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ABSTRACT Location-based services (LBSs) for elderly care is a trending topic in smart homes. The key
issue is the high accurate positioning for the elderly. Ultra-wideband (UWB) is a centimeter-level positioning
accuracy in line-of-sight (LOS) environments. However, most of existing UWB positioning methods need
non-line-of-sight (NLOS) identification and compensation, and thus leading to severe deterioration in
positioning accuracy in presence of complex indoor environments where the elderly lived. This article
proposes a phase-difference-of-arrival (PDOA) assisted UWB positioningmethod (PDOA-UWB) for elderly
care. In our positioning framework, we first calculate the phase difference of arrival from PDOA chip
integrated in the UWB base stations (BSs) to obtain a coarse location of the elderly, which is further used
to distinguish which nearby BSs are in LOS environments and which are in NLOS environments. Then,
a PDOA-UWB positioning solution is derived to improve the positioning accuracy of the elderly. Compared
with some existing methods, our method achieves higher accuracy with less NLOS compensation, and is
easier to be implemented in complex indoor environments for simple practical engineering applications.
Experimental results show the efficacy of our proposed method.

INDEX TERMS Phase-difference-of-arrival (PDOA), location-based services (LBSs), ultra-wideband
(UWB) positioning, smart home, indoor positioning.

I. INTRODUCTION
The number of elderly people is increasing in developed
countries and the healthcare services are being demanded to
improve and maintain their health status and autonomy in
homes or communities. It is estimated that the number of
people at the age of 60 or over will reach 2 billion by the
year 2050. Old age is associated with functional decline in
selective aspects of cognitive performance, hence, the elderly
care service is becoming more and more important in smart
home applications [1]–[4].

Elderly care can be used in many applications such as
medication reminders, mobile emergency response systems,
fall detection systems, video surveillance systems, moni-
toring activities of daily life through communication with
family, friends or health caregivers [1]. The key issue of
the elderly care is to calculate the position of the elderly
accurately. Several techniques have been proposed for the
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elderly positioning, including ultra-wideband (UWB) [5],
WiFi [6], Bluetooth [7], and other techniques [8]. Among
them, UWB is a well-known technique with centimeter-level
positioning accuracy. It was widely used in assets and users
management in factories, hospitals, smart homes, and other
Internet-of-Things (IoT) application fields.

Although UWB is a popular positioning technique in the
aforementioned fields, it needs line-of-sight signal (LOS)
identification and non-line-of-sight signal (NLOS) and com-
pensation [9] in general, and thus leading to performance
deterioration in the accuracy and robustness of position-
ing, especially in some complex indoor scenarios where the
elderly live. Some typical complex smart home environments
consist of several walls, doors, and windows. Among them,
doors and windows are the two main factors affecting the
positioning accuracy of UWB techniques because the severe
multipath propagation caused by doors and windows can
result in severe NLOS propagation [10]. In this case, the exist-
ing LOS identification and NLOS compensation algorithms
often fail to yield an accurate time-of-arrival (TOA) estimate,
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which further results in location estimates with large bias.
As we all known, elderly people’s care needs more accurate
positioning estimate than other people because most elderly
people have poor health. When we provide specialized care
services for the elderly, we need to know their specific loca-
tion and whether they are in a falling down state, which
requires their accurate position estimation.

In order to improve the service quality of the elderly,
we designed a UWB BS by incorporating a phase-difference-
of-arrival (PDOA) chip [11]. By using our BS, we can firstly
estimate the coarse location of the elderly, which will be
used to identify whether the required positioning BSs for
positioning are in LOS environments or not. In this case,
we only need to compensate the signals from the BSs in
NLOS environments. Meanwhile, according to the coarse
location of the PDOA, we can also assign higher weights to
the signals from the BSs in LOS environments, and reduce the
weights of the signals from the BSs in NLOS environments.

Below are the main contributions of this study:
1) We design a new hybrid positioning BS by integrat-

ing PDOA with UWB to improve the accuracy of the
UWB-based positioning by fusing the coarse position-
ing of PDOA.

2) Although PDOA needs LOS propagation when position-
ing, it can easily calculate the coarse location of user
with only one BS. That is to say, the probability that one
BS is in LOS is much higher than the probability that
multiple BSs are in LOSs. So, it can avoid the NLOS
compensation for all BSs, thus reducing the positioning
error of UWB-based method to some extent.

3) Unlike existing UWB-based positioning methods,
which use all signals of detected BSs, our method only
uses the measurements from the BSs with LOS for
positioning. We just compensate NLOS for the nearest
BS when the number of LOS BSs is insufficient. Hence,
our method is very suitable for positioning the elderly in
smart homes because the environment where they live is
more complex.

4) Assisted by PDOA coarse location estimate, our pro-
posed PDOA-UWBmethod can obtain an accurate loca-
tion estimate of the elderly while efficiently reduces
the computational time and complexity, which are very
attractive in practical engineering applications.

We organize the remaining paper as follows. Section II
presents some existing positioning methods for elderly care.
We will detail the proposed elderly care method based on our
new designed BS in Sections III. The experimental results
are analyzed Section IV. And we finally draw conclusions
in Section V.

II. RELATED WORKS
Elderly care has been a trending topic in the fields of archi-
tecture design [2], smart homes [3], [12], and the Internet of
Things (IoT) fields in recent years [13], [14]. Location-based
services (LBSs) are the main tasks for elderly care, which
need to obtain the locations of the elderly in some typical

complex and changing home environments full of obstacles
[6], [15], [16].

There have been already many technologies such as WiFi
[4], [16], [17], visible light communication [18], [19], pedes-
trian dead reckoning (PDR) [20], [21], and UWB [22], [23]
adopted to locate targets in the aforementioned fields. For
example, pedestrian dead reckoning (PDR) provides the
direction and distance obtained from inertial sensors of users.
The current position estimate is calculated based on the
previously known position estimate. PDR based positioning
methods can work well in a short moving distance. However,
its performance may degenerate because the accumulated
errors will be enlarged as the distance increases [5]. WiFi
positioning is good for elderly care because it can provide
Internet access services while positioning, but its positioning
accuracy is only meter level and cannot meet the requirement
of the high accurate positioning of elderly care [6], [15].
Visible light communication is also a good technology for
indoor positioning, however, the Photo Diode (PD) receiver
is not convenient to wear for the elderly [18].

Comparatively speaking, UWB is known as centimeter
positioning accuracy and is a high bandwidth short communi-
cation technique, exhibiting the properties of strongmultipath
resistance and to some extent penetrable for building mate-
rials, thus making it propitious for smart home application.
However, in the UWB positioning, the received signals often
reach BSs from multipath and reflection caused by doors and
walls with different materials whose reflection coefficients
are different, thus leading to a large positioning bias by using
some conventional NLOS compensation methods. This phe-
nomenon is especially remarkable in smart home positioning
environments because the homes where the elderly live are
often changing by opening/closing doors and windows, and
people moving, etc. In these cases, some advanced convex
optimization UWB positioning methods also result in large
positioning errors [22], [23].

To improve the positioning accuracy in complex indoor
environments, information fusion of different sensors has
been addressed recently [8], [24], [25]. The existing fusion
methods mainly developed for smartphones as they embed
different kinds of sensors, such as GPS, WiFi, Bluetooth
accelerometer, geomagnetism, camera, and barometer. For
example, Lin et al. proposed an integrated service platform
that can accommodate safety assurance, daily activity assis-
tance, and health support services [24]. The developed plat-
form can offer wandering detection by using GPS and other
sensors embeded in smartphones. However, the positioning
for smartphones is not a good technology for elderly care
because most of the elderly do not carry their smartphones
at all times. UWB-based watch can solve this problem well
and is a popular solution in smart homes. For UWB posi-
tioning, the most popular fusion is UWB and inertial mea-
surement unit [26]–[28]. Fan et al. proposed an INS/UWB
positioning method by using Kalman filter (KF) and outliers
eliminating techniques. Experimental results showed that the
mean square error is reduced by 24.25 % as compared with
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the conventional KF methods [26]. Yang et al. proposed a
residual based weighted least square algorithm for the indoor
localization system to combine the merits of UWB and Blue-
tooth with relatively low cost to achieve a higher accuracy,
which is validated by simulation results [29]. Zheng et al.
proposed a probabilistic sensor fusion method to combine
IMU, LiDAR, and UWB for robot navigation in tunnel-like
Environments. Experimental results show that the proposed
method can achieve a robust localization result inside a long
straight tunnel [30].

PDOA is a simple and efficient measurement for position-
ing because it only needs two antennas. The PDOA position-
ing is recently a common andmost sympathetic research topic
in visible light positioning [31], [32]. Compared with TDOA
positioning, PDOA is an energy-efficient and low-complexity
positioning method without time synchronization among
BSs [33]. A special PDOA chip was originally designed
by Decawave in 2018 for calculating position directly from
range and phase difference of arrival at two antennas, which
is very suitable for coarse location estimate in LOS environ-
ments [11].

In summary, as the development of IoT related tech-
niques, the UWB-based technique is a popular solution for
elderly care due to its high accuracy. The UWB-based fusion
positioning method is the main trendency to improve the
positioning accuracy in severe NLOS environments like the
living space of the elderly. However, the aforementioned
UWB-based fusion methods were proposed for large scale
environments, such as factories, shopping malls, and com-
mercial centers. Additionally, these methods need the user be
equipped with smartphones. For elderly care, most of them
might have mild cognitive impairment, memory loss and
cannot use smartphones all day. Furthermore, the existing
UWB-based fusion methods, such as convex optimization,
have heavy computational burden and cannot be used in
real positioning systems because of limited computation
resources and high energy consumption. Therefore, we pro-
pose a PDOA assisted UWB positioning method by combin-
ing their merits for elderly care in smart homes.

III. PROPOSED ELDERLY CARE BASED ON ACCURATE
POSITIONING
A. POSITIONING PRINCIPLE BASED ON OUR DESIGNED
BASE STATION
To improve the positioning accuracy of the elderly in some
typical complex environments, we design a hybrid BS which
integrates PDOA together with UWB as shown in Fig. 1. The
integrated PDOA chip is from Decawave and it can measure
the phase difference between two closed antennas by using
interferometer direction finding principle. It aims to find the
coarse location of the user to further distinguish whether the
BSs around the elderly are LOS or not as shown in Fig. 2.
Assuming that we have 10 BSs around the elderly, and all the
10 BSs can receive the signals transmitted from the watch the
elderly wears, then from the coarse location estimate of the

FIGURE 1. The designed PDOA-UWB BS.

FIGURE 2. The schematic diagram of our positioning principle.

PDOA chip we can know the location of the elderly in room 1
with high probability. Based on this information, we know the
BSs 1 to 4 being the LOS environments, and other stations
being the NLOS environments. In this case, we can directly
remove all the measurements from the BSs with NLOS, and
just use the four BSs with LOS to localize the elderly without
any NLOS compensation. If there are less than 4 BSs with
LOS around the elderly, we can select the nearest BSs with
LOS and perform dedicated NLOS compensation for the BSs
with NLOS for positioning. In other words, we do not need
to perform NLOS compensation for all BSs, thus reducing
the complexity of the positioning algorithm and improving
the accuracy of the elderly positioning simultaneously. This
is the key idea of this paper. Fig. 3 is the watch shaped
UWB tag for the elderly to be localized in our BS. Except
for the 3D accurate UWB positioning, the watch can also
monitor the blood pressure and heart rate of the elderly from
the embeded sensors as shown in Fig. 3(a). The sim card
in the watch can send and receive text or voice information
to the relatives or friends of the elderly. The MIC interface
provides a voice channel for the elderly to communicate with
others. The GPS module can work for positioning when the
elderly moves out of buildings, which guarantees a seamless
positioning for them. We have also successfully integrated an
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FIGURE 3. The UWB watch for elderly positioning.

IMU into the watch by introducing the ZigBee protocol for
two-way transmission of the IMU data (because UWB watch
can only work on uplink), thus offering two benefits: (1) it
can improve the positioning accuracy of the watch by fusing
accelerometer and UWB data, and (2) the movement status
of the watch can be monitored through the accelerometer
data. When the watch is in a stationary state, the signal
transmission frequency of the watch can be reduced for the
purpose of lowering energy consumption. The battery life of
the watch is up to 6 months at 1Hz date rate. Fig. 3(b) shows
the external shape of the watch, which can display the real
information about the elderly via a LCD.

B. COARSE LOCATION ESTIMATE USING PDOA-BASED
POSITIONING
Using two receiver antennas, the unknown location x =
[x, y]T of an elderly person with a UWB watch can be found
by using TOA to get the distance r to the watch and using the
difference in phase of arrival as shown in Fig. 4. Assuming
that we have two antennas spacing of d ≤ λ

2 with λ being the
wavelength, the signal travels a distance r to arrive antenna
A and a distance r − p to arrive antenna B.

1) ESTIMATION OF p
The phase difference p can be found by using the difference
at the time of arrival of the earliest signal path of a received
frame at two of the antennas A and B. Specifically, taking
antenna B as reference point, we have

uB(t) = s(t) (1)

FIGURE 4. A radio signal arrives at two antennas in PDOA module
separated by d .

and

uA(t) = s(t)e−jφ = s(t)e−j2π f ς , (2)

where s(t) is the transmitted signal from the watch, f is the
carrier frequency, and φ is the phase difference. The phase
difference can be estimated by

φ̂ = angle
(
uB(t)
uA(t)

)
, (3)

and the corresponding time delay ς can be estimated by

ς̂ =
φ̂

2π f
. (4)

With the estimated ς̂ , the difference between the distances of
two antennas can be given by

p̂ = cς̂ . (5)

2) COARSE LOCATION ESTIMATE USING PDOA
Given the estimated p̂, using cosine formula, we have

cos (α) =
x
r
=
r2 + d2 −

(
r − p̂

)2
2rd

. (6)

Simplify Eq. (6), we obtain

x =
d2 + 2rp̂− p̂2

2d
=

(
r −

p̂
2

)
p̂
d
+
d
2
. (7)

Consider that x2 + y2 = r2, hence, we can obtain y by

y = ±
√
r2 − x2. (8)

Substituting Eq. (7) into Eq. (8), we further obtain

y = ±

√(
1−

(
p̂
d

)2) (
4r2 − 4rp̂+ p̂2 − d2

)
2

. (9)

Note that d is small compare to r , so d2 is very small compare
to r2 and can be neglected, so we have

y ≈ ±
(
r −

p̂
2

)√
1−

(
p̂
d

)2

. (10)
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The maximum error by using the approximation is 0.22mm
for a 6.5GHz carrier and a receiver antenna separation of λ/2.
We can calculate the coarse location estimates x and y of the
UWB watch if we can know the path difference p for the
signal arriving at the antennas because r can be given by TOA
measurement and d is known by using Eqs. (7) and (8) or
(7) and (10).

C. ACCURATE POSITIONING USING UWB
For the UWB module in the BS, due to the multipath reso-
lution capability of UWB signals, the received signal can be
expressed as

u (t) = h (t)⊗ s (t)+ n (t) =
L−1∑
l=0

h (t)s (t − τl) , (11)

where h (t) is the channel impulse response (CIR), s (t) is the
transmitted signal, n (t) is the additive noise, and ⊗ is the
convolution operator.

Based on Eq. (11), the optimal TOA estimate can be
obtained using the ML or Bayesian criterion depending on
the level of a priori knowledge [10]. The IEEE 802.15.4a
UWB CIR h (t) is based on an extended version of the
classical Saleh-Valenzuela (SV) indoor channelmodel, where
multipath components arrive at the receiver in clusters follow-
ing the Poisson point process. According to the SV model,
the complex baseband CIR is given by [34]

h (t, τ ) =
K∑
k=1

L∑
l=1

ak,lejφk,l δ
(
t − Tk − τk,l

)
, (12)

where ak,l and φk,l are the multipath gain and phase. Tk is the
arrival time of the first path of the k-th cluster, and τk,l is the
delay of the l-th ray inside the k-th cluster relative to Tk with
K and L being the total number of clusters and multipath.
In the SV model, the phases of multipath component φk,l are
modeled as independent uniform random variables in [0, 2π ),
and the amplitude ak,l is an independent Rayleigh random
variable with power delay profile (PDP)

E{a2k,l} = E{a20,0}e
−Tk/0e−τk,l/γ , (13)

where 0 and γ are the constant decay rates for clusters
and rays, respectively. The cluster and ray arrival times are
represented by Poisson distributed random variables with
arrival rates3 and λ, respectively, according to the following
probability density functions (PDFs):

p (Tk |Tk−1) = 3e−3(Tk−Tk−1) (14)

and

p
(
τk,l |τk,l−1

)
= λe−λ(τk,l−τk,l−1). (15)

Given the received signal r (t), the TOA τ can be estimated
by maximum likelihood (ML) as

τ̂ML = argmax
τ

∫ T

0
u (t)s (t − τ) dτ, (16)

which suggests the typical implementation of the estimator
based on a filter matched to the transmitted signal s(t) fol-
lowed by a device which searches the time instant corre-
sponding to the maximum peak of the output signal over
the observation interval T . When signals propagate through
the channel, an NLOS effect may emerge if the LOS signal
component is obstructed by objects across the direct path
between the transmitter and the receiver. NLOS propagation
is often encountered in harsh indoor and urban environments.
For time-based localization, NLOS propagation induces extra
delay to the TOAmeasurement, which results in location esti-
mation errors. Although different NLOS identification and
mitigation algorithms have been proposed in the past decades,
large TOA estimate errors always exists in some complex real
environments, thus further leading to large positioning errors.

Assuming that we have M BSs with known coordinates
pi = [xi, yi, zi]T (i = 1, 2, · · · ,M ), and the location of the
elderly with the watch p0 = [x, y, 0]T =

[
xT , 0

]T is to be
estimated, we have

1̂r1j = r̂j − r̂1 = c
(
τ̂j − τ̂1

)
, j = 2, · · · ,M , (17)

where

r̂j = ‖p0 − p̂j‖ rj = ‖p0 − pj‖ (18)

with rj being the jth true range between the watch and the
jth BS. According to [16], the TOA measurement can be
described by an additive noise model, so the estimated range
can be written as

r̂i = ri + vi, (19)

where vi is the range error, which can be expressed as

vi = εi + χ, (20)

where εi ∼ N
(
0, σ 2

i

)
is independent of εi for i 6= j and

χ is the synchronization bias, here we assume that all the BSs
have the same bias. With the vector form, we have

ε ∼ N
(
0, diag

(
σ 2
1 , σ

2
2 , · · · , σ

2
M

))
, (21)

where ε = [ε1, ε2, · · · , εM ]T . We can also write the distance
difference

1̂1j = 11j + ε1j, j = 2, 3, · · · ,M , (22)

where ε1j = εj − ε1 is the error in the estimated
range-difference between the first and the jth BS and 11j =

rj − r1 is the corresponding true range-difference.
Expanding Eq. (17), we have

1̂r1j =
√(

xj − x0
)2
+
(
yj − y0

)2
+
(
zj − z0

)2
−

√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (23)

Simplify Eq. (23), we have

Ax = b, (24)
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where

A =


x211̂r13 − x311̂r12 y211̂r13 − y311̂r12
x211̂r14 − x411̂r12 y211̂r14 − y411̂r12

...
...

x211̂r1M − xM11̂r12 y211̂r1M − yM11̂r12

 (25)

and

b =
1
2


1̂r121̂r131̂r23 + k121̂r13 − k131̂r12
1̂r121̂r141̂r24 + k121̂r14 − k141̂r12

...

1̂r121̂r1M 1̂r2M + k121̂r1M − k1M 1̂r12

, (26)

where

1̂r23 = 1̂r12 − 1̂r13 (27)

1̂r24 = 1̂r12 − 1̂r14 (28)

1̂r2M = 1̂12 − 1̂r1M (29)

xj1 = x1 − xj (30)

yj1 = y1 − yj (31)

zj1 = z1 − zj (32)

a2j = x2j + y
2
j + z

2
j (33)

k1,j = a21 − a
2
j (34)

The location estimate can be given by

x̂ =
(
ATA

)−1
AT b, (35)

For the hybrid positioning, we have

x̂ =
(
ATW−1A

)−1
ATW−1b, (36)

where the weighting matrixW can be given by

W =
[
WM1 0
0 WN

]
(37)

where WM1 = diag
(
σ 2
1 , · · · , σ

2
M1

)
is the M1 × M1 matrix

with σ 2
i is the range measurement variance of the i-th BSwith

LOS, andWN = diag
(
σ 2
M1+1

, · · · , σ 2
M

)
is the (M −M1)×

(M −M1)matrix with σ 2
j is the range measurement variance

of the j-th BS with NLOS.
Instead of using the estimated τ̂ directly, the workflow of

our proposed PDOA-UWB is illustrated in Fig. 5, and the
PDOA-UWB positioning algorithm is also summarized in
Algorithm 1.

Note that some existing convex optimization positioning
algorithms [23], [36] can also be chosen as a candidate for
UWB positioning in our framework, however, to ease the
practical engineering application, we only list the above sim-
ple linear solution in order to avoid the heavy burden of the
convex-based algorithms.

FIGURE 5. The workflow of our proposed PDOA-UWB positioning method.

Algorithm 1 PDOA-UWB
Input: 1) The transmitted signal from the UWB watch

s (t) , t = 1, 2, · · · ,T ; 2) The antenna space d in PDOA;
3) The coordinates of BSs pi; 4) The number of BSsM ;

Output: The location estimate x̂ of the elderly
1: PDOAs receive signals uA (t) , uB (t) and UWBs receive

signals u (t)
2: Calculate the distance r using TOF [35]
3: Calculate the phase difference φ̂ using Eq. (3)
4: Calculate the time delay ς̂ using Eq. (4)
5: Calculate the distance difference p using Eq. (5)
6: Estimate the coarse location

[
x̂, ŷ

]T using Eqs. (7) and
(9)

7: Determine the number of LOS BSM1 based on
[
x̂, ŷ

]T
8: for i = 1, 2, · · · ,M do
9: Estimate the TOA τi using Eq. (16)

10: if M1 ≥ 4 then
11: Calculate the location of the people p̂ using

Eq. (35) without compensation
12: else
13: repeat
14: Find the nearest BS for NLOS compensation
15: M1 = M1 + 1
16: until M1 = 4
17: Refine positioning the elderly x̂ using Eq. (37)

hybrid BSs
18: end if
19: end for
20: return Final location estimate x̂

IV. EXPERIMENTAL RESULTS
Here, we conduct an experiment in a real home of the elderly
and compare the performance of our method with several
related approaches. As shown in Fig. 6, the real home has
2 bedrooms, 1 living room, kitchen, vestibule, and balconies,
totaling 63.5 square meters. Note that the unit of length
in Fig. 6 is millimetre (mm). A total of M = 9 BSs was
installed to mainly cover all the space of the house. To eval-
uate the effectiveness of the proposed algorithm, we use
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FIGURE 6. The experimental environment in an elderly home.

the root mean square error (RMSE) as a metric, which is
defined as

RMSE=

√√√√√1
J

J∑
j=1

[(
x̂j−x

)2
+
(
ŷj−y

)2
+
(
ẑj − z

)2]
, (38)

where [x̂j, ŷj, ẑj]T represents the j-th location estimate,
[x, y, z]T is the true location of source, and J is the number
of experiment trials.

To validate the efficacy of our method, we compare
our methods with two conventional TDOA-based position
methods, i.e., Chan method [37] and Convex method [23].
The Chan’s method is a typical closed form solution for
TDOA positioning, which is sensitive to NLOSmeasurement
errors. Comparatively, convex-based methods need semidef-
inite relax (SDR) for convex optimization, and thus showing
computational burden as compared with the closed form
solutions.

We randomly select J = 120 test points in our experi-
ment to calculate the RMSEs. The cumulative distribution
functions (CDFs) of the RMSEs of different positioning algo-
rithms are illustrated in Fig. 7.

It shows that the probability of our proposed PDOA-UWB
method achieving positioning error of less than 1m is
92.77%. The probability of positioning error of less than
1m for Convex+UWB (9BSs, NLOS compensation) (i.e.,
using Convex algorithm based on TDOA measurements
of 9 BSs with NLOS compensation), Convex+UWB (9BSs,
no NLOS compensation) (i.e., using Convex algorithm based
on TDOAmeasurements of the UWBwith NLOS compensa-
tion), Chan+UWB (9BSs, NLOS compensation) (i.e., using
Chan algorithm based on TDOAmeasurements of 9BSs with

FIGURE 7. The CDF curves for different compared methods.

NLOS compensation), and Chan+UWB (9BSs, no NLOS
compensation) (i.e., using Chan algorithm based on TDOA
measurements of 9BSs without NLOS compensation) are
80.87%, 55.87%, 41.33%, and 29.89%, respectively. From
the results, we find our method more superior to the other
methods in positioning accuracy.

Fig. 8 shows the histogram of the RMSEs of dif-
ferent localization algorithms, indicating that the RMSEs
of PDOA-UWB, Convex+UWB (9BSs, NLOS compen-
sation), Convex+UWB (9BSs, no NLOS compensation),
Chan+UWB (9BSs, NLOS compensation), and Chan+UWB
(9BSs, no NLOS compensation) are 0.5145m, 1.4371m,
2.2469m, 2.7791m, and 3.0562m, respectively. For conve-
nience purposes, we used abbreviations, for example, ‘‘9BSs,
NLOS compensation’’ is abbreviated as ‘‘comp’’, and ‘‘9BSs,
no NLOS compensation’’ is abbreviated as ‘‘no comp’’. Note
that our proposed PDOA-UWB algorithm needs only 4 BSs
for accurate positioning, and other compared methods use all
the measurements of BSs to achieve their accuracy. That is to
say, our method can obtain better performance by avoiding
the unnecessary NLOS compensation, which is attributed to
the use of PDOA coarse location.

FIGURE 8. The histogram of different positioning methods.

Figure 9 shows the RMSEs of different methods under dif-
ferent number of BSs. We can find that the RMSEs decrease
as the number of BSs involved in positioning increases.
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TABLE 1. The complexities and average running time of the three typical methods.

FIGURE 9. The RMSEs under different number of BSs.

Comparatively, our method shows better positioning accu-
racy because our algorithm can make full use of the signals
from the BSs with LOS and efficiently compensate the BSs
with NLOS from the nearest locations based on the coarse
positioning of the PDOA positioning procedure.

To show the robustness of our proposed method, Fig. 10
illustrates the RMSEs of our method under different NLOS
propagation cases. Note that our method needs only four BSs
for positioning, so we test the performance of our method
with different LOS and NLOS combinations. It can be seen
that the more LOS BSs, the better the performance of our
method. The probability of RMSEs of less than 0.45m is
95.38% in four LOS BSs case.

FIGURE 10. The RMSEs under different NLOS cases.

To compare the computational burden of our proposed
algorithm with other existing methods, we list the compu-
tational complexity and average time of our method and
SDP [36], robust SDP [23] (denoted as SDP-R) in Table 1.
The average time is calculated based on the 1000 independent
runs under MATLAB 2018 and Pentium I7 processors. Note
that the main computational burden of our method is the
inverse of aM×M matrix because other operators are linear.
Other two compared method consume more running time on
convex solution finding, so our method show superiority in
practical engineering applications.

V. CONCLUSION AND FUTURE WORKS
This article proposed a PDOA assisted UWB positioning
method (PDOA-UWB) for location-based user service in
smart home. In our positioning framework, we first calculated
the phase difference of arrival from PDOA chip integrated
in the UWB BSs to obtain a coarse location of the elderly.
This is used to distinguish which nearby BSs are in a LOS
environment and those in a NLOS environment. Combined
with the UWB positioning method, we proposed a PDOA
assisted UWB (PDOA-UWB) positioning method to improve
the positioning accuracy of the elderly. Compared with some
existing methods, our method can achieve higher accuracy
with less NLOS compensation, and is easier to be imple-
mented in complex practical indoor environments.

The proposed PDOA-UWB method can efficiently select
the minimal and optimal BSs for positioning, thus avoiding
the blind compensation and calculation burden of the tra-
ditional UWB positioning methods. Our proposed method
is mainly designed for fast and robust practical engineering
applications, which reduce the computational burden of the
convex-based methods greatly without remarkable perfor-
mance loss. The proposed positioning scheme can not only
solve the problem of elderly care in smart homes, it also
has better application prospects for other complex positioning
environments, such as factories, parking, and airports.
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