CPGs have been designed
to control artificial robots that are capable of performing
useful tasks [2], [3]. For example, networks of Hopf and
Kuramoto oscillators have been used to control hexapod
robots, as shown in Fig. 1. Further, CPG models have been
used in the field of medical engineering [4], [5]. For exam-
ple, a network of integrate-and-fire oscillators were used to
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controlmammalianmuscles to assist in damaged nervous sys-
tems [5]. Considering the nonlinear circuit and system theory,
biomimetic models, including the CPGmodels, are classified
into the following four classes based on continuousness and
discontinuousness of state variable and time.
Class CTCS. This is a nonlinear differential equation

model of a biomimetic system with a continuous time and
continuous states (CTCS). A class CTCS biomimetic model
can be generally implemented in an analog nonlinear circuit,
e.g., [5]–[9].
Class DTCS. This is a nonlinear difference equation model

of a biomimetic system with a discrete time and continu-
ous states (DTCS). A class DTCS biomimetic model can
be generally implemented in a switched capacitor circuit,
e.g., [10]–[13].
Class DTDS. This is a numerical integration model (in

finite binary number representation) of a biomimetic system
with a discrete time and discrete states (DTDS). A class
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FIGURE 1. Hexapod robot [38] mounted with a field programmable gate
array (FPGA) with the proposed central pattern generator (CPG) model.

DTDS biomimetic model can be generally implemented in
a digital processor or a biomimetic sequential logic circuit,
e.g., [14]–[19].
Class CTDS. This is an asynchronous cellular automa-

ton (CA) model of a biomimetic system with a continuous
(state transition) time and discrete states (CTDS). A class
CTDS biomimetic model can be generally implemented in
an asynchronous sequential logic circuit, e.g., [20]–[36].

Most conventional biomimetic models belong to the
CTCS, DTCS, and DTDS classes. The CPG models
in [5]–[8], [10]–[12], and [14]–[18] belong to the CTCS,
DTCS, and DTDS classes, respectively. We and certain other
research groups have been developing various kinds of class
CTDS biomimetic models, e.g.,
• Asynchronous CA neuron models [20]–[23],
• Asynchronous CA cochlea models [24]–[27],
• Asynchronous CA gene–protein system models [28],
• Asynchronous CA neural network models [29]–[32],
• Asynchronous CA CPG models [33], [34].

These studies have shown that class CTDS biomimetic mod-
els havemany advantages, such as the following: (i) Themod-
els can be implemented by fewer circuit elements than the
numerical integration models employed in digital processors
[20]–[34], and (ii) They consume lower power than numerical
integration models employed in digital processors [20]–[34].
Hence, this study aims at presenting a novel asynchronous
CA model of the CPG that consumes fewer circuit elements
and lower power than a conventional digital processor CPG
model.

Fig. 2(a) shows a conceptual diagram of the proposed CPG
model, where each oscillator is implemented in a sequential
logic circuit; thus, its dynamics is described by a CA. In this
study, a CA oscillator is introduced in Section II. Detailed
analyses of nonlinear dynamics of the CA oscillator reveal an
important advantage of the asynchronous nature of the clocks:
an asynchronous CA oscillator (i.e., a CA oscillator with mul-
tiple asynchronous clocks) can control its oscillation such that
the oscillation is suited to control a hexapod robot, while a

FIGURE 2. Cellular automaton oscillator and four types of networks.

synchronous CA oscillator (i.e., a CA oscillator with a single
clock or multiple synchronous clocks) cannot. As prepara-
tions to design the CPG, Section III presents a small network
of the CA oscillators. Detailed analyses of the nonlinear
dynamics of the network reveal the effects of the parameters
on the synchronization phenomena of the network. Section
IV presents a novel asynchronous CA CPG model, which
consists of a network of CA oscillators. Depending on the
asynchronous nature of the clocks in a single CA oscillator
and among multiple CA oscillators, the following four types
of CA oscillator networks exist (see also Fig. 2(b)).

(a) Asynchronous network of asynchronous CA oscillators
(b) Synchronous network of asynchronous CA oscillators
(c) Asynchronous network of synchronous CA oscillators
(d) Synchronous network of synchronous CA oscillators

Detailed analyses of nonlinear dynamics of the four networks
reveal that the asynchronous network of asynchronous CA
oscillators is best suited to be employed as a CPG model.
Based on the aforementioned analyses, systematic design
procedures of the CPG model are proposed. In Section V,
the proposed CPG model is implemented in a field pro-
grammable gate array (FPGA). Our experiments indicate that
the CPG model implemented in an FPGA can realize a tripod
gait of the hardware robot, as shown in Fig. 1, where the
tripod gait is a typical gait observed in six-legged insects
[37]. For comparison, a conventional digital processor CPG
model is implemented in the same FPGA. It is observed that
the proposed CPGmodel employs fewer circuit elements and
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lower power than the conventional CPG model. This paper
reports the following novelties and significances.
• This study proposes a novel CPG model design pro-
cedure, which employs few circuit elements and low
power. Hence, this study provides fundamental mea-
sures to develop small and low-power CPG models,
whose potential applications include single-chip low-
power controllers for bio-inspired multi-legged robots
and implantable muscle controllers to assist in damaged
nervous systems.

• This study analyzes the effects of the asynchronous
nature of clocks in the CAoscillators in a network. To the
best of our knowledge, this analysis has been performed
for the first time. Hence, this study can contribute to
develop new nonlinear circuit theories – oscillation and
synchronization theories of networks of asynchronous
sequential logic circuits.

• Although preliminary results of this study were pre-
sented in an IEEE flagship conference [33], to the best
of our knowledge, this paper reports detailed analyses of
a CA oscillator and its networks for the first time. These
analyses reveal that the network in this study is better
suited to be employed as a CPG than the previously
reported network.

FIGURE 3. Schematic diagram of the asynchronous cellular
automaton (CA) oscillator. LUT represents look-up table.

II. ASYNCHRONOUS CA OSCILLATOR
A. MODEL DESCRIPTION
This subsection describes an asynchronous CA oscillator,
which is used as an element of a CPG model, as described
in a further section. Fig. 3 shows a schematic diagram of the
CA oscillator. The CA oscillator has two clocks

CX
i (t) =

∞∑
k=0

δ(t − kT Xi ),

CY
i (t) =

∞∑
k=0

δ(t − kT Yi ),

where i is an oscillator index, t ∈ R is a continuous time,
T Xi ∈ (0,∞) and T Yi ∈ (0,∞) are clock periods, and δ :
R→ {0, 1} is the unit impulse function

δ(t) =

{
1 if t = 0,
0 if t 6= 0.

FIGURE 4. Nonlinear dynamics of the CA oscillator. N = 25, M = 210,
ωi = 2π/αi , αi = 0.01, T X

i = 0.001, and T Y
i = 0.001014142. (a) Timing

chart of state transitions. (b) Phase plane trajectory starting from
Xi = Yi = Pi = Qi = 0. ρi = 144. (c) Phase plane trajectory starting from
Xi = Yi = Pi = Qi = 0. ρi = −100.

Further, as shown in Fig. 3, the CA oscillator has the fol-
lowing two discrete state variables {Xi,Yi} and two discrete
auxiliary variables {Pi,Qi}.

Xi ∈ ZN ≡ {0, · · · ,N − 1}, Yi ∈ ZN , (1)

Pi ∈ ZM ≡ {0, · · · ,M − 1}, Qi ∈ ZM , (2)

where N and M are positive integers characterizing resolu-
tions of the discrete state variables Xi,Yi, Pi, and Qi. The
two clocks CX

i and CY
i trigger transitions of the discrete state

variables Xi and Yi as follows (see Fig. 4(a)).

If CX
i (t) = 1 and Pi(t) ≥ |Fi(Xi(t),Yi(t))|, then

Xi(t+) : =


Xi(t)+ 1 if Fi(Xi(t),Yi(t)) ≥ 0 and

Xi(t) < N − 1,
Xi(t)− 1 if Fi(Xi(t),Yi(t)) < 0 and

Xi(t) > 0.

If CY
i (t) = 1 and Qi(t) ≥ |Gi(Xi(t),Yi(t))|, then (3)

Yi(t+) : =


Yi(t)+ 1 if Gi(Xi(t),Yi(t)) ≥ 0 and

Yi(t) < N − 1,
Yi(t)− 1 if Gi(Xi(t),Yi(t)) < 0 and

Yi(t) > 0,

(4)

where ‘‘t+’’ denotes ‘‘limε→+0t + ε’’ and ‘‘:=’’ denotes an
‘‘instantaneous state transition.’’ Moreover, Fi : ZN ×ZN →
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Z±M ≡ {−(M − 1), · · · , (M − 1)} and Gi : ZN × ZN → Z±M
denote discrete functions

Fi ≡ Fi ◦ fi, Gi ≡ Gi ◦ gi, (5)

whereFi and Gi are implemented in look-up-tables, as shown
in Fig. 3. In this study, we propose to design the functions
Fi : R→ Z±M and Gi : R→ Z±M as follows.

Fi(x) =
⌊ 1

αiT Xi x

⌋
, Gi(y) =

⌊ 1

αiT Yi y

⌋
,

where the functions Fi and Gi are assumed to be saturated at
±(M−1), αi ∈ (0,∞) is a scaling parameter, and b.c denotes
the floor function

bzc = max{n ∈ Z | n ≤ z}.

Further, we propose to design the functions fi : ZN×ZN → R
and gi : ZN × ZN → R as follows.

fi(x, y) = ρi
(
x −

⌊N
2

⌋)
− ωi

(
y−

⌊N
2

⌋)
−

(
x −

⌊N
2

⌋)((
x −

⌊N
2

⌋)2
+

(
y−

⌊N
2

⌋)2)
,

gi(x, y) = ωi
(
x −

⌊N
2

⌋)
+ ρi

(
y−

⌊N
2

⌋)
−

(
y−

⌊N
2

⌋)((
x −

⌊N
2

⌋)2
+

(
y−

⌊N
2

⌋)2)
,

where ρi ∈ R and ωi ∈ R are parameters. Then, the two
clocks CX

i and CY
i trigger transitions of the discrete auxiliary

variables Pi and Qi as follows (see Fig. 4(a)).

If CX
i (t) = 1, then

Pi(t+) : =

{
Pi(t)+ 1 if Pi(t) < |Fi(Xi(t),Yi(t))|,
0 if Pi(t) ≥ |Fi(Xi(t),Yi(t))|,

(6)

If CY
i (t) = 1, then

Qi(t+) : =

{
Qi(t)+ 1 if Qi(t) < |Gi(Xi(t),Yi(t))|,
0 if Qi(t) ≥ |Gi(Xi(t),Yi(t))|.

(7)

As a result, the dynamics of the CA oscillator are described by
Eqs. (3), (4), (6), and (7), and characterized by the parameters

N , M , ρi, ωi, αi, T Xi , T
Y
i . (8)

Figs. 4 (b) and (c) show phase plane trajectories of the CA
oscillator. The CA oscillator exhibits different behaviors,
such as oscillation and convergence for different parameter
values. The next subsection provides characterizations for
such behaviors of the CA oscillator and describes the roles
of the parameters.

B. ROLES OF PARAMETERS
We assume that the discrete state variable Xi is in a steady
state for t > Ts. Then, the following is defined.
Definition 1 (Amplitude): The discrete state variable Xi is

said to have an amplitude

ri =
Xmax
i − Xmin

i

2
,

FIGURE 5. Definitions of the amplitude ri and mean frequency fi of the
discrete state variable Xi . (a) Oscillation. The amplitude ri is larger than
the reference value λ = 1. (b) Convergence. The amplitude ri is smaller
than the reference value λ = 1.

TABLE 1. Roles of parameters.

where

Xmax
i = max{Xi(t) ∈ ZN | t > Ts},

Xmin
i = min{Xi(t) ∈ ZN | t > Ts}

are the maximum and minimum values of the discrete state
variable Xi in the steady state, respectively.
For example, in Figs. 5(a) and (b), the amplitude ri of the

discrete state variable Xi is 6 and 1, respectively. Fig. 6 shows
the characteristics of the amplitude ri for the parameter ρi.
Further, it shows the following relations between the param-
eter ρi and amplitude ri.

• Fig. 6 shows that the amplitude ri is approximately 0 for
negative ρi and positive for positive ρi.

• Fig. 6 shows that the amplitude ri is approximately
proportional to

√
ρi for relatively small positive ρi and

saturates for large positive ρi.

The aforementioned relations reveal that the parameter ρi can
adjust the amplitude ri (see Table 1). Using the amplitude ri,
the following is defined.
Definition 2 (Oscillation and Convergent): The discrete

state variable Xi is said to converge if ri ≤ λ and is said to
oscillate if ri > λ, where λ is an appropriately small positive
constant, which is introduced to indicate that ‘‘the amplitude
ri is regarded to be almost 0 if ri ≤ λ.’’
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FIGURE 6. Characteristics of the amplitude ri of the discrete state
variable Xi for the parameter ρi . N = 25, M = 26, ωi = 2π/αi , αi = 0.01,
T X

i = 0.0012236, and T Y
i = 0.001..

In this study, λ = 1 is chosen. In Fig. 5(a), the amplitude
ri is 5 > λ; thus, the discrete state variable Xi oscillates. In
Fig. 5(b), the amplitude ri is 1 ≤ λ; thus, the discrete state
variable Xi converges. Then, the following is defined.
Definition 3 (Mean Frequency): Assume the discrete state

variable Xi oscillates and repeats to transit from a certain
constant value XC − 1 to XC . Let τi(k) be the k-th moment
when the discrete state variable Xi transits from the constant
value XC − 1 to XC . Then, the discrete state variable Xi is
said to have a mean frequency fi defined by

fi =
K − 1∑K−1

k=1 τi(k + 1)− τi(k)
,

where K is an appropriately large positive integer. If the
discrete state variable Xi converges, the mean frequency is
defined as fi = 0.

For example, in Figs. 5(a) and (b), the mean frequency fi
of the discrete state variable Xi is positive and 0, respectively.
Fig. 7 shows the characteristics of the mean frequency fi
for the parameters ρi, ωi, and αi. These figures show the
following roles of the parameters.
• Fig. 7(a) shows that the mean frequency fi is almost
constant with respect to the parameter ρi > 0.

• Figs. 7(b) and (c) show that the mean frequency fi is
almost proportional to the parameter ωi.

• Figs. 7(b) and (c) show that the parameter αi changes the
scale of the mean frequency fi.

The aforementioned relations show that the parameter ωi can
adjust the frequency fi, while the parameter ρi > 0 does not
affect the frequency ri significantly (see Table 1). Further, the
parameter αi can scale the frequency fi (see Table 1).

C. IMPORTANCE OF ASYNCHRONOUS TRANSITIONS
This subsection describes the importance of the asynchronous
transitions of the discrete state variables Xi,Yi, Pi, and Qi.
Definition 4 (Asynchronous and Synchronous CA Oscilla-

tors): The CA oscillator is said to be
• asynchronous CA oscillator if TXi /T

Y
i is irrational.

• synchronous CA oscillator if TXi /T
Y
i is rational.1

1The synchronous CA oscillator for TXi = TYi (or the CA oscillator with a
single clockwith period TXi ) has simultaneous transitions of the discrete state
variables, and the synchronous CA oscillator for TXi 6= TYi has phase-locked
transitions of the discrete state variables.

FIGURE 7. (a) Characteristics of the mean frequency fi for the parameter
ρi . N = 25, M = 26, ωi = 2π/αi , αi = 0.01, T X

i = 0.0012236, and
T Y

i = 0.001. (b) Characteristics of the mean frequency fi for the
parameter ωi . N = 25, M = 26, ρi = 225, αi = 0.01, T X

i = 0.0012236, and
T Y

i = 0.001. (c) Characteristics of the mean frequency fi for the
parameter ωi . αi = 0.05 and the remaining parameter values are equal to
those in (b).

Then, we compare the characteristics of the asynchronous and
synchronous CA oscillators.

(a) Fig. 8 shows the characteristics of the asynchronous CA
oscillator. Fig. 8(a) shows an orbit of the discrete state
vector (Xi,Yi) in a steady state. Here, all the trajecto-
ries of the discrete state vector (Xi,Yi) starting from
different initial conditions are attracted into the same
orbit in Fig. 8(a). For certain different parameter values,
a small number of orbits coexist in steady states and
the asynchronous CA oscillator exhibits one of them
depending on the initial condition of the discrete state
vector (Xi,Yi). Fig. 8(b) shows the characteristics of the
number of such coexisting orbits in steady states. The
asynchronous CA oscillator has a single orbit in a steady
state for a wide range of parameter values. Fig. 8(c)
shows the characteristics of the maximum values Xmax

i
and minimum values Xmin

i of the coexisting orbits.
(b) Fig. 9 shows the characteristics of the synchronous CA

oscillator. Fig. 9(a) shows that the synchronous CA
oscillator has many coexisting orbits and the oscillator
exhibits one of orbits depending on the initial condition
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FIGURE 8. Characteristics of the asynchronous CA oscillator. N = 25,
M = 26, ωi = 2π/αi , and αi = 0.01. T X

i = 0.0012236 and T Y
i = 0.001,

where T X
i /T

Y
i can be regarded as almost irrational. (a) Phase plain

trajectories starting from the different initial conditions Xi (0) ∈ ZN ,
Yi (0) = bN/2c, and Pi (0) = Qi (0) = 0. ρi = 110. (b) Characteristics of the
number of coexisting orbits. The vertical broken line corresponds to (a).
(c) Characteristics of the maximum values Xmax

i and minimum values
Xmin

i of the coexisting orbits. The vertical broken line corresponds to (a).

of the discrete state vector (Xi,Yi). Fig. 9(b) shows the
characteristics of the number of such coexisting orbits,
and Fig. 9(c) shows the characteristics of the maximum
values Xmax

i and minimum values Xmin
i of the coexist-

ing orbits. These figures show that the synchronous CA
oscillator has multiple orbits in steady states for a wide
range of parameter values.

The aforementioned characteristics show that the periods T Xi
and T Yi of the clocks CX

i , and C
Y
i determine the character-

istics of the coexisting orbits in steady states (see Table 1).
Further, the aforementioned characteristics show the follow-
ing significance of the analyses.
Remark 1 (Significance Obtained From the Analyses of

Single Oscillator): The CA oscillator is used as an element of
a CPGmodel in Section IV, where the amplitude ri and mean
frequency fi of the discrete state variable Xi control an ampli-
tude and a frequency of motion of a robot leg, respectively. In
this context, the asynchronous CA oscillator is more suited
to build the CPG model because the leg motion is expected
to be controlled by the system parameters as a consequence
of the analyses in Subsection II-B and characteristics (a) in

FIGURE 9. Characteristics of the synchronous CA oscillator. N = 25,
M = 26, ωi = 2π/αi , and αi = 0.01. T X

i = 0.001 and T Y
i = 0.001, where

T X
i /T

Y
i is rational. (a) Phase plain trajectories starting from the different

initial conditions Xi (0) ∈ ZN , Yi (0) = bN/2c, and Pi (0) = Qi (0) = 0.
ρi = 110. (b) Characteristics of the number of coexisting orbits. The
vertical broken line corresponds to (a). (c) Characteristics of the
maximum values Xmax

i and minimum values Xmin
i of the coexisting

orbits. The vertical broken line corresponds to (a).

Subsection II-C. If the synchronous CA oscillator is used to
build the CPG model, the leg motion is not expected to be
controlled by the system parameters as a consequence of the
characteristics (b) in Subsection II-C. Using these analyses,
a CPG model design is proposed in Section IV.

III. ANALYSES OF SMALL NETWORK OF CA
OSCILLATORS AS PREPARATIONS TO DESIGN CPG
In this section, a small network of the CA oscillators is
designed and analyzed to design the CPG model for control-
ling the hexapod robot in Fig. 1. The following is a procedure
to design a modified CA oscillator to build the network.

A. MODIFIED CA OSCILLATOR FOR COUPLING
Fig. 10(a) shows a schematic diagram of the modified CA
oscillator, where the dashed boxes represent modifications of
the CA oscillator in Fig. 3. The modified CA oscillator has a
clock

CZ
i (t) =

∞∑
k=0

δ(t − kT Zi )
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FIGURE 10. (a) Schematic diagram of the modified CA oscillator for
coupling. (b) Timing chart of state transitions triggered by the clock CZ

i .

for coupling, where T Zi ∈ (0,∞) is a clock period. Further,
the modified CA oscillator has discrete state variables

Vi ∈ ZM , Ui ∈ ZM (9)

for coupling. The clock CZ
i triggers transitions of the discrete

state variables Vi and Ui as follows (see Fig. 10(b)).

If CZ
i (t) = 1, then

Vi(t+) : =

{
Vi(t)+ 1 if Vi(t) < |Hi(X(t))|,
0 if Vi(t) ≥ |Hi(X(t))|,

Ui(t+) : =

{
Ui(t)+ 1 if Ui(t) < |Hi(Y (t))|,
0 if Ui(t) ≥ |Hi(Y (t))|,

(10)

where X(t) and Y (t) denote vector forms

X(t) = (X0(t),X1(t), · · · ,XL−1(t)),

Y (t) = (Y0(t),Y1(t), · · · ,YL−1(t)),

of the discrete state variables, L is the number of CA oscilla-
tors in the network, and Hi : ZLN → Z±M denotes a discrete
function

Hi ≡ Hi ◦ hi, (11)

which is implemented in a look-up-table, as shown in
Fig. 10(a). In this study, we propose to design the function
Hi(χ ) : R→ Z±M as follows.

Hi(χ ) =
⌊ 1

βiT Zi χ

⌋
,

where βi ∈ (0,∞) is a scaling parameter and the function
Hi(χ ) is assumed to be saturated at ±(M − 1). We further
propose to design the function hi(χ ) : ZLN → R as follows.

hi(χ ) =
⌊L−1∑
j=0

wi,j
(
χj −

⌊N
2

⌋)⌋
,

where χ = (χ0, χ1, · · · , χL−1) and the function hi(χ ) is
assumed to be saturated at ±(M − 1). In addition, wi,j ∈ R
represents a coupling strength from the j-th CA oscillator to
the i-th CA oscillator and forms a matrix form

W =

 w0,0 · · · w0,L−1
...

. . .
...

wL−1,0 · · · wL−1,L−1

 .
Then, the clock CZ

i triggers transitions of the discrete state
variables Xi and Yi as follows (see also Fig. 10(b)).

If CZ
i (t) = 1 and Vi(t) ≥ |Hi(X(t))|, then

Xi(t+) : =

{
Xi(t)+ 1 ifHi(X(t))≥0 and Xi(t)<N−1,
Xi(t)− 1 ifHi(X(t)) < 0 and Xi(t) > 0.

(12)

If CZ
i (t) = 1 and Ui(t) ≥ |Hi(Y (t))|, then

Yi(t+) : =

{
Yi(t)+ 1 ifHi(Y (t))≥0 and Yi(t)<N−1,
Yi(t)− 1 ifHi(Y (t)) < 0 and Yi(t) > 0.

(13)

Therefore, the dynamics of the modified CA oscillator are
described by Eqs. (10), (12), and (13) in addition to Eqs. (3),
(4), (6), and (7) and have the parameters

βi, T Zi , wi,0, · · · ,wi,L (14)

in addition to the parameters in Eq. (8).

B. ANALYSES OF SMALL NETWORK AS PREPARATIONS TO
DESIGN CPG
We analyze a network of two CA oscillators in Fig. 11(a),
which has a matrix form

W =
(

0 w0,1
w1,0 0

)
of the coupling strength wi,j. Figs. 11(b) and (c) show the
time waveforms of the discrete state variables (Xi,Yi) of the
network for different parameter values. To characterize such
waveforms, we introduce a phase φi(t) and restricted phase
φ̂i(t) of the state vector (Xi(t),Yi(t)) as follows.

φi(t) = Arg
((
Xi(t)−

⌊N
2

⌋)
+j
(
Yi(t)−

⌊N
2

⌋))
,
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FIGURE 11. (a) Network of L = 2 CA oscillators. N = 25, M = 26,
ρ0 = ρ1 = 200, α0 = α1 = 0.01, T X

0 = T Y
1 = 0.0012236, T Y

0 = T Y
1 = 0.001,

β0 = β1 = 1, and T Z
0 = T Z

1 = 0.01. (b) 1:1 phase-locking. ω0 = ω1 = 2π/α
and w0,1 = w1,0 = −1. The mean phase difference is 80,1 = −3.14.
(c) 1:2 phase-locking. ω0 = 2π/α, ω1 = 0.4× ω0, w1,2 = w2,1 = −1.1. The
mean phase difference is 80,1 = −2.87.

FIGURE 12. Parameter regions where n:m phase-lockings are observed.
L = 6, N = 25, M = 26, ρ0 = ρ1 = 200, ω0 = 2π/α0, α0 = α1 = 0.01,
T (0)

X = T (1)
X = 0.0012236, T (0)

Y = T (1)
Y = 0.001, β0 = β1 = 1, and

T (0)
Z = T (1)

Z = 0.01.

φ̂i(t) = φi(t)+ 2π�,

where

Arg(x + jy) =



arctan(y/x)+ π if x < 0,
arctan(y/x) if x > 0 and y ≥ 0,
arctan(y/x)+ 2π if x > 0 and y < 0,
π/2 if x = 0 and y > 0,
3π/2 if x = 0 and y < 0,

which is undefined if
√
x2 + y2 ≤ κ and κ are introduced to

indicate that ‘‘the radius of (x, y) is regarded to be almost zero
if
√
x2 + y2 ≤ κ .’’ Further, � denotes ‘‘the number of times

the state vector (Xi(t),Yi(t)) has passed through a subset

0 ≡
{(
x, y

)
∈ Z2N

∣∣∣ x > ⌊N
2

⌋
, y =

⌊N
2

⌋}
of the state space counterclockwise.’’ Figs. 11(b) and (c) show
the time waveforms of the phases (φ0(t), φ1(t)) and restricted
phases (φ̂0(t), φ̂1(t)) corresponding to the time waveforms
of the discrete state variables (Xi(t),Yi(t)). Using the phase
φi(t), the following is defined.
Definition 5 (Phase-Locking): The i-th and j-th CA oscil-

lators are said to exhibit n:m phase-locking if there exists
positive constants k and Tp, and coprime integers n and m
such that

|nφi(t)− mφj(t)| < k for t > Tp.

For example, in Figs. 11 (b) and (c), the CA oscillator exhibits
1:1 and 1:2 phase-lockings, respectively. Fig. 12 shows the
parameter regions where various n:m phase-lockings are
observed. The figure shows that the coupling strength wi,j
can adjust the n:m phase-locking (see Table 1). Then, the
following is defined.
Definition 6 (Mean Phase Difference): Assume the i-th and

j-th CA oscillators exhibit n:m phase-locking. Then, the i-th
CA oscillator is said to have a mean phase difference

8i,j =
1

T − Tp

∫ T

Tp
nφi(t)− mφj(t) dt
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FIGURE 13. Characteristics of mean phase difference 8i,j of the network
of the two CA oscillators in Fig. 11(a). L = 6, N = 25, M = 26,
ρ0 = ρ1 = 200, ω0 = 2π/α0, ω1 = 2π/α1, α0 = α1 = 0.01,
T (0)

X = T (1)
X = 0.0012236, T (0)

Y = T (1)
Y = 0.001, β0 = β1 = 2, and

T (0)
Z = T (1)

Z = 0.01.

with respect to the j-th CA oscillator, where T is an appropri-
ately large number.
For example, in Figs. 11 (b) and (c), the 0-th CA oscillator

has mean phase differences 80,1 = −3.14 and −2.87 with
respect to the 1st CA oscillator, respectively. Fig. 13 shows
the characteristics of the mean phase difference 80,1 for the
coupling strengths w0,1 and w1,0. The figure shows that the
coupling strength wi,j can adjust the mean phase difference
8i,j (see Table 1).
Remark 2 (Significance Obtained From the Analyses Of

Small Network): A network of the CA oscillators is used
as the CPG model in Section IV, where the ratio n : m
and mean phase difference 8i,j of phase locking determine
a spatiotemporal pattern of the orbits of the legs of the robot.
Here, the analysis results of the n : m phase locking in
Fig. 12 and that of the mean phase difference 8i,j in Fig. 13
are expected to be useful to design the CPG model. The
significances of the analysis results in the CPG design are
described in Section IV.

IV. DESIGN OF CPG CONSISTING OF NETWORK OF CA
OSCILLATORS
Using the analyses of the single CA oscillator in Section II
and those of the small network of the CA oscillators in
Section III, in this section, we propose systematic design
procedures of a network of the CA oscillators to control the
hexapod robot in Fig. 1. Here, we introduce a bio-inspired
target pattern of phase-lockings.

A. TARGET PHASE-LOCKING PATTERN FOR CONTROLLING
HEXAPOD ROBOT
Fig. 14(a) shows an illustration of an insect, where its six legs
are labeled as 0–5. Fig. 14(b) shows a timing chart of a gait,
where the horizontal axis represents the time and vertical axis
represents movement of each leg relative to the ground. In this
chart, the black bar shows the moment when the leg is off the
ground and moving forward, and the white region indicates

FIGURE 14. (a) Illustration of a six-legged insect. (b) Timing chart of a
tripod gait [37]. (c) i -th leg of the hexapod robot in Fig. 1. The orbit of the
tip of the leg is represented by the angle ϕ̂i . (d) Example of pattern of
time-dependent angles ϕ̂0(t), · · · , ϕ̂5(t). This pattern is used as a target
phase-locking pattern of the CPG.

the moment when the leg is touching and crawling on the
ground. The gait in Fig. 14(b) is called a tripod gait, which is
one of the typical gaits of six-legged insects [37]. As shown in
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FIGURE 15. Network of six CA oscillators used as a CPG to control the
hexapod robot in Fig. 1.

the figure, a pair of black bar and white region form a period τ
of the tripod gait. Fig. 14(c) shows the i-th leg of the hexapod
robot in Fig. 1. The orbit of the tip of the leg is represented
by an angle ϕ̂i ∈ [0, 2π ). We consider a time-varying angle

ϕ̂i(t) =
2π
τ
t + γi (mod 2π),

where γi ∈ [0, 2π ) is an offset parameter. Fig. 14(d)
shows an example of the pattern of six time-varying angles
(ϕ̂0(t), · · · , ϕ̂5(t)). Further, we consider a map

σ (ϕ̂i) =

{
‘‘black bar’’ if ϕ̂i ≥ π,
‘‘white region’’ if ϕ̂i < π.

Applying the map σ to the six time-varying angles(ϕ̂0(t),
· · · , ϕ̂5(t)) in Fig. 14(d), the gait diagram in Fig. 14(b) is
obtained. Hence, here, six CA oscillators are constructed
to reproduce the time-varying angles (ϕ̂0(t), · · · , ϕ̂5(t)) in
Fig. 14(d). They are expected to exhibit the following pattern
of phase-lockings.

Target phase-locking pattern of six CA oscillators:
(i) Each pair of CA oscillators exhibits 1:1 phase-locking.
(ii) Each mean phase difference 8i,j for i ∈ {0, 2, 4} and

j ∈ {0, 2, 4} is almost zero.
(iii) Each mean phase difference 8i,j for i ∈ {1, 3, 5} and

j ∈ {1, 3, 5} is almost zero.
(iv) Each mean phase difference 8i,j for i ∈ {0, 2, 4} and

j ∈ {1, 3, 5} is almost π .
(v) Each mean phase difference 8i,j for i ∈ {1, 3, 5} and

j ∈ {0, 2, 4} is almost π .

The next subsection proposes the systematic design proce-
dures of a network of the CA oscillators, which is used as
a CPG to generate the aforementioned target phase-locking
pattern.

B. DESIGN OF NETWORK OF CA OSCILLATORS USED AS
CPG TO GENERATE TARGET PHASE-LOCKING
We propose to use the network of the CA oscillators in Fig. 15
as a CPG to generate the target phase-locking pattern. The
parameters are designed as follows.

Design Procedure 1 (Parameters): The parameter vector
(ρi, ωi, αi, βi,T Zi ) of each modified CA oscillator is set to
have the same value, and the coupling strengths wi,j among
the oscillators are set to

W =


0 −1 0 −1 0 0
−1 0 −1 0 0 0
0 −1 0 0 0 −1
−1 0 0 0 −1 0
0 0 0 −1 0 −1
0 0 −1 0 −1 0

 . (15)

Further, the values of the parameters ρi and (ωi, αi) are
adjusted to realize the desired amplitude and frequency of the
motion of the hexapod robot leg.

Here, the significances of the analyses in Section III
explained in Remark 2 are as follows.
• Fig. 12 shows that a pair of the i-th and j-th CA oscil-
lators with the same value of the parameter vector (ρi,
ωi, αi, βi, T Zi ) and coupled via the strengths wi,j =
wj,i = −1 exhibits a 1:1 phase-locking. Hence, the
design procedure 1 is considered suitable to realize the
item (i) of the target phase-locking pattern.

• Fig. 13 shows that a pair of the i-th and j-th CA
oscillators with the same value of the parameter vector
(ρi, ωi, αi, βi, T Zi ) coupled via the strengths wi,j =
wj,i = −1 demonstrate mean phase differences |8i,j| '

|8j,i| ' π . Then, the network topology in Fig. 15 is
considered suitable to realize the items (ii)–(v) of the
target phase-locking pattern.

However, the design procedure 1 is not sufficient. Recall
that the Remark 1 in Section II shows that the ratio of the
clock periods of the CA oscillator should be tuned to design
a CPG model, e.g., an irrational ratio of the clock periods
and resulting asynchronous state transitions are preferred.
Then, to characterize the networks of the CA oscillators with
various ratios of the clock periods, the following is defined.
Definition 7 (Asynchronous and Synchronous Networks):

The network of the CA oscillators is said to be
• asynchronous network if TXi /T

X
j and/or T Yi /T

Y
j is irra-

tional for certain i 6= j.
• synchronous network if T Xi /T

X
j and T Yi /T

Y
j are rational

for all i and j.
Then, the following four types of networks exist.
(a) Asynchronous network of Asynchronous CA oscillators.
(b) Synchronous network of Asynchronous CA oscillators.
(c) Asynchronous network of Synchronous CA oscillators.
(d) Synchronous network of Synchronous CA oscillators.
We compare the characteristics of these networks and their

relations with the target phase-locking pattern, where the
aforementioned (a)–(d) correspond to the following (a)–(d),
respectively.
(a) Fig. 16(a) shows the time waveforms of the discrete state

variables (Xi,Yi) and corresponding restricted phase φ̂i
of an asynchronous network of asynchronous CA oscil-
lators. Each restricted phase φ̂i is not defined for t < pai
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FIGURE 16. Time waveforms of the discrete state variables (Xi ,Yi ) and corresponding restricted phases φ̂i of four
networks of CA oscillators. L = 6, N = 25, M = 26, ρi = 200, ωi = 2π/αi , αi = 0.01, βi = 1, and T Z

i = 0.01 for all i .
(Xi (0),Yi (0),Pi (0),Qi (0),Vi (0),Ui (0)) = (16,17,0,0,0,0) for all i . κ = 3. (a) Asynchronous network of Asynchronous CA
oscillators. T X

i = 0.00100031415 and T Y
i = 0.001 for i = 0,1,2,3, and 4. T X

5 = 0.001 and T Y
5 = 0.00100031415.

(b) Synchronous network of Asynchronous CA oscillators. T X
i = 0.00100031415 and T Y

i = 0.001 for all i .
(c) Asynchronous network of Synchronous CA oscillators. T X

i = T Y
i = 0.001 for i = 0,1,2,3, and 4.

T X
5 = T Y

5 = 0.00100031415. (d) Synchronous network of Synchronous CA oscillators. T X
i = T Y

i = 0.001 for all i . The ratio
0.00100031415/0.001 is regarded as an irrational number owing to the C language implementation of real numbers.
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TABLE 2. Comparison of four networks.

FIGURE 17. (a) Structure of each leg. Each leg has Hitec’s servomotors HS-422 (yaw axis) and HS-645MG (roll axis). (b) Tripod gait of the robot. N = 25,
M = 26, ρi = 200, ωi = 2π/αi , αi = 0.01, L = 6, βi = 1, and T Z

i = 0.01 for all i . T X
i = 0.0012236 and T Y

i = 0.001 for i = 0,1,2,3, and 4. T X
5 = 0.001 and

T Y
5 = 0.0012236.

as the radius
√
(Xi − bN/2c)2 + (Yi − bN/2c)2 is too

small (i.e., smaller than κ). Further, the network exhibits
the target phase-locking pattern for t > qa (see Table 2).

(b) Fig. 16(b) shows the time waveforms of a synchronous
network of asynchronous CA oscillators. Each restricted
phase φ̂i is not defined for t > 0 as the radius√
(Xi − bN/2c)2 + (Yi − bN/2c)2 is too small. Hence,

the synchronous network of the asynchronous CA oscil-
lators cannot realize the target phase-locking pattern (see
Table 2).

(c) Fig. 16(c) shows the timewaveforms of an asynchronous
network of the synchronous CA oscillators. The time
interval [0, pci ) where each restricted phase φ̂i is not
defined is much longer than that of the asynchronous
network of the asynchronous CA oscillators. The tran-
sient time interval [0, qc) to achieve the target synchro-
nization is much longer than that of the asynchronous
network of the asynchronous CA oscillators. Hence, the
asynchronous network of the synchronous CA oscilla-
tors is not suitable to be used as a CPG when compared
with the asynchronous network of the asynchronous CA
oscillators (see Table 2).

(d) Fig. 16(d) shows the time waveforms of a synchronous
network of the synchronous CA oscillators. The figure
shows that each restricted phase φ̂i is not defined for

t > 0 as the radius
√
(Xi − bN/2c)2 + (Yi − bN/2c)2

is too small. Hence, the synchronous network of
asynchronous CA oscillators cannot realize the target
phase-locking pattern (see Table 2).

The aforementioned four characteristics reveal the following
consequence.
Remark 3 (Significance Obtained From Analyses of CPG

Network): The asynchronous network of asynchronous CA
oscillators is best suitable to be used as the CPG as summa-
rized in Table 2.

Thus, we propose the following design procedure.
Design Procedure 2 (Asynchronous Clocks): Each CA

oscillator is set to have the clocks CX
i and CY

i that have an
irrational ratio T Xi /T

Y
i of the periods. Further, at least one

pair of the CA oscillators in the network is set to have an
irrational ratio TXi /T

X
j or T Yi /T

Y
j of the periods of the clocks.

Using the design procedures 1 and 2, the asynchronous
network of the asynchronous CA oscillators can be designed,
which can realize the target phase-locking pattern with a short
transient period, as shown in Fig. 16(a).

V. IMPLEMENTATION AND COMPARISON
A. IMPLEMENTATION
This subsection shows that the proposedCPGmodel designed
by the procedures proposed in the previous section can
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TABLE 3. Comparisons.

realize the tripod gait of the hexapod robot in Fig. 1. The
dynamics of the CA oscillator are described as a register
transfer level (RTL) VHDL code as follows. The discrete
state variables (Xi,Yi) are described by unsigned integers
to reflect Eq. (1) and implemented by n-bit registers, where
n = dlog2 Ne. The discrete auxiliary variables (Pi,Qi)
are described by unsigned integers to reflect Eq. (2) and
implemented by m-bit registers, where m = dlog2Me. The
functionsFi and Gi are described by two’s compliment signed
integers to reflect Eq. (5) and implemented by look-up-tables
with n-bit unsigned inputs and an (m + 1)-bit signed output.
Then, the state transitions in Eqs. (3), (4), (6), and (7) are
described by sequential statements triggered by the clocks
CX
i and CY

i . Using the aforementioned CA oscillator as a
component, the dynamics of the proposed CPG model are
described as an RTL VHDL code as follows. The discrete
state variables (Vi,Ui) for the coupling are represented by
unsigned integers to reflect Eq. (9) and implemented bym-bit
registers. The function Hi for the coupling is represented
by two’s compliment signed integers to reflect Eq. (11) and
implemented by adders and look-up-tables with an (n+1)-bit
signed input and (m + 1)-bit signed output. The state transi-
tions in Eqs. (10), (12), and (13) realize the coupling of the
asynchronous CA oscillators. Then, these state transitions are
described by sequential statements triggered by the clockCZ

i .
Fig. 17(a) shows a structure of the hexapod robot leg. The dis-
crete state variable Xi of the i-th CA oscillator is transformed
into a pulse-width modulated (PWM) signal PWM (Xi) by a
pulse-width modulator, PWM signal PWM (Xi) instructs the
angle of the servomotor, and then, the servomotor determines
the angle in the yaw axis of the i-th leg of the hexapod robot.
Further, the discrete state variable Yi of the i-th CA oscillator
is transformed into a saturated signal γ (Yi) by a saturator

γ (Yi) =

{
Yi if Yi ≥ N/2,
0 otherwise,

(16)

the saturated signal γ (Yi) is transformed into a PWM signal
PWM (γ (Yi)) by the pulse-width modulator, the PWM sig-
nal PWM (γ (Yi)) instructs the angle of the servomotor, and
then, the servomotor determines the angle in the roll axis
of the i-th leg. The set of VHDL codes describing the CPG
model, pulse-width modulators, and saturators are compiled
by Xilinx’s design software environment Vivado 2018.2 and
a resulting bitstream file is downloaded to Xilinx’s FPGA
Artix-7 XC7A100T-1CSG324C [39] mounted on Digilent’s
Nexys 4 DDR evaluation platform [40]. Because the FPGA
and design software environment used in this study do not
support asynchronous triggering, the clocks CX

i , C
Y
i , and

CZ
i are generated from a common clock with a high fre-

quency (100[MHz]) such that the least common multiple
of the periods of the clocks is much longer than the peri-
ods of oscillations of the discrete state variables Xi and Yi.
Thus, the clocks can be regarded to be asynchronous in
practice. Fig. 17(b) shows snapshots of the hexapod robot
controlled by the proposed CPG model. It can be observed
that the robot can realize the tripod gait. Features of the
proposed CPGmodel implemented by FPGA are summarized
in Table 3. The bit lengths n and m are sufficiently short-
ened under the condition that the hexapod robot realizes an
appropriate tripod gait, where the resulting bit lengths are
n = 5 and m = 6. The on-chip power is the total of static
power consumption (e.g., device static power) and dynamic
power consumption (e.g., powers of clock, signal, logic,
and BRAM). It is estimated by the design software envi-
ronment at the post-routing stage, which provides the most
accurate power estimation when compared with other design
stages, such as post-synthesize and post-implementation
stages.

B. COMPARISONS
This subsection compares the proposed CPG model with
other CPG models.
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1) HOPF CPG MODEL IMPLEMENTED BY CUSTOMIZED DSP
For comparison, we introduce the followingHopf CPGmodel
as a conventional model [3].

xi(t + h) = xi(t)+ h(Fx(xi(t), yi(t))+
5∑
j=0

wi,jxj(t)),

yi(t + h) = yi(t)+ h(Fy(xi(t), yi(t))+
5∑
j=0

wi,jyj(t)),

Fx(xi, yi) = (µ2
i − (x2i + y

2
i ))xi − ξiyi,

Fy(xi, yi) = (µ2
i − (x2i + y

2
i ))yi + ξixi, (17)

where h is a stepsize of the time t , xi ∈ R and yi ∈ R are
continuous state variables, and wi,j is the coupling strength
defined in Eq. (15). Further, µi ∈ R and ξi ∈ R are
parameters characterizing an amplitude and intrinsic oscil-
lation frequency of the state variables (xi, yi), respectively.
Fig. 18 shows time waveforms of the Hopf CPG model. It
can be observed that the Hopf CPG model realizes the target
phase-locking pattern. The dynamics of the Hopf CPGmodel
in Eq. (17) are described as an RTL VHDL code as follows.
The discrete state variables (xi, yi) and parameters (µi, ξi) are
described by signed fixed point numbers with 8-bit integer
parts and 5-bit decimal parts, and implemented by 14-bit reg-
isters. The coupling terms are described by summations and
implemented by adders. Then, the state transitions in Eq. (17)
are described by sequential statements that are triggered by
a single clock. The state variable xi is transformed into a
PWM signal PWM (axi + b) by the pulse-width modulator
to determine the angle of the yaw axis of the i-th leg of the
hexapod robot. Further, the state variable yi is transformed
into a saturated signal γ (ayi + b) by the saturator, and the
saturated signal γ (ayi+ b) is transformed into a PWM signal
PWM (γ (ayi+b)) by the pulse-width modulator to determine
the angle of the roll axis of the i-th leg. The set of VHDL
codes describing the Hopf CPG model, pulse-width modula-
tors, and saturator is compiled by the same design software
environment that was used to compile the proposed CPG
model. It is implemented by the same FPGA device that was
used to implement the proposed CPGmodel. The bit length of
the Hopf CPG model is shortened based on the same criteria
as that of the proposed CPG model. It is then confirmed
that the Hopf CPG model realizes the target phase-locking
pattern. Features of the Hopf CPG model are summarized in
Table 3. Note that the Hopf CPG model that is implemented
in the FPGA can be regarded as a hardware digital signal
processor (DSP), which is customized to execute the dynamic
equation in Eq. (17).

2) PROPOSED CPG MODEL IMPLEMENTED AS SOFTWARE
RUNNING ON CUSTOMIZED CPU
For comparison, the proposed CPG model is implemented as
a software running on a customized CPU as follows. Using
the same design software environment used to design the pro-
posed CPG model, a soft-core CPU called Microblaze [41]

FIGURE 18. Time waveforms of the Hopf CPG model [3]. µi = 52 and
ξi = 2π for all i . h = 2−5.

is custom designed to execute the dynamic equations in
Eqs. (3), (4), (6), (7), (10), (12), and (13) of the presentedCPG
model. In this design, unnecessary units (e.g., floating point
unit and integer multiplier) to execute the dynamic equations
are not included in the CPU and the predefined configu-
ration is selected as ‘‘application preset,’’ which is among
the most standard predefined configurations. The resulting
customized CPU is implemented by the same FPGA device
used to implement the proposed CPG model. Further, the
dynamic equations of the proposed CPG model are written in
C-language code, the code is compiled by a compiler embed-
ded in the design software environment used to compile the
presented CPG model, and the resulting executable file is
downloaded to the customized CPU with the FPGA. It is
then confirmed that the CPU-based CPG model realizes the
target phase-locking pattern. Features of the CPU-based CPG
model are summarized in Table 3.

3) OUR PREVIOUSLY REPORTED CPG MODEL
Our previously reported CPG model [33] is designed by
the same design software environment used to design the
proposed CPG model and is implemented by the same FPGA
device used to implement the proposed CPG model. The
differences between the previously reported and proposed
CPG model are (a) the previous model has more clocks and
flip-flops that do not play any important roles to realize the
target phase-locking pattern, and (b) the previous model has
more complicated network topology. Features of the previous
model with the FPGA are summarized in Table 3.

4) DISCUSSIONS
• Table 3 shows that the proposed CPGmodel employs the
least number of circuit elements and the lowest power
compared to the other models. However, the number
of flip-flops of the proposed model is slightly higher
than that of the Hopf CPG model. This exception can
be ignored as the number of circuit elements required to
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implement a flip-flop ismuch smaller than the number of
circuit elements required to implement a look-up-table.

• The number of circuit elements employed depends on
the optimization algorithm of the design software while
the power consumption depends on the process rule of
the target device. In this study, the proposed model and
other models are designed and compiled by the same
design software and implemented by the same FPGA
device. Hence, it can be said that the comparisons were
appropriate. This is an advantage of the FPGA-based
prototype design [42], [43]. In addition, the capability
to analyze the specifications of customized processors
(e.g., the customized DSP and CPU analyzed in this
study) is another advantage of the FPGA-based proto-
type design.

• The FPGA is further advantageous in designing an
advanced CPG model. An advanced hexapod robot
requires to change its gate patterns dynamically, and
thus, an advanced CPGmodel requires to change its cou-
pling pattern dynamically to change the phase-locking
patterns. A dynamically reconfigurable FPGA is suit-
able to implement such dynamically reconfigurable neu-
romorphic hardware [22]. However, such an advanced
function of the CPG model is out of the scope of this
study as we focused on fundamental studies, e.g., the
detailed analyses of the nonlinear dynamics of the CPG
model (Sections II and III), the detailed analyses of
roles of the asynchronous clocks (Sections II and IV),
development of the systematic design method of the
CPG model based on the analyses results (Section IV),
and implementation of the prototype and comparisons
with other models (Section V). Design of a dynamically
reconfigurable CPG model based on the dynamically
reconfigurable FPGA is an important future challenge.

VI. CONCLUSION
This paper presented a novel CPG model consisting of a
network of CA oscillators. The detailed analyses showed
the effects of the parameters on the nonlinear characteris-
tics of the CA oscillator and its network, such as ampli-
tude of oscillation, frequency of oscillation, phase-locking
between the CA oscillators, mean phase difference between
the phase-locked CA oscillators, and transient period to the
phase-locking. Moreover, the detailed analyses confirmed:
the asynchronous network of asynchronous CA oscillators is
best suited to be used as the CPG to realize the bio-inspired
tripod gait of the hexapod robot when compared with the
other three types of networks. Using these results, we pro-
posed the systematic design procedures of the proposed
CPG model to realize the tripod gait. Then, the CPG model
designed by the proposed procedures was implemented in the
FPGA, and its operation was verified through experiments.
It was shown that the proposed CPG model employs much
fewer circuit elements and lower power than the conven-
tional CPG model. Future scope for research is as follows:
(a) detailed analyses of various nonlinear dynamics of the

proposed CPG model, (b) realization of other gaits of the
hexapod robot based on the proposed CPG model, (c) devel-
opment of further hardware-efficient CPG model based on
dimension reduction techniques, and (d) development of a
dynamically reconfigurable CPGmodel based on the dynam-
ically reconfigurable FPGA.
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