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ABSTRACT In this paper, we propose a novel machine learning pipeline to detect QRS complexes
in very noisy wearable electrocardiogram (ECG) devices. The machine learning pipeline consists of a
Butterworth filter, two wavelet convolutional neural networks (WaveletCNNs) autoencoders, an optional
QRS complex inverter, a Monte Carlo k-nearest neighbours (k-NN), and a convolutional long short-term
memory (ConvLSTM). WaveletCNN autoencoders filter out electrode contact noise, instrumentation noise,
and motion artifact noise by using the advantages of wavelet filters and convolutional neural networks. The
QRS complex inverter flips inverted QRS complexes. Monte Carlo k-NN performs automatic gain control on
the ECG signals in order to normalize it. The ConvLSTM executes the final QRS complex detection by using
the power of a convolutional neural network and a long short-term memory. The MIT-BIH, the European
ST-T, and the Long Term ST database Noise Stress Test databases provide the training and testing ECG
recordings. The proposed machine learning pipeline performs 3 standard deviations better than the state of
the art QRS complex detection algorithms in terms of F1 score for very noisy environments.

INDEX TERMS Artificial neural networks, electrocardiogram (ECG), QRS complex, feedforward neural
networks, multi-layer neural network, convolutional neural networks, recurrent neural networks.

I. INTRODUCTION
Many cardiovascular diseases are diagnosed using electrocar-
diogram (ECG) recordings. For example, cardiovascular dis-
eases such as coronary artery disease, arrhythmia, and heart
valve disease are detected using ECG recordings. However,
accurate diagnoses of cardiovascular diseases require large
amounts of ECG recordings. Wearable ECG devices were
invented in order to gather numerous amounts of ECG record-
ings for the cardiologists. The downside to the vast stores
of ECG recordings is the disease classification time. As the
number of ECG recordings increases, the amount of time the
cardiologists spend on disease classification increases.

Automated ECG disease classification was created to
expedite the cardiologists’ diagnoses. More recently, deep
neural networks were applied to ECG disease classification.
Zihlmann et al. [1] proposed a convolutional neural net-
work (CNN) followed by a long short-term memory (LSTM)
network for ECG disease classification. Andersen et al. [2]
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developed a CNN-LSTM network that can detect atrial fib-
rillation (AF) in real time as it can process 24 h recordings in
less than 1 second. Furthermore, a CNN-LSTM is created by
Verma and Agarwal [3] for classifying between normal, AF,
noisy signals, and other signals. Pourbabaee et al. [4] tested
many CNNs with support vector machines (SVMs) and mul-
tilayer perceptron (MLPs) for paroxysmal atrial fibrillation
detection. The CNN-LSTM generally performs better than
the MLP and the SVM because the former is able to detect
spatial-temporal patterns in the ECG signal.

In order to diagnose cardiovascular diseases using the ECG
recordings, the ECG recordingsmust first be segmented. QRS
complex detection is required for ECG segmentation because
the QRS complexesmark the starts and the ends of the cardiac
rhythm measurements and ECG segments. As a result, QRS
complex detection is paramount for beat classification.

Many QRS complex detection algorithms have been cre-
ated over the past few decades. The literature [5], [6] and
references therein show a vast array of QRS complex detec-
tion algorithms. Most of the QRS complex detection algo-
rithms use digital filters to detect the QRS complexes. The
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main digital filters [5], [6] for QRS complex detection are
the amplitude filter, the time series filter, the matched filter,
and the frequency filter. Amplitude filters use thresholds
to find the QRS complexes. If an ECG peak is above a
threshold, then the amplitude filter classifies the peak as a
QRS complex. Certain portions of Pan and Tompkins [7],
GQRS [8], and ecgpuwave [9] employ the amplitude filter.
The algorithms presented above perform within 0.1% of each
other under low noise conditions. As a result, the algorithms
have reached the Bayes error rate for QRS complex detection.

The matched filter convolves a predefined template with
the ECG signal in order to produce a QRS complex detection
signal. These papers [10], [11] show classical applications of
the match filters for QRS complex detection. On the other
hand, more advanced neural network based match filters have
been developed. These references [12]–[20] contain neural
network based match filters. The frequency filters allow for
decomposition of signals based on frequency and time. As a
result, certain frequencies could be attenuated in order to
reduce the noises. Moreover, the frequency filters allow for
analysis of QRS complexes as QRS complexes have unique
frequency signatures. This improves the QRS complex detec-
tion accuracy. Wavedet [21] and WQRS [22] are examples of
ECG frequency filters. Other examples of frequency filters
include [23]–[32].

The QRS complex detection algorithms presented above
are well suited for detecting QRS complexes in clean ECG
signals. However, the algorithms above perform poorly in
very noisy wearable ECG devices. Noises [33] such as base-
line wandering, power line noise, electrode contact noise,
and instrumentation noise create many problems. Baseline
wandering introduces many low frequency noises to the ECG
signal, which distorts the amplitudes of the ECG peaks. The
other noises introduce high frequency noises, which creates
false QRS complexes. Moreover, the high frequency noises
make the actual QRS complexes undetectable by disfiguring
them.

This paper proposes a novel machine learning pipeline to
solve the problems above. Themachine learning pipeline con-
sists of a Butterworth filter, two wavelet convolutional neural
network (WaveletCNN) autoencoders, an optional QRS com-
plex inverter, a Monte Carlo k-nearest neighbours (k-NN),
and a convolutional long short-term memory (ConvLSTM).
The Butterworth filter removes the baseline wandering of
the ECG signals by attenuating the low frequency noise
components. The WaveletCNN Autoencoders are advanced
bandpass filters, which essentially eliminate the false QRS
complexes and enhance the actual QRS complexes. A QRS
complex inverter is used to flip the inverted QRS complexes
for better detection. TheMonte Carlo k-NN applies automatic
gain control to the ECG signals in order to normalize the
peaks of the ECG signals to 1 mV. The ConvLSTM executes
the final QRS complex detection by using the advantages of
a CNN and a LSTM. As a result of the machine learning
pipeline, the detection of QRS complexes in noisy wearable
ECG devices is feasible.

The rest of the paper is organized as follows. Section II
discusses several related QRS complex detection algorithms
in detail. Section III shows the data preparation and the
test environment. The proposed machine learning pipeline is
presented in Section IV. Section V compares the performance
metrics of the proposedmachine learning pipeline to the other
QRS complex detection algorithms. Finally, conclusions are
given in Section VI.

II. RELATED QRS COMPLEX DETECTION ALGORITHMS
In this section, the following related QRS complex detection
algorithms are presented: Pan and Tompkins [7], GQRS [8],
Wavedet [21], Xiang et al.’s CNN [17], and Chandra et al.’s
CNN [20]. The advantages and disadvantages of each algo-
rithm are also described.

A. PAN AND TOMPKINS
The Pan and Tompkins algorithm [7] is the first real timeQRS
complex detection algorithm, in which a bandpass filter is
applied to reduce the noises in the ECG signals, and adaptive
filters are used to detect the QRS complexes. The adaptive
filters consist of an amplitude filter, a slope filter, and a width
filter. In order to be marked as a QRS complex, an ECG peak
must simultaneously meet all of the following criteria: the
peak’s amplitudemust be greater than an amplitude threshold,
the peak’s slope must be greater than a slope threshold, and
the peak’s width must fall within the range of a QRS complex
width. The amplitude filter rejects the low amplitude signals,
while the slope filter and thewidth filter eliminate the Pwaves
and T waves. The advantages of the Pan and Tompkins algo-
rithm are the fast processing times and low complexity. How-
ever, the filters used in the algorithm need to be engineered by
hand, which requires a lot of time and expertise. Furthermore,
the handcrafted filters can not adapt to different patients and
environments.

B. GQRS
GQRS [8] is a classical QRS complex detection algorithm.
Firstly, it calculates the means and the standard deviations
of the RR intervals and the QRS complex amplitudes of the
previously detected QRS. Secondly, the algorithm forms an
adaptive search interval using the statistics of the RR inter-
vals. Thirdly, the model creates an adaptive amplitude filter
using the statistics of the QRS complex amplitudes. Finally,
the adaptive amplitude filter is applied to the current adaptive
search interval in order to detect the QRS complex. GQRS
has the advantage of adapting slightly better than the Pan and
Tompkins algorithm, which resulted in a better performance.
However, GQRS still fails at detecting some of the QRS
complexes because of its inability to adapt properly in noisy
signals.

C. WAVEDET
Wavedet [21] is a wavelet based QRS complex detection
algorithm. It performs wavelet decomposition on the ECG
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signals, which produces a time series of frequencies. After
the decomposition, a matched filter detects the QRS com-
plexes by looking at the patterns of the wavelet coefficients.
The matched filter allows for the analysis of many differ-
ent signals at varying frequencies and time intervals, thus
enabling the separation of the QRS complex signals from
the non QRS complex signals. For the final QRS complex
detection, it uses an adaptive amplitude filter. Wavedet per-
forms better than GQRS under low noise conditions due
to its multi-resolution analysis but performs poorly under
high noise conditions due to its ineffective matched filter
and adaptive amplitude filter. The matched filter is unable to
filter out the noises as it can not distinguish the false QRS
complexes from the actual QRS complexes. Furthermore,
the amplitude filter can not tell the difference between the
noises and the actual QRS complexes just by looking at the
amplitudes.

D. AUTOMATIC QRS COMPLEX DETECTION USING
TWO-LEVEL CONVOLUTIONAL NEURAL NETWORK
Xiang et al.’s paper [17] detects QRS complexes using
a 2-layer CNN. The first ECG channel is obtained by apply-
ing a difference filter to the original input ECG signal.
The second ECG channel is produced by applying a moving
average filter and a difference filter to the original input ECG
signal. After filtering, two 1×5 pixel CNNkernels are applied
to the ECG channels. For the second CNN layer, it uses a
1 × 5 pixel CNN kernel. Finally, the MLP layers make the
final QRS complex predictions. Xiang et al.’s CNN is fast and
produces great results under low noise conditions. However,
Xiang et al.’s CNN is ineffective under high noise conditions
due to its difference filter. The difference filter is a highpass
filter that allows high frequency noise through, which intro-
duces classification errors and decreases the performance of
the algorithm.

E. ROBUST HEARTBEAT DETECTION FROM MULTIMODAL
DATA VIA CNN-BASED GENERALIZABLE INFORMATION
FUSION
Chandra et al.’s paper [20] uniquely features an inter-patient
testing scheme. In the testing scheme, the patients in the
training set differ from the patients in the testing set. This
testing scheme proves the generalization ability of their algo-
rithm. Their neural network has a 1-layer CNN and an MLP.
The CNN has 2 filters with a kernel size of 29 pixels. The
MLP has one 200-neuron hidden layer and employs a sigmoid
activation function. The model performs slightly better than
Xiang et al.’s CNN due to the former’s large CNN kernel
size and the former’s greater number of neurons. However,
it was not designed for high noise conditions, and hence its
performance degrades in very noisy data that often happen in
wearable ECG devices.

III. DATA PREPARATION
As stated in the introduction, data preparation provides the
testing and training environment to compare the various

QRS complex detection algorithms. The MIT-BIH arrhyth-
mia database [34], [35] (https://physionet.org/
content/mitdb/1.0.0/), the European ST-T database
[36] (https://physionet.org/content/edb/1.
0.0/), and the Long Term ST database [37] (https:
//physionet.org/content/ltstdb/1.0.0/) are
selected for the training and testing of the QRS complex
detection algorithms. Noise is added to the ECG recordings
using the PhysioToolkit Noise Stress Test [38] (https://
physionet.org/content/nstdb/1.0.0/).

A. PRE-PROCESSING PROCEDURE
The following labels are selected for QRS complex detection:
N, •, L, R, A, a, J, S, V, F, e, j, E, /, f, and Q. Some of
the ECG recordings in the databases have inconsistent label
positioning. A portion of the QRS complexes are labeled at
the R peak, while other QRS complexes are labeled at the start
of the Q wave. For this paper, the QRS complexes labeled at
the R peak are used. For every individual sample that has a
QRS complex label, y = 1.0 is assigned to that individual
sample, which usually corresponds to the R peak position or
very close to the R peak. The floats y = 0.0 are assigned to
all other samples in the recording. There is only one y = 1.0
label for each QRS complex.

All detection algorithms are restricted to using only the
primary ECG lead for QRS complex detection, while other
ECG leads are not used. The usage of only the primary
ECG lead is done to mimic wearable single channel ECG
devices. The datasets are trained and tested on a patient level.
Patients with multiple ECG recordings in the database had
only one ECG recording included in this study. The total
dataset contains N number of patients. For training, the total
dataset is randomly shuffled and X number of patients are
randomly selected for the training dataset. The remaining
N − X number of patients are used for the testing dataset.
This way the patients from the training dataset differ from
the patients in the testing dataset, minimizing bias towards
the training dataset. The process above repeats for 10 times
for 1× 10 fold testing.

B. PhysioToolkit NOISE STRESS TEST
The datasets have relatively clean ECG recordings. To sim-
ulate the noisy wearable ECG devices, noise is added to
the ECG recordings using the PhysioToolkit Noise Stress
Test [38] (NST). The NST produces baseline wandering
noises, white Gaussian noises, muscle noise, and electrode
contact noises based on the given signal to noise ratio (SNR).
Baseline wandering noises consist of low frequency high
amplitude noises, while electrode contact noises are high
frequency signals that look similar to QRS complexes. In this
paper, only the first 640,000 samples of each ECG recording
are used due to the constraints of the NST. The worst case
SNR for most wearable ECG devices ranges from 12 dB SNR
to −6 dB SNR. As a result, only the 12 dB SNR, the 0 dB
SNR, and the −6 dB SNR ECG recordings are used.
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C. MIT-BIH NST
For the MIT-BIH NST, the following recordings are used for
training and testing: 100, 104, 108, 113, 117, 122, 201, 207,
212, 217, 222, 231, 101, 105, 109, 114, 118, 123, 208, 213,
219, 223, 232, 102, 106, 111, 115, 119, 124, 203, 209, 214,
220, 228, 233, 103, 107, 112, 116, 121, 200, 205, 210, 215,
221, 230, and 234. The QRS complex inverter is applied to
the MIT-BIH as it has many inverted QRS complexes. For the
training and the testing process, 17 random patient recordings
are used as the training dataset and the remaining 30 patient
recordings are grouped as the testing dataset.

D. EUROPEAN ST-T NST
The MIT-BIH database is sampled at 360 Hz, or equivalently
1 sample per 2.78 ms. In order to maintain a consistent
sample rate, the European ST-T database is upsampled from
250 Hz to 360 Hz. Furthermore, the following ECG record-
ings from the European ST-T database are used for train-
ing and testing: e0103, e0104, e0111, e0112, e0113, e0115,
e0116, e0118, e0123, e0127, e0136, e0147, e0151, e0154,
e0159, e0161, e0166, e0170, e0203, e0204, e0206, e0207,
e0208, e0210, e0212, e0303, e0306, e0404, e0406, e0408,
e0409, e0410, e0411, e0417, e0418, e0509, e0601, e0606,
e0607, e0609, e0610, e0611, e0612, e0613, e0615, e0704,
e0818, and e1304. The QRS complex inverter is not used on
the European ST-T database as most of European ST-T’s QRS
complexes are not inverted. For the training and the testing
process, 14 random patient recordings are used as the training
dataset and the remaining 34 patient recordings are grouped
as the testing dataset.

E. LONG TERM ST NST
Similar to the European ST-T database, the Long Term ST
database is upsampled from 250 Hz to 360 Hz. Further-
more, the following ECG recordings from the Long Term ST
database are used for training and testing: s20011, s20031,
s20091, s20101, s20111, s20131, s20151, s20201, s20211,
s20231, s20251, s20261, s20271, s20281, s20291, s20321,
s20331, s20341, s20351, s20361, s20371, s20401, s20411,
s20431, s20451, s20461, s20471, s20521, s20551, s20631,
s30671, s30701, s30741, and s30801. The QRS complex
inverter is not used on the Long Term ST database. For the
training and the testing process, 14 random patient recordings
are used as the training dataset and the remaining 20 patient
recordings are grouped as the testing dataset.

IV. PROPOSED MACHINE LEARNING PIPELINE
Noisy ECG signals introduce large amounts of errors into
the QRS complex detection process. Noises such as baseline
wandering, electrode contact noise, and instrumentation noise
are present in ECG signals. This paper proposes a novel
machine learning pipeline to denoise the ECG signals and to
detect the QRS complexes.

Fig. 1 shows the machine learning pipeline for detect-
ing QRS complexes. The input ECG signal contains low

FIGURE 1. Machine learning pipeline for detecting QRS complexes.

frequency baseline wandering signals. Firstly, the Butter-
worth high pass filter eliminates the baseline wandering
signals by attenuating the low frequency signals. This effec-
tively stabilizes the ECG signal. Secondly, the WaveletCNN
Autoencoder 1 filters out the non QRS complex signals.
WaveletCNN Autoencoder 1 applies wavelet decomposition
to the ECG signal in order to obtain the wavelet coeffi-
cients. After that, the wavelet coefficients feeds into a CNN
autoencoder. The CNN autoencoder filters the noisy wavelet
coefficients and produces the clean wavelet coefficients. Sub-
sequently, wavelet reconstruction recovers the clean single
channel ECG signal from the clean wavelet coefficients.
Thirdly, the difference filter sharpens and enhances the QRS
complexes. This is done by attenuating the low frequency
components, while maintaining the high frequency compo-
nents resembling the QRS complexes. Fourthly, the ECG
signal passes through the WaveletCNN Autoencoder 2. The
WaveletCNN Autoencoder 2 performs the same filtering
operations as the WaveletCNN Autoencoder 1. For some
datasets, a QRS complex inverter is applied to flip the inverted
QRS complexes. Fifthly, the Monte Carlo k-NN normal-
izes the ECG signals by scaling the ECG peaks to 1 mV.
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Normalization is required in order to compensate for the dif-
fering patients and ECG devices. Lastly, the ConvLSTM uses
the filtered ECG signals to predict the QRS complexes. The
ConvLSTM uses the timing accuracy of a LSTM combined
with the pattern matching ability of a CNN to detect spatial
temporal signals such as the QRS complexes.

A. BUTTERWORTH FILTER: BASELINE WANDERING FILTER
Baseline wandering signals create noises and distortions in
the ECG signals. Furthermore, baseline wandering signals
randomizes the amplitudes of the P waves, the R waves, and
the T waves. As a consequence, the P waves and the T waves
are often misclassified as the QRS complexes. In order to
reduce the baseline wandering signals, a Butterworth high-
pass filter [39] of order n = 3 with fc = 5 Hz is designed.
The filter attenuates the low frequency baseline wandering
signals, while preserving the high frequency components.
The Butterworth filter essentially takes in a single chan-
nel baseline wandering ECG signal and outputs a single
channel baseline removed ECG signal to the WaveletCNN
Autoencoder 1.

B. WaveletCNN AUTOENCODER 1: BANDPASS FILTER
TheQRS complex has a unique signature in the frequency and
time domain. The wavelet filter [40] is able to isolate the QRS
complexes from the other ECG signals by filtering out certain
frequencies at certain time intervals. This lowers the false
positive rate of the QRS complex detection algorithm. As a
result, the algorithm achieves a higher detection accuracy.

Wavelet filtering starts with the wavelet decomposition
process. Firstly, the approximation coefficients A[t] are cal-
culated by convolving the input function x[t] with the lowpass
filter g[t], i.e.,

A[t] =
∞∑

k=−∞

x[k]g[t − k] = x[t] ∗ g[t]. (1)

Secondly, the detail coefficients D[t] are computed by con-
volving the input function x[t] with the highpass filter h[t],
i.e.,

D[t] =
∞∑

k=−∞

x[k]h[t − k] = x[t] ∗ h[t]. (2)

Thirdly, both sets of coefficients A[t],D[t] are downsampled
by 2. That is,

Adown[t] = A[2t + 1] (3)

Ddown[t] = D[2t + 1] (4)

Finally, the downsampled detail coefficients Ddown[t] are
kept, while the downsampled approximation coefficients
Adown[t] are fed as input x[t] into the next wavelet level. The
process above repeats until the wavelet coefficients of the
desired level are obtained.

For every wavelet level, the detail coefficients Ddown[t]
represent a fixed frequency component of the ECG signal.

By attenuating certain detail coefficients Ddown[t], the non
QRS complex signals such as instrumentation noises are
reduced. This improves the performance of the proposed
machine learning pipeline. Furthermore, certain wavelet
coefficients are amplified in order to sharpen the QRS com-
plexes. The process effectively decreases false negative rate
and increases the true positive rate.

One way to filter the wavelet coefficients is by using the
CNN [41]. The wavelet coefficients could be viewed as a
2D image, of which the CNN filters. The CNN removes the
noises by detecting invalid spatial patterns in the wavelet
coefficients and eliminating them. The CNN equations shown
in

V i
y,z =

N∑
j=1

M∑
k=1

W i
j,kX

i
j+y−1,k+z−1 (5)

Oi = A(V i
+ Bi) (6)

depict 2D convolution between the input matrix X i and the
kernel weights W i. The kernel weights W i slide across the
input data X i to produce V i. After computing V i, V i is
added to bias Bi. Then the resulting matrix passes through
the activation function A and produces the output matrix Oi.

The WaveletCNN Autoencoder 1 receives the single chan-
nel baseline removed ECG signal from the Butterworth fil-
ter and outputs a filtered single channel ECG signal. The
WaveletCNN Autoencoder 1 effectively functions as a band-
pass filter by removing the false P waves, R waves, and
T waves.

Fig. 2 shows the architecture of the WaveletCNN Autoen-
coder 1. Firstly, the WaveletCNN Autoencoder 1 performs
wavelet decomposition on the noisy single channel ECG sig-
nal in order to produce the wavelet coefficients. WaveletCNN
Autoencoder 1 uses the symlets 4 level 3 wavelet for wavelet
decomposition. The symlets 4 wavelet approximates the
shape of the QRS complex, which allows for the analyses
of the QRS complexes. Secondly, the CNN encoder filters
the wavelet coefficients using the 3× 51 CNN kernels. After
filtering, the CNN encoder downsamples the wavelet coef-
ficients. The downsampling forces the WaveletCNN Autoen-
coder 1 to extract the most important features and to eliminate
the unnecessary wavelet coefficients.

Thirdly, the CNN decoder reconstructs the original wavelet
coefficients from the downsampled wavelet coefficients. The
decoder uses the 3 × 51 kernel transpose CNN to upsam-
ple the wavelet coefficients. After upsampling, the wavelet
coefficients are filtered by a CNN again. Fourthly, the neural
network soft thresholding layer applies smoothing to the
wavelet coefficients. Smoothing removes the high frequency
noise. Finally,WaveletCNNAutoencoder 1 performs wavelet
reconstruction on the filtered wavelet coefficients. In the end,
a clean single channel ECG signal is produced.

Table 1 shows the hyper-parameter tuning of the
WaveletCNN Autoencoder 1. The kernel size of the CNN
layers is varied until the optimal kernel size of 3 × 51 is
determined. Afterwards, the optimal number of channels is
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FIGURE 2. WaveletCNN Autoencoder 1 architecture.

found to be 4. The bottleneck stride controls the amount
of filtering that happens on the wavelet coefficients. The
optimal bottleneck stride is 4 × 4. Each CNN layer uses the
LeakyReLU activation function given by

LeakyReLU (x) =

{
x if x > 0
αx otherwise

(7)

where x is the input matrix and α is the slope of the negative
region. The LeakyReLU function prevents the loss function
from reaching zero, which in turn prevents the optimizer get-
ting stuck. The optimal slope determined by hyper-parameter
tuning is α = 0.35. Each CNN layer also uses the batch
normalization function given by

BN (x) =
x − µx
σx

(8)

where µx , σx are the mean and the standard deviation of x
respectively. Batch normalization helps the neural network to
converge faster, which results in a faster training process. The
neural network soft thresholding layer ε = 1 × 10−6 shown

TABLE 1. Hyper-parameter tuning of WaveletCNN Autoencoder 1.

in

ReLU (x) = max(0, x) (9)

ŷi =
x

|x| + ε
ReLU (|x| − Vthres) (10)

applies smoothing to the ECG signals. All input |x| values
are shifted down by the threshold Vthres. Subsequently, all
input |x| values below the threshold Vthres are set to zero.
The WaveletCNN Autoencoder’s output ECG signal ŷi is
produced by this layer.

The Adam optimizer [42] trains the WaveletCNN Autoen-
coder 1 using the root mean square error (RMSE) loss func-
tion stated below.

J (ŷ, y) =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (11)

where ŷi, yi are the predicted and noiseless ECG samples
respectively, and N is the number of ECG samples. The loss
function forces the network to reconstruct a clean ECG signal
from a noisy ECG signal. If the predicted de-noised ECG
signal ŷ differs from the ground truth ECG signal y, then the
loss is large, otherwise the loss is small. Fig. 3 shows the
WaveletCNNAutoencoder 1 removing noises from the single
channel ECG signal.

C. DIFFERENCE FILTER: HIGH-PASS FILTER
In the ECG recordings, the R waves have sharper peaks
than the P waves and the T waves. Therefore, the R waves
have higher frequency components than the P waves and the
T waves. The difference filter eliminates the P waves and the
T waves by attenuating the low frequency components. As a
result, the residual signal only consists of the high frequency
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FIGURE 3. Comparison of the WaveletCNN Autoencoder 1 and the classical wavelet filter. MIT-BIH 0 dB test SNR.

FIGURE 4. Comparison of the WaveletCNN Autoencoder 1 and the classical wavelet filter. MIT-BIH 0 dB test SNR.

components such as the R waves. The equation for the filter
is presented below

y[t] = x[t]− x[t − 1] (12)

where x[t] and y[t] are the input and the output functions
respectively. Alternatively, the filter could be thought as
taking the gradient of the input function x[t]. In the end,

the difference filter takes in the single channel ECG signal
from the WaveletCNN Autoencoder 1 and sends the gradient
of the ECG signal to the WaveletCNN Autoencoder 2.

D. WaveletCNN AUTOENCODER 2: BANDPASS FILTER
The WaveletCNN Autoencoder 2 takes in the single channel
ECG signal from the difference filter and applies another
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FIGURE 5. Comparison of the WaveletCNN Autoencoder 2 and the classical wavelet filter. MIT-BIH 0 dB test SNR.

layer of filtering. During filtering, it removes the noises from
the ECG signals while preserving the gradient of the QRS
complex. WaveletCNN Autoencoder 2 and WaveletCNN
Autoencoder 1 have the exact same architecture. However,
the wavelet scaling functions are different. WaveletCNN
Autoencoder 2 uses the Daubechies 3 level 3 wavelet, which
excels at capturing the gradient of the QRS complex. Fig. 5
shows the WaveletCNN Autoencoder 2 filtering the single
channel ECG signal. The ground truth is obtained by taking
the derivative of the original noiseless ECG signal.

E. QRS COMPLEX INVERTER (Optional)
Normal QRS complexes have positive R peak amplitudes.
On the other hand, inverted QRS complexes have negative R
peak amplitudes. Inverted QRS complexes create problems
for the Monte Carlo k-NN gain control and the ConvLSTM
detector because both of them expect the R peaks to be
positive. An optional QRS complex inverter is created to flip
the inverted QRS complexes. If a patient has many inverted
QRS complexes, this method improves the detection accu-
racy, otherwise it introduces errors and lowers the detection
accuracy.

The QRS complex inverter is very simple. It has a 60 sam-
ple wide window. If the absolute value of the minimum value
of the window is greater than the maximum value of the
window

|min(window)| > max(window) (13)

the window moves to position of the minimum value, other-
wise the window increments by 20 samples. If the window

reaches a negative R peak, the window is inverted.

window←−window (14)

The process above repeats until the window reaches the end
of the ECG recording. Fig. 6 shows the QRS complex inverter
flipping inverted QRS complexes, while ignoring the normal
QRS complexes.

FIGURE 6. QRS complex inverter flipping inverted QRS complexes.

F. MONTE CARLO K-NN: AUTOMATIC GAIN CONTROL
Differing patients, instruments, and recording environments
cause fluctuations in the QRS complex amplitudes. Normally,
QRS complex detection algorithms use thresholds to detect

VOLUME 8, 2020 143809



B. Yuen et al.: Detecting Noisy ECG QRS Complexes

the QRS complexes. If a fluctuation causes a QRS complex
amplitude to drop below the threshold, then the algorithm
does not detect it. This creates a false negative error.

In order to minimize the fluctuations, the Monte Carlo
k-NN normalizes the QRS complex amplitudes to 1 mV.
Firstly, the window start variable winstr is randomly selected
form a uniform distribution

winstr ∈ [0, len− winsize] (15)

where len is the length of the input ECG signal ECG1[t].
Monte Carlo k-NN then calculates the window end

winend = winstr + winsize (16)

using the window start and window sizewinsize. The window
represents a time interval on the single channel ECG signal
ECG1[t]. Secondly, k-NN clusters all the points in the win-
dow into two categories: R peak like signals and non R peak
like signals. R peak like signals includes P waves, R waves,
and T waves. The remaining signals represent the non R peak
like signals. k-NN uses the Euclidean distances of the points’
amplitudes for cluster assignment. Thirdly, the mean of the
R peak like cluster

µRpeak =
1
N

N∑
i=0

Rpeaki (17)

is computed, where Rpeaki is the amplitude of a R peak.
Fourthly, the ECG signal between window start and window
end

ECG1[winstr : winend]←
ECG1[winstr : winend]

µRpeak
(18)

is normalized using the R peak mean. Fifthly, the process
repeats for X number of loops. The winsize slowly decreases
by decsize for every Z loops. Finally, the single channel gain
controlled ECG2[t] signal is produced in a similar manner.
Fig. 7 shows an example of the Monte Carlo k-NN with
X = 100len loops, winsize = 2600 initial window size,
decsize = 360, and Z = 20len. In conclusion, the Monte
Carlo k-NN takes in a single channel ECG signal from each
autoencoder and outputs a 2 channel gain controlled ECG
signal to the ConvLSTM.

G. ConvLSTM: TIME SERIES AND MATCHED FILTER
The filtering process above is good at cleaning and enhancing
the ECG signals. However, classification errors still persist
at this stage. Therefore, a final QRS complex detector is
needed in order to reduce the classification errors. Using
the ConvLSTM [43] layer, the combination of a CNN layer
and a LSTM layer on the same layer, the spatial-temporal
patterns of the QRS complexes are detected. The ConvLSTM
layer performs better than the CNN-LSTM layers because the
ConvLSTM detects spatial-temporal patterns concurrently
instead of detecting spatial patterns in CNN layer and tem-
poral patterns in the LSTM layer separately. Furthermore,
the architectural design of the ConvLSTM is much simpler
than the CNN-LSTMdue the ConvLSTMneeding less layers.

FIGURE 7. Application of the Monte Carlo k-NN.

Fig. 8 shows the ConvLSTM architecture, which has the
same hyper-parameters as our previous paper [44]. The archi-
tecture consists of 1 CNN layer, 1 ConvLSTM layer, 1 max
pooling layer, and 3 MLP layers. The CNN layer extracts
features from the ECG signals, while filtering out the noises.
After that, the ConvLSTM layer predicts the QRS complex
timings. Subsequently, the max pooling layer reduces the
4 channel signal to a 1 channel signal. At the end, the MLP
layers format the data and produce a pulse train marking the
locations of the QRS complexes.

FIGURE 8. The ConvLSTM architecture.

The following paragraphs describe the ConvLSTM net-
work in detail. Firstly, the network takes in the 2 channel
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ECG signal from the Monte k-NN. Channel 1 is the normal
filtered ECG signal, while channel 2 is the filtered gradient
version of channel 1. Secondly, the CNN layer applies a 2×91
kernel with a 1 × 1 stride to the data. The 2 × 91 kernel
matches the 91 sample long gradient of the QRS complex.
The 1 × 1 stride preserves the timing information of the
ECG signal. Moreover, the layer uses 4 channels because
the ECG signals contain 4 main waveforms: P wave, QRS
complex, T wave, and QS complex. The activation function
is the LeakyReLU function with α = 0.02. Thirdly, the Con-
vLSTM layer parses the features gathered by the CNN layer.
The layer is a combination of the CNN layer and the LSTM
layer. The ConvLSTM layer has the timing advantages of the
LSTM, where it predicts the future QRS complex locations
before they appear based on the previous locations.Moreover,
the spatial detection abilities of the CNN allow the network
to distinguish QRS complexes from the noises. The following
equations show the functionality of the ConvLSTM.

S(x)=
1

1+ e−x
(19)

it = S(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) (20)

ft = S(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ) (21)

Ct = ft ◦Ct−1+it ◦tanh(Wxc ∗ Xt+Whc ∗ Ht−1+bc) (22)

ot = S(Wxo ∗ Xt+Who ∗ Ht−1+Wco ◦ Ct−1+bo) (23)

Ht = ot ◦ tanh(Ct ) (24)

where W and b are the weight and bias matrices. S(x) is the
sigmoid activation function with respect to input matrix x. it ,
ft , ot , and Ht are the input gate, forget gate, hidden gate, and
hidden state at time t respectively. Xt is the input image at
time t and Ct is the output image at time t . ∗ denotes con-
volution and ◦ denotes element wise matrix multiplication.
The ConvLSTM layer has 4 channels. Each channel has a
2×91 kernel with a 1×1 stride. Themax pooling layer comes
after the ConvLSTM layer, in which it selects the maximum
value from the 2 × 91 image. Furthermore, the max pooling
layer reduces the number of channels from 4 to 1 in order
to speed up the network convergence. After that, the MLP
layers execute the final QRS complex detection using the
data from the max pooling layer. There are 3 MLP layers.
Each MLP layer has 200 neurons. Each neuron uses the
sigmoid activation function shown in Eqn. (19). The sigmoid
activation function constrains the output of the network to
the ŷ ∈ [0, 1] interval. The ConvLSTM network produces
a detection signal ŷt with respect to time t . If the ConvLSTM
detects a QRS complex, then it predicts ŷt = 1.0, otherwise
it predicts ŷt = 0.0. The ConvLSTM uses the weighted
cross-entropy loss function

J (ŷ, y)=− log(S(ŷ))(y)(Wpos)−log(1−S(ŷ))(1−y) (25)

for training, where y is the actual QRS complex and Wpos is
the cross-entropyweight. The cross-entropyweight isWpos =

300 because the RR interval is approximately 300 samples
wide. Fig. 9 shows the ConvLSTMpredicting aQRS complex
using both ECG channels.

FIGURE 9. ConvLSTM QRS complex prediction using both ECG channels.

V. SIMULATIONS
In this paper, a few algorithms described in Section I
are implemented for comparison to our machine learning
pipeline. The QRS complex detection algorithms are bench-
marked using the noisy dataset described in Section III. The
true positives (TP), false positives (FP), false negatives (FN),
sensitivity (SEN), positive predictive value (PPV), F1 score
(F1), and RMSE timings of the QRS complex detection algo-
rithms are recorded. Here, SEN, PPV and F1 are computed
according to the equations below,

SEN =
TP

TP+ FN
(26)

PPV =
TP

TP+ FP
(27)

F1 = 2
SEN · PPV
SEN + PPV

. (28)

Sensitivity measures the number of false positives in the
predicted QRS complexes. Subsequently, positive predictive
value measures the number of false negatives. If a QRS
complex detection algorithm performs well, then it must have
a high sensitivity SENS ≈ 1 and a high positive predictive
value PPV ≈ 1. This in turn causes the F1 ≈ 1 to be high.
If a QRS complex algorithms performs poorly then all the
metrics are low SENS ≈ 0,PPV ≈ 0,F1 ≈ 0.

If a QRS complex detection algorithm predicts a QRS
complex within 50 ms of a true QRS complex, then the pre-
diction counts as a true positive. If a QRS complex detection
algorithm predicts a QRS complex and a true QRS complex
does not exist within 50 ms of the predicted QRS complex,
then the predicted QRS complex counts as a false positive.
If a QRS complex detection algorithm does not predict a QRS
complex within 50 ms of a true QRS complex, then the true
QRS complex counts as a false negative. The true negatives
are not relevant as none of the ECG metrics use them.

Table 2 shows the RMSE of the WaveletCNN Autoen-
coder 1 and the classical wavelet filter. Table 2 proves
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TABLE 2. WaveletCNN Autoencoder 1 and classical wavelet RMSE.

TABLE 3. WaveletCNN Autoencoder 2 and Classical Wavelet RMSE.

FIGURE 10. ConvLSTM’s learning curve. MIT-BIH NST 12 dB SNR.

the WaveletCNN Autoencoder 1 filters out noises better
than the classical wavelet filter because the WaveletCNN
Autoencoder 1 has a lower RMSE mean. The performance
improvement of the WaveletCNN Autoencoder 1 is due to
the complex CNN autoencoder structure. Table 3 shows the
WaveletCNNAutoencoder 2 performs slightly worse than the
classical wavelet filter as the WaveletCNN Autoencoder 2
has a higher RMSE mean. The result is caused by the ECG
signal after the difference filter being relatively clean and the
WaveletCNN Autoencoder 2 introducing slight noises.

Fig. 10 shows the learning curve of the ConvLSTM. The
ConvLSTM approximately converges at 4480000 training
samples. The minimum number of training samples is at
least 4480000 training samples, of which 4480000 training
samples translates to 7 different ECG recordings.

The Bayes factor K [45], [46] is a statistical tool that com-
pares the relative probabilities of the alternative hypothesis
H1 and the null hypothesis H0. The Bayes factor K is defined
by

K =
P(D|H1)
P(D|H0)

=
P(H1|D)
P(H0|D)

P(H0)
P(H1)

(29)

and is calculated using the observed data D in Tables 4-9,
which show the classification performances of the QRS com-
plex detection algorithms. Alternative hypothesisH1 assumes
the proposed method’s F1 score is higher than the other QRS
complex algorithms’ F1 scores. Null hypothesis H0 assumes
the other QRS complex algorithms’ F1 scores are higher than
the proposed method’s F1 score. Assume the prior probabil-
ities of the hypotheses are equal P(H0) = P(H1). Assume
the F1 scores follow a truncated Gaussian distribution in the
range of [0, 1].

Table 10 shows the Bayes factors K for each QRS com-
plex algorithm comparison. Two algorithms are compared
at the same time and one algorithm is always the proposed
method. Table 11 shows the degree of evidence against the
null hypothesisH0. For theMIT-BIHNST 12 dB SNR, all the
Bayes factors are above K > 3.2. According to the Table 11,
there is substantial evidence against the null hypothesis H0.
Therefore, the null hypothesis H0 is rejected. There is a lack
of strong or decisive evidence against the null hypothesis H0
because the variances in Xiang et al.’s F1 score [17] and
Chandra et al.’s F1 score [20] are large. Similar to MIT-BIH
NST 12 dB SNR, all the Bayes factors K in MIT-BIH NST
0 dB SNR are above K > 3.2. As a result, the null hypothesis
H0 is rejected. For the comparison between the proposed
method and Xiang et al., there is only substantial evidence
against the null hypothesisH0 because Xiang et al.’s F1 score
has high variance.

In the European ST-T NST 12 dB SNR, all the Bayes
factors are K > 10 except for Chandra et al.’s F1
score. This is due to the database having a high SNR and
Chandra et al.’s method having a similar performance to the
proposedmethod. The null hypothesisH0 is rejected due to all
Bayes factors being K > 3.2 and having substantial evidence
against the null hypothesis H0. When the SNR decreases in
the European ST-T NST 0 dB SNR, all the Bayes factors are
K > 1000. As a result, there is decisive evidence against
the null hypothesis H0 and the null hypothesis H0 is rejected
without a shadow of a doubt. In the Long Term ST NST
0 dB SNR and the Long Term ST NST −6 dB SNR, all
the Bayes factors are K > 10. There is strong evidence
against the null hypothesis H0 and the null hypothesis H0 is
rejected.

Reasons for the machine learning pipeline performing bet-
ter than the other methods are presented below. Baseline
wandering noises have frequencies below 5 Hz, of which can
be reduced using a highpass filter that removes all signals
below 5 Hz. On the other hand, wavelets are basically the
templates of the targeted signal that the user wants to detect.
To detect a specific signal, the wavelet is convolved with
the ECG recording. The positions of the targeted signals
can be determined by looking at the local maximums of the
convolved signal. Most targeted signals do not have a single
frequency. In order to detect targeted signals at different fre-
quencies, the wavelet is first convolved with ECG recording.
After convolution, the resulting signal is down-sampled to
detect low frequency signals. Convolution in the first step is
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TABLE 4. MIT-BIH NST 12 dB SNR algorithm performance.

TABLE 5. MIT-BIH NST 0 dB SNR algorithm performance.

TABLE 6. European ST-T NST 12 dB SNR algorithm performance.

TABLE 7. European ST-T NST 0 dB SNR algorithm performance.

TABLE 8. Long term ST NST 0 dB SNR algorithm performance.

repeated again to detect lower and lower frequency signals.
White Gaussian noise is present in all frequencies. However,
electrode contact noise only appears at high frequencies and
has a unique shape. Furthermore, the QRS complex only
appears at high frequencies and also has a unique shape.
The wavelet filter can effectively apply a bandpass filter that

eliminates all other frequencies except for the frequencies
that the QRS complex resides in. This will remove the white
Gaussian noise outside the QRS complex frequency range.
Moreover, the wavelet could be chosen to only match the
QRS complex and not the other signals, thus removing the
electrode contact noise.
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TABLE 9. Long term ST NST −6 dB SNR algorithm performance.

TABLE 10. Bayes factor K applied to Tables 4-9s’ F1 Scores.

TABLE 11. Interpretation of Bayes factor K [45].

The WaveletCNN Autoencoder automatically determines
which frequencies to filter and which signals to remove by
adjusting the CNN filters. This is in contrast to the classical
wavelet filter, where the frequency filters have to be chosen
manually and they may not be optimal. Noises also cause
fluctuations in the QRS complex amplitudes. Monte Carlo
k-NN normalizes the QRS complex amplitudes to 1 mV.
It does this by repeatedly scaling the random ECG windows
using the mean value of the R peaks. This is in contrast to the
traditional normalization techniques, where the ECG signal
is only processed once, and it is not detailed enough.

For the ConvLSTM detector, it uses convolutions from
the present window and convolutions from past windows to
detect QRS complexes. ConvLSTM effectively uses temporal

information as well as spatial information. For example,
the ConvLSTM detects a QRS complex using the convolu-
tions filters at window t = 4s. ConvLSTM knows the QRS
complex period is approximately 1t ≈1 s. It can predict
the next QRS complex will occur at approximately t ≈ 5s.
The ConvLSTM can confirm the prediction by executing a
convolution on the window at t = 5s. This is in contrast to
previous papers using CNNs, where the temporal information
is not used, and prediction accuracy is inferior.

This paper is consistent with the previous works as the
relative performances of the QRS complex algorithms remain
the same. Pan-Tompkins [7] algorithm’s F1 score is drasti-
cally lower than the other algorithms’ F1 score under lower
SNR conditions, because it is the first significant algorithm
proposed and improvements were made by other work after
its appearance.

VI. CONCLUSION
The proposed machine learning pipeline de-noises the ECG
signals and detects the QRS complexes. The machine learn-
ing pipeline consists of a Butterworth filter, two WaveletC-
NNs autoencoders, a Monte Carlo k-NN, and a ConvLSTM.
The Butterworth filter and theWaveletCNN autoencoders fil-
ter out the various noises in ECG signals. Monte Carlo k-NN
normalizes theQRS complexes. TheConvLSTMexecutes the
final QRS complex detection and produces the QRS complex
detection signal. TheMIT-BIHNST, the European ST-TNST,
and the Long Term ST NST databases provide the training
and testing ECG recordings. Null hypothesis H0 assumes the
other QRS complex algorithms’ F1 scores are higher than
the proposed method’s F1 score. It has been demonstrated
in Table 10 that all the Bayes factor K > 3.2, which means
there is substantial evidence against the null hypothesis H0.
Therefore, the null hypothesis H0 is rejected. In conclusion,
the proposed machine learning pipeline outperforms existing
QRS complex detection methods.

VII. LIMITATIONS AND FUTURE WORK
The proposed method is trained using the PhysioNet NST.
As a result, the proposed method is optimized for the specific
noise distribution present in the NST. However, the machine
learning pipeline might have a lower accuracy when faced
with real ECG noises as they might have different noise
distributions. In the future, an online training version of this
machine learning pipeline could be developed in order to
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adapt to new noises in real time. This would allow the method
to detect new QRS complexes beyond the initial training
dataset. The QRS complex inverter and the Monte Carlo
k-NN run very slowly because the scikit-learn [47] library
only uses one CPU. The components could be parallelized
in order to run on multiple CPUs. This will decrease the
processing time.

Aside from theQRS complex, many other ECGwaveforms
are also important. For example, the T wave and P wave are
very important for determining the ST interval, QT interval,
and PR interval. The intervals are useful for classifying ECG
diseases such as atrial fibrillation, arrhythmia, and branch
blocks. Other biological signals like electroencephalogram
(EEG) [48], electromyography (EMG), and photoplethys-
mogram (PPG) prove useful for diagnosing disorders and
diseases. Similar to the ECG signals, the other biological
signals are susceptible to noise. In the future, the machine
learning pipeline could be used to reduce the noise, perform
gain control, and detect the other waveforms.

APPENDIX
REVIEW ON NEURAL NETWORKS
Neural networks are the building blocks for some of the QRS
complex detection algorithms. Therefore, a brief review of
neural networks is presented below.

A. MULTI-LAYER PERCEPTRON
MLPs [49] are a type of neural network. They excel at classi-
fying many types of data. Moreover, MLPs are proficient at
adapting to changing input data and are suitable for detecting
QRS complexes in ECG signals. The fundamental equation
for the MLPs is given by

Oi = A(W T
i Xi + Bi). (30)

For each layer i, Xi,Wi,Bi are the input, weight, and bias
matrices respectively. A(V ) is the activation function with
respect to input matrix V . Also, Oi is the output matrix of
layer i. The input data enters at the input matrix Xi. The input
Xi is multiplied by the weights Wi and the result is added to
the bias Bi. The output Oi is obtained by passing the result
through the activation function A(V ).

B. LONG SHORT-TERM MEMORY
LSTMs [50] are a special type of neural network that stores
memories inside of the neurons. LSTMs remember and forget
data using the hidden gates. Therefore, LSTMs are suitable
for time-series pattern recognition, where the LSTMs predict
the future using only the past input data. The LSTM’s equa-
tions are given by

ilt = S(W l
i [χt ; h

l
t−1]+ b

l
i) (31a)

f lt = S(W l
f [χt ; h

l
t−1]+ b

l
f ) (31b)

slt = f lt s
l
t−1 + i

l
t tanh(W

l
s [χt ; h

l
t−1]+ b

l
s) (31c)

olt = S(W l
o[χt ; h

l
t−1]+ b

l
o) (31d)

hlt = olt tanh(s
l
t ) (31e)

FIGURE 11. CNN Autoencoder 1 architecture.

TABLE 12. WaveletCNN Autoencoder 1 and CNN Autoencoder 1 RMSE.

Eqn. (31a) shows the input gate for the LSTM neuron. Input
gate controls which information enters the LSTM neuron.
Input data χt and final LSTM output data hlt−1 are fed into the
input gate ilt . Using the input gate weights W l

i and biases bli ,
the output vector of the input gate ilt is determined. Eqn. (31b)
shows the forget gate. The forget gate f lt determines if the
hidden state slt is forgotten or retained. The forget gate f lt
is computed just like the input gate ilt . Eqn. (31c) shows
the computation of hidden state vector slt . The forget gate
f lt controls the retention of the previous state variable slt−1.
The input gate ilt controls the weight of the tanh activation
function. Eqn. (31d) shows the output gate olt . The output
gate olt controls what information is outputted by the LSTM
neuron. Eqn. (31e) shows the final output vector hlt of the
LSTM neuron. Final output vector hlt is computed using the
hidden state vector slt and the output gate olt .

C. COMPARISON OF WaveletCNN AUTOENCODER AND
CNN AUTOENCODER
In this section, the WaveletCNN Autoencoder 1 is com-
pared to the CNN Autoencoder 1. Fig. 11 shows the archi-
tecture of the CNN Autoencoder 1, of which is similar
to the WaveletCNN Autoencoder 1. However, the wavelet
decomposition and reconstruction are removed. Also,
the CNN Autoencoder 1 only performs 1D convolutions on
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TABLE 13. MIT-BIH NST 0 dB SNR algorithm performance.

FIGURE 12. Comparison of WaveletCNN Autoencoder 1 and CNN
Autoencoder 1. MIT-BIH NST 0 dB SNR.

FIGURE 13. Comparison of WaveletCNN Autoencoder 1 and CNN
Autoencoder 1. MIT-BIH NST 0 dB SNR.

the original 1D ECG signal instead of 2D convolutions on
the 2D wavelet coefficients. Table 12 shows the comparison
between the two encoders. For 12 dB SNR, the WaveletCNN
Autoencoder 1’s RMSE of 0.0617 mV is lower than the CNN
Autoencoder 1’s RMSE of 0.0824 mV. For −6 dB SNR,
the WaveletCNN Autoencoder 1’s RMSE of 0.1623 mV
is within the variance of CNN Autoencoder 1’s RMSE of

0.1754 mV. Fig. 12 and Fig. 13 show the output ECG signals
of the WaveletCNN Autoencoder 1 and the CNN Autoen-
coder 1, where the WaveletCNN Autoencoder 1 is slightly
better at filtering noises than the CNN Autoencoder 1. This
is due to wavelet decomposition used in the WaveletCNN
Autoencoder 1. The wavelet decomposition is scale invariant
and extracts features at many different scales, of which allows
the WaveletCNN to detect QRS complexes of various sizes.
Moreover, the wavelet basis function allows the wavelet to
distinguish the QRS complex from other ECG signals. As a
result, the noise filtering capability is improved.

D. EFFECT OF CNN FILTERS ON PERFORMANCE
Table 13 shows the effect of the CNN filters on the QRS
complex detection algorithms. When the CNN kernel size of
the Xiang et al. [17] increases from 5 samples to 30 samples,
the performance increases from F1 = 0.6923 to F1 =
0.7925. The larger CNN kernel sizes provide better per-
formances in noisy environments because they are able to
provide more information to the fully connected layers. This
enables the fully connected layers to distinguish the QRS
complex from the noises. When the WaveletCNN Autoen-
coders are used on Chandra et al. [20], the performance
increases from F1 = 0.7831 to F1 = 0.8194. This is due to
the WaveletCNN Autoencoder being able to filter out noises
better than the normal CNN layers.

E. VENTRICULAR TACHYCARDIA
The machine learning pipeline is unable to detect ventricular
tachycardia because the ventricular tachycardia has a very
low frequency and the Butterworth highpass filter removes
it. Moreover, the beats for ventricular tachycardia are labeled
as ‘‘!’’ and they are not used in this study.
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