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ABSTRACT This article presents a 16-channel 5 GS/s time-interleaved (TI) SARADC for a direct-sampling
receiver that employs a digital-mixing background timing mismatch calibration to compensate for
timing-skew errors. It uses a first-order approximation to obtain the derivative of the autocorrelation of the
input signal, subsequently used to evaluate the explicit amount of the timing-skew. Therefore, this allows a
digital background calibration of the timing-skew, avoiding extra analog circuits. The proposed 16-channel
TI ADC uses a splitting-combined monotonic DAC switching method for the individual SAR channel to
achieve a trade-off of simple switching and small common-mode voltage variation of the comparator. The
prototype, implemented in 28 nmCMOS, reaches a 48.5/47.8 dB SNDRwith an input signal of 2.38/4.0 GHz
after the proposed background timing mismatch calibration, respectively. Furthermore, the ADC core’s
power consumption is 29 mW sampling at 5 GS/s, with a Walden FoM of 26.7 fJ/conv.-step and a Schreier
FoM of 157.9 dB.

INDEX TERMS Analog-to-digital converter (ADC), time-interleaved (TI) ADC, timing mismatch, digital
background calibration, digital-mixing.

I. INTRODUCTION
The direct RF sampling receiver architecture is much simpler
than the traditional IF sampling one. As shown in Fig. 1,
it only consists of a low-noise amplifier (LNA), the appropri-
ate filters, and the RF ADC. Unlike its IF version, the direct
RF sampling receiver does not use the analogmixers and local
oscillators (LOs). The ADC digitizes the RF signal directly
and sends it to a DSP. However, direct sampling architecture
cannot be practically implemented in the past ten years. The
main limitation is the ultra-high requirements of the converter
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sample rates [1]. In nowadays broadband cable and satellite
communications, the input spectrum ranges from tens ofMHz
to multi-GHz [2]. Therefore, a Nyquist rate converter in the
GS/s range is required to sample the input signal in full
bandwidth.

A time-interleaved (TI) ADC architecture is a power-
efficient candidate for these wideband applications because it
can increase the overall converter’s effective sampling rate by
multiplexing several ADC channels in parallel. The effective
conversion rate (fs) of an N-channel TI ADC becomes N
times the rate of each sub-converter, as shown in Fig. 2.
Nevertheless, the architecture suffers from inter-channel
mismatches among the sub-ADC channels, which includes
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FIGURE 1. Direct RF sampling vs. traditional IF sampling.

FIGURE 2. a) N-channel TI ADC, and (b) its clock phases.

offset, gain and timing mismatches [3]. Compared to the off-
set and gain mismatches, timing mismatch induces a dynamic
error proportional to both input frequency and amplitude.

Compared to foreground calibration, the background cali-
bration can actively track the supply and temperature changes
without interrupting the normal operation although it has
higher complexity. Adding a reference converter is an effec-
tive way to perform background calibration for timing
mismatch [4]–[9]. However, the addition of this reference
converter will bring additional area and power consumption.

Some recent works [3], [10]–[16] develop timing-skew
mismatch calibration without the use of an additional ref-
erence channel. Some of them use digital-mixing based on
the difference of the autocorrelation function between chan-
nels. [3], [11], and [13] estimate the polarity of the timing
skew with fewer samples. [3] and [11] need a feedback
loop from digital to analog for calibrating the timing-skew
by tuning the delay line of individual sub-channel. In [13]
they correct the timing mismatch error in the digital domain
without a tunable delay line, but an auxiliary delta-sampling
ADC is necessary to estimate the skew error.

This article presents a fully digital background timing-
skew calibration without any additional analog circuits. Dif-
ferent from the previous works [3], [11] which only use
digital-mixing to detect the polarity of the timing-skew, this
method divides the derivative of the autocorrelation function
of the input signal by the difference between channels’ digital
mixing [16]. Moreover, the article improves the accuracy
over [16] with a more accurate bilateral estimation of the
derivative of the autocorrelation function. We implement a
5 GS/s 16-channel TI-SAR ADC in 28 nm CMOS with
a splitting-combined monotonic DAC switching method for
a single-channel SAR ADC. After the proposed timing-skew
calibration, the ADC obtains an SNDR of 48.5/47.8 dB with
an input frequency of 2.38 /4.0 GHz, respectively. The ADC
core consumes 29.0 mW (inter-channel mismatch calibration
off-chip), while leading to a Walden FOM of 26.7 fJ/conv.-
step and a Schreier FOM of 157.9 dB.

In addition to this introductory section, Section II describes
the review for the timing-skew detection techniques in
TI-ADCs with digital-mixing. Section III describes the
proposed digital-mixing timing-skew calibration technique.
Section IV demonstrates the circuit details of the 16-channel
5 GS/s TI-SAR ADC. Section V summarizes the measured
performance, and Section VI concludes the article.

II. REVIEW OF TIMING-SKEW CALIBRATION WITH
DIGITAL-MIXING
The following discussion of modeling of the TI ADC neglects
the effect of quantization noise, as this permits us to fully
investigate the effect of mismatches on the system. From
Fig. 2, the input and output of the TI ADC are x(t) and y[n],
respectively, and ideally y [n] = x(nTs), with Ts representing
the sampling period. From [17], we can generally assume the
input signal x(t) is a wide-sense stationary (WSS) signal. For
example, for a bandlimited signal with awhite spectrum in the
1st Nyquist band, the autocorrelation follows a sinc function,
as depicted in Fig. 3. Therefore, the autocorrelation function
of the input signal R (τ ) = E [xk (t)xk (t + τ )] is independent
of the time t .

FIGURE 3. The waveform of (a) a low-pass wide-band random signal and
(b) the autocorrelation function of this signal.

We first describe the timing mismatch analysis for a
two-channel TI ADC. From Fig. 4, ADC1 samples the input
x (t) at 81 with the digital output of y1(odd sample) and
ADC2 samples at82 with y2 (even sample), with82 skewed
from the ideal value by 1T . This indicates a time difference
between samples y1[k − 1] and y2[k − 1] of 21T seconds
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FIGURE 4. (a) TI-ADC sampling to illustrate the effect of the timing
mismatch for two-channel TI ADC, and (b) the timing-skew detection
topology based on digital-mixing.

larger than that between y2[k − 1] and y1[k], as illustrated
in Fig. 4(a).

The digital mixing technique evaluates both of the autocor-
relation functions [3], one from the moving average (MA) of
the product of y1[k − 1] and y2[k − 1] and the other from
y2[k − 1] and y1[k], as shown in Fig. 4(b), and expressed by:

R (Ts +1T ) =
1
n

∑n

k=1
y1 [k − 1] y2[k − 1] (1)

R (Ts −1T ) =
1
n

∑n

k=1
y1 [k] y2[k − 1] (2)

Therefore, for a small value of timing-skew 1T , we derive
the difference between (1) and (2) as follows [3], [11]:

D1T = R (Ts +1T )− R (Ts −1T )

≈ 21T ·
dR(τ )
dτ
|τ=Ts (3)

Thus, the evaluated timing-skew information D1T is pro-
portional to the timing-skew 1T and to the derivative of its
autocorrelation function R(τ ) at τ = Ts.
With the information of the polarity for timing-skew 1T

in (3), [3] and [11] use a tunable delay line in the sam-
pling clock generator to adjust earlier or later the sampling
clocks until the value of D1T is negligible. The tunable
delay line will increase the jitter noise of the sampling clock.
In [13] the circuit presents a digital correction to eliminate
the timing-skew error by adding extra auxiliary channels,

also based on the above detection topology. Both approaches
need modification/addition of analog circuits. In this article,
we demonstrate a digital calibration method that avoids extra
analog circuits.

III. DIGITAL TIMING-SKEW CALIBRATION USING
DIGITAL-MIXING
The timing-skew in each sub-converter can induce a dynamic
error, depending on both the amplitude and frequency of the
input signal. As shown in Fig. 4(a), when we choose ADC1
as the reference, the timing-skew 1T of ADC2 produces a
skew-induced sampling error ε. Without the loss of gener-
ality, we assume the timing-skew 1T to be much smaller
than the sampling period Ts. Thus, for the input signal x(t),
the ideal (or calibrated) samples y2,cal can be approximated
by a 1st-order Taylor series as:

y2,cal [k] ≈ y2 [k]− y′2 [k] ·1T (4)

where y′2[k] is the first-order derivative of even samples,
which can be obtained by a derivative filter.

As expressed in (4), the skew-induced error correction
assumes only first-order sampling errors, and we do not
take into consideration the higher-order Taylor series terms.
Moreover, the accuracy of the correction will decrease when
the timing-skew becomes large. Fig. 5 plots the behavior
study of a 16-channel TI ADC before and after the ideal
linear approximation correction. The plot depicts the trends
of SNDR with the input frequency of fin = 0.95 × 0.5fs
versus the timing mismatch ratio (RMS value). From these
curves, the accuracy of the digital correction degrades with
the increase of the timing mismatch level. To guarantee
excellent performance at high frequency, we use a retiming
technique in the multi-phase clock generator to reduce both
initial values of timing-skew and clock jitter (discussed in
detail in the next section).

FIGURE 5. The SNDR of a 16 channel 10 bit ADC before and after an ideal
linear approximation correction versus the timing-mismatch ratio.

This section presents the proposed fully digital timing
mismatch calibration method. First, we use a two-channel
TI ADC as an example to explain the basic principle and
calibration algorithm. Furthermore, different from [16], here
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FIGURE 6. Proposed fully digital timing mismatch topology based on digital-mixing.

we use a bilateral linear approximation to obtain a more accu-
rate derivative of the autocorrelation to improve the mismatch
correction.

A. FORMULATION OF THE PROPOSED FULLY DIGITAL
TIMING-SKEW CALIBRATION
Fig. 6 exhibits the principle of the proposed background
calibration technique for timing mismatch. We use a digital
differentiator to obtain y′2[k], and with a Hilbert transform fil-
ter, the derivative of the input at around 90% frequency range
(0.05–0.95) can be obtained within any Nyquist band [15].
Then, from (3), the amount of the timing-skew 1T can be
calculated by

1T ≈
D1T

2 · dR(τ )dτ |τ=Ts

(5)

The derivative of the autocorrelation function should be [11]:

dR (τ )
dτ
|τ=Ts =

dE [y (t) · y (t + τ)]
dτ

|τ=Ts

= E
[
y (t) ·

dy(t + τ )
dτ

|τ=Ts

]
(6)

In previous work [16], we use the moving average of the
product of y1[k−1] and y′2[k−1] to approximate dR(τ )

dτ |τ=Ts :

dR(τ )
dτ
|τ=Ts ≈

1
n

n∑
k=1

y1 [k − 1] y′2[k − 1] =
dR(τ )
dτ
|τ=Ts+1T

(7)

However, due to the existence of timing-skew 1T , the terms
on the right-hand side of (7) are not an accurate value of
dR(τ )
dτ |τ=Ts , but instead it is dR(τ )

dτ |τ=Ts+1T . This induces an

approximation error in our previous estimation of dR(τ )
dτ |τ=Ts

presented in [16].
Alternatively, for the small value of 1T , the first-order

derivative of the autocorrelation function at τ = Ts can be
a bilateral approximation:

dR(τ )
dτ
|τ=Ts =

1
2
[
dR (τ )
dτ
|τ=Ts+1T +

dR (τ )
dτ
|τ=Ts−1T ] (8)

By taking the moving averages for the product of y1[k − 1]
to y′2[k − 1] and the other from y2[k − 1] to y′1[k], as shown
in Fig. 7, dR(τ )dτ |τ=Ts+1T and dR(τ )

dτ |τ=Ts−1T can be obtained:

dR (τ )
dτ
|τ=Ts+1T = R′ (Ts +1T )

=
1
n

∑n

k=1

(
y1 [k − 1] y′2[k − 1]

)
(9)

dR (τ )
dτ
|τ=Ts−1T = R′ (Ts −1T )

=
1
n

∑n

k=1
(y2 [k − 1] y′1 [k]) (10)

Then, by averaging (9) and (10), we determine the dR
/
dτ

at τ = TS as presented in Fig. 7, with the estimated amount
of the timing-skew 1T evaluated by (5) (as in Fig. 6).

FIGURE 7. Proposed block diagram to obtain the first-order derivative of
the autocorrelation function based on digital-mixing.
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B. SIMULATION RESULTS
Fig. 8 illustrates the comparison of the SNDR vs. the input
frequency after timing mismatch digital correction by two
different detection methods ((a) used in [16] and (b) pro-
posed here). We use the same 25 tap differentiation filter
for a two-channel TI ADC during the comparison with an
injected timing-skew of 0.5%×Ts. When compared with the
previous method [16], the new approximation for dR(τ )

dτ |τ=Ts
has an obvious advantage when the input is near Nyquist
frequencies. It demonstrates that the decrease of SNDR after
calibration with the detection method in [16] happens at
the frequencies near m × 0.5fs. This happens because we
implement the differentiation filter using a finite number of
taps (Fig. 6) which limits the accuracy of the filter’s frequency
response nearm×0.5fs [15]. Moreover, the inaccuracy of the
predicted derivative of the input will also affect the required
number of convergence samples during the detection of the
timing-skew [15].

FIGURE 8. The SNDR of two channel TI ADC before and after correction
(with two different method) as a function of input frequency.

Fig. 9 (a) and (b) shows the simulated ADC spectrum of
a wide-band random signal before and after performing the
proposed timing mismatch calibration. We did not observe
any image pattern of the skew after the proposed calibration.

C. EXTENSION TO MULTIPLE CHANNELS
We now extend the above concepts to additional channels
(16 channels chosen as an example). To this end, we define
the sampling times of the first channel as the reference [13]
(highlighted in Fig. 10). We then compute the timing of
channels 2, 3, . . . , 13, 14 and 15 with respect to channel 1,
which can be divided into four steps. First, we can detect and
correct the mismatch between channels 9 and 1 by evaluating
D1T9 and R′ (8Ts). Second, we can correct the timing skews
in channels 5 and 13 by D1T5,13 and R′ (4Ts), relying on
the corrected channel 9 as reference. The 3rd and 4th steps
continue in a similar way until all the channels are calibrated.

IV. ADC IMPLEMENTATION
A. ADC ARCHITECTURE
Fig. 11 presents the 5 GS/s TI ADC prototype consist-
ing of 16-channel time-interleaved 312.5 MS/s SAR sub-
ADCs. The inter-channel mismatch, including offset, gain,

FIGURE 9. The simulated two channel TI ADC output spectrum (a) before
and (b) after timing-skew calibration for a randomized input.

FIGURE 10. The sequence of calibration in a 16-channel TI ADC.

FIGURE 11. ADC Architecture.

and timing-skew, are all calibrated in the digital domain
in the background off-chip. Besides, we use a bilateral
digital-mixing background timing-skew calibration, as dis-
cussed previously. With this method, extra analog circuits
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FIGURE 12. The timing diagram of the sampling for each sub-converter and block diagram of the clock generator.

FIGURE 13. The block diagram of the single-channel ADC.

are not necessary (Fig. 11). From the measurements, 16 k
samples are enough to achieve a good SNDR for the timing-
skew calibration.

The 16-channel interleaved ADC needs sixteen clock
phases with 6.25% duty cycle. Fig. 12 displays the clock gen-
erator with a master clock of 5 GHz, divided by the 16-cycle
ring counter, produces the outputs Q1-Q16. The ring counter
is constructed with D-type Flip-Flops (DFFs) forming a shift
register. This can be considered as a cascade of logic gates,
which accumulate a substantial amount of jitter. We reuse
the master clock to retime Q1-Q16 from the ring counter to
impose that the falling edges of the final sample clock 81-
816 depend only on the rising edges of the master clock [15].
Besides, to ensure an equal distance to each channel, we also
use an H-tree routing paths for input signals and clocks in
the layout. Benefitting from the combination of the retiming
technique and the H-tree routing, we not only reduce the jitter
produced by clock-division but also guarantee that the initial
un-calibrated timing-skew of each channel is small enough.

B. SINGLE-CHANNEL SAR ADC
For the sub-channel implementation, the VCM-based switch-
ing procedure [18] has an excellent power efficiency. How-
ever, the low power supply of the advanced process turns
this structure not attractive in high-speed applications. The
multi-bit per cycle SAR ADC [19], [20] is suitable for
such applications, but this topology needs complex DAC
and control logic. The capacitor DAC splitting structure is
a popular choice for the high-speed SAR ADC [2], [13].
Still, this architecture imposes that both switches and the

SAR decision logic have higher complexity than the solely
monotonic switching structure [21]. In this work, we use the
single-channel ADC with a splitting-combined monotonic
switching method [22]. Fig. 13 shows the circuit diagram of
the single-channel converter. Each SAR channel includes a
two-stage dynamic comparator, bootstrap switches, custom
DAC capacitor arrays, SAR decision logic, and digital error
correction (DEC) to convert non-binary data to binary [23].
The ADC samples the input signal on the top plates of the
capacitor arrays, determining the first MSB by the signal
polarity on the top plates before the DAC conversion. As a
result, the 10 bit ADC requires 29 capacitor DAC only. One
extra redundant bit cycle is added to address the DAC set-
tling issue in high-speed conversion [23]. Therefore, the 29

capacitor cells arrange into ten capacitor groups C1-C10 with
binary-scaled recombination as shown in Fig. 13.

Unlike [22], there are only two MSB DAC capacitors split
into two halves, as Fig. 14 displays, thus the variation of the
comparator input common-mode voltage (VCM) is reduced
from 0.5 V to 0.14 V (∼72% reduction), compared with
the solely monotonic switching. The nine remaining LSBs
are still in the traditional monotonic switching method. As a
result, the splitting-combined monotonic switching method
not only preserves the benefit of relatively-simple switches
and SAR decision logic, like solely monotonic method, but
also largely alleviates the variation of common-mode volt-
age that may lead to the dynamic offset of the comparator.
Fig. 14 demonstrates a plot of the common-mode voltage
(VCM) vs. the RMS value of the offset (σOffset) for the
comparator from 200 times Monte Carlo simulations. The
VCM-dependent variation of σOffset reduces from a solely
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FIGURE 14. The simulated comparator offset versus common mode
voltage.

FIGURE 15. Conversion of splitting combined monotonic switching
procedure for an example 3-bit ADC.

monotonic switching of around 3.26 mV (0.5V VCM varia-
tion) to the splitting-combined monotonic values of 0.24 mV
(0.14V VCM variation) now. Fig. 15 illustrates an example
of the conversion of a split-combined monotonic switching
procedure for a 3 bit ADC, with only MSB divided into two
halves.

V. EXPERIMENTAL RESULTS
The proposed 16-channel TI ADC is fabricated in a 28 nm
CMOS with a core area of 380 × 270 µm2 (Fig. 16). The
DVDD digital supply, including the SAR logic and other con-
trol digital circuits, is 0.85 V. On the other hand, the AVDD
analog supply, like comparators, track and hold (T&H) cir-
cuits, capacitor DAC switches, and the clock division circuit
are 1.0 V for high sampling linearity and low-jitter noise. The
total power consumption of the ADC core is 29mW (T&H
and DAC array 21%, comparator 15%, SAR decision logic
and other digital 35%, and clock generator 29%), as summa-
rized in Fig. 17. The reference of the ADC are driven from
AVDD, as no reference buffer is required. The inter-channel
mismatch calibration algorithm is off-chip. The estimated
number of gates for the proposed calibration algorithm are
around 170 k. The estimated power consumption for the algo-
rithm is 12.8 mW (DVDD = 0.85 V) and an estimated area
of 0.11 mm2. The measurement test-branch for the proposed
TI ADC prototype is shown in Fig. 18.

Fig. 19 plots the measured output spectrum over the
Nyquist rate with an input of 2.86 GHz before and after
timing mismatch calibration. The 2.86 GHz input is over

FIGURE 16. Chip micrograph.

FIGURE 17. Power breakdown.

FIGURE 18. The measurement test-branch for the proposed TI ADC
prototype.

the Nyquist rate, thus the measurement includes the effec-
tiveness of the Hilbert Transform Filter of the differentia-
tor [15]. From Fig. 19(b), the highest image tone generated by
timing-mismatch improves from−69.7 dB with our previous
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FIGURE 19. Measured output spectrum with an input frequency of
2.86 GHz (a) before and (b) after timing-skew calibration.

FIGURE 20. The measured largest image tone after timing-skew
calibration with an input of 2.86 GHz versus the number of samples.

method [16] to −77.6 dB with the new, as discussed in
Section V.

Fig. 20 shows the measured largest image tone by timing-
skew with a 2.86 GHz input at 5 GS/s versus the number of
timing-skew detection samples. Both the newmethod and the
previous one [16] only need about 16 k samples convergence
to achieve satisfactory dynamic performance. Compared to
the method in [16], the new skew calibration method has a
significant improvement in the largest image tone when the
samples over 10 k.

Fig. 21 displays the SNDR vs. the input frequency at
5 GS/s. The SNDR peaks at 50.3 dB at the low input fre-
quency. Benefiting from the proposed timing-skew calibra-
tion and retiming techniques, the SNDR only drop 1.8 dB
and 2.5 dB at the frequency near the Nyquist rate and the

FIGURE 21. The measured SNDR versus input frequency before and after
timing-skew calibration.

FIGURE 22. Compared to state-of-the-art for the Walden FOM [27].

FIGURE 23. Compared to state-of-the-art for the Schreier FOM [27].

frequency of 4 GHz, respectively. Therefore, thermal noise
and distortion of the sampling switch are the main limiting
factors for dynamic performance.

Table 1 illustrates the performance summary and a com-
parison with several state-of-the-art TI ADCs. These works
include the recently published 10 bit TI ADC with similar
sampling rates. The total power consumption of the ADC
presented in this article achieves 48.5 dB SNDR near the
Nyquist rate at 5 GS/s and only consumes 29 mW, with
a Walden FOM of 26.7 fJ/conv.-step and a Schreier FOM
of 157.9 dB. It makes this ADC having competitive power
efficiency in the comparison.

Fig. 22, and Fig. 23 compares this ADC with all works
published at ISSCC 1997-2020 and VLSI 1997-2019 [27]
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TABLE 1. Table of comparison with state-of-the-arts.

with the Nyquist sampling rate (equal to the sampling rate
(fs) divided by the oversampling ratio (OSR)), vs. the Walden
FoM and Schreier FoM at high frequency, respectively. Both
two figures demonstrating this work have competitive posi-
tions in the state-of-the-art high-speed ADC.

VI. CONCLUSION
This article presented a digital background timing-skew cal-
ibration for a TI ADC based on digital-mixing. With such
method we can correct the timing mismatch of the TI ADC
without additional analog circuits. Besides, there is no clock
jitter noise from the supplementary tuning circuits. More-
over, we use the bilateral linear approximation to obtain the
accurate derivative of the autocorrelation to enhance further
the timing-skewmismatch detection. A prototype 16-channel
5 GS/s time-interleaved SARADCwith a splitting-combined
monotonic switching method, implemented in 28 nm CMOS,
obtained a SNDR of 48.5 dB/ 47.8dB at 2.38 GHz/ 4.00 GHz,
respectively.
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