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ABSTRACT Making machines learn like humans is the ultimate goal of artificial intelligence. Few-shot
learning attempts to simulate the learningmechanism of humans, which is a task that can learn novel concepts
from very few labeled samples. Due to the lack of sufficient labeled training data, existing methods often
increase the risk of over-fitting or cause a considerable gap between clean and augmented data. To solve
these problems, we present a novel compare network to perform robust few-shot learning in a meta-learned
end-to-end manner. Specifically, we argue that it is desirable to learn a robust encoder that can draw
inferences about other cases from one example. To this end, we improve the accuracy of few-shot learning
by mining the internal mechanism of deep networks, which can leverage label information more effectively.
By introducing shift-invariant blocks and a self-attention block in our architecture, all these components are
seamlessly integrated into our framework, which can give feedback to each other without data augmentation.
Furthermore, we provide ablative analyses of different blocks to help understand how each term contributes
to performance. Extensive experiments demonstrate that our method can provide more robust results and
outperform state-of-the-art few-shot learning methods.

INDEX TERMS Few-shot learning, shift-invariant, attention, compare network.

I. INTRODUCTION
Making machines learn like humans is the ultimate goal of
artificial intelligence [1]–[3]. Although deep learning mod-
els have made an unprecedented breakthrough in the field
of image recognition [4]–[9], these methods often require
enormous supervision information and many iterations to
achieve such performance. Different from machine learn-
ing algorithms, people can learn a new concept from just
few examples [10]. For example, one picture with a new
object can be very impressive for children to generate richer
representations. On the other hand, without enough super-
vised information, deep learning models often suffer the
over-fitting problem, which will lead to poor generalization
results.

Few-shot learning (FSL) [11]–[13] attempts to simulate
the learning mechanism of the human brain, which can
learn novel concepts from very few labeled samples. Due
to the lack of sufficient labeled training samples, FSL is
often formulated as transfer learning problems [14], [15]
or meta-learning problems [16], [17]. From the perspective
of transfer learning, FSL methods can learn a deep model
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on common classes with sufficient samples first, and then
transform the model into novel classes based on only a few
labelled samples. On the other hand, some FSL approaches
based on meta-learning follow the key idea of learning-
to-learn mechanism. Specifically, it samples FSL tasks from
the base training set and optimizes the network to perform
well on all these subtasks [18]. Although meta-learning and
transfer learningmethods have achieved promising results for
FSL, most of these methods still can not generalize better on
unseen tasks with few examples [19]–[21].

Since the lack of labeled samples is the core problem for
FSL, data augmentation methods [22], [23] are often be used
as an effective assistant to solve FSL problems. Classical data
augmentation methods often perform one or some operations
on the input images from different transformations, such as
scale, crop, flip, cut out, and elastic distortions [24], [25].
Intuitively, data augmentation methods can teach a deep
model about robustness, which is used to overcome the
weakness of rotational invariance. However, increasing the
training data can also increase the risk of over-fitting and
cause a considerable gap between clean and augmented
data [26]. In addition, the fundamental issue still remains:
Data augmentation will generate a lot of data, which is
inefficient for machines to learn.
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To deal with the above challenge, we propose an alternative
data augmentation method for FSL. In fact, our method does
not augment data at all. Instead, we improve the accuracy of
FSL by mining the internal mechanism of deep networks,
which can make FSL to leverage label information more
effectively. We argue that it is desirable to learn a robust
encoder, which can draw inferences about other cases from
one example. To this end, we introduce shift-invariant blocks
and a self-attention block in our architecture (as shown
in Fig. 1 (b)).

FIGURE 1. Conceptual comparison of two data augmentation
mechanisms. These two kinds of mechanisms are different in how the
encoder is trained. (a): The encoder is trained by the augmented data.
(b): The encoder is trained by the original data but the encoder can
leverage label information more effectively.

Specifically, we propose a novel Robust Compare Network
(RCN) as a way of ‘‘inner data augmentation’’ mechanism
for FSL. As illustrated in Fig. 2, our method is composed
of three key modules: (1) Embedding module: a deep neural
network with shift-invariant blocks and a self-attention block
to learn invariance visual features. (2) Compare module: one
convolutional network with shift-invariant blocks to learn
feature relation between images. (3) Loss function module:
a loss function to measure whether the compare features are
from the same categories or not. All the three components
are seamlessly integrated into our RCN method, which can
give feedback to each other without data augmentation in an
end-to-end way.

The main contributions of our RCN method are summa-
rized as follows:
• We present a novel compare model to perform robust
FSL in a meta-learned end-to-end manner. This can be
seen as an alternative data augmentation method for
FSL.

• We introduce shift-invariant blocks and a self-attention
block in our framework, which can leverage label infor-
mation more effectively for FSL. We provide ablative
analyses of different blocks to help understand how each
term contributes to the performance.

• Extensive experiments show that our RCN method can
outperform state-of-the-art methods in few-shot recog-
nition applications.

The rest of this paper is organized as follows. In Section II,
we discuss the related work of FSL. Section III presents
the details of our RCN architecture. Section IV shows the
experimental results, and Section V concludes this paper and
points out some possible directions for future pursuit.

II. RELATED WORK
The goal of FSL [11]–[13] is to simulate the learning mech-
anism of the human brain, which can learn novel concepts
from very few labeled samples. Earlier works on FSL tended
to explore a variational Bayesian method on the basis of prior
knowledge [11] or introduce a generative model to simulate
human learning [27]. Recent FSL approaches most follow the
meta-learning (learning-to-learn) framework, which samples
FSL tasks from the base training set and optimizes the net-
work to perform well on all these subtasks [16], [17]. Under
this perspective, various meta-learning based FSL methods
are proposed, which can be generally divided into three main
categories: metric-based methods, optimization-based meth-
ods, and data augmentation based methods.

A. METRIC-BASED METHODS
Metric learning approaches attempt to learn a deep rep-
resentation with a metric, which can preserve the seman-
tic relationship of the original data. As the name suggests,
metric-based methods always compare positive and nega-
tive examples to learn feature representation. For example,
matching networks [28] propose an attention mechanism
to classify query samples with cosine distance, which can
be viewed as a weighted nearest-neighbor classifier applied
within an embedding space. Prototypical networks [29] pro-
pose to represent classes by the mean of the training samples
in a representation space, which can learn a metric space
by computing Euclidean distances to prototype representa-
tions of each class. Relation networks [30] further generalize
this framework by learning a deep non-linear distance met-
ric for computing the similarity of different samples. And
Cao and Zhang [31] introduces a novel semantic alignment
loss to compare relations, which is robust to content misalign-
ment. However, the comparison ability of these methods is
still limited due to the problem of unable to understand the
spatial relationship between features [32]. Therefore, we fur-
ther introduce shift-invariant blocks and a self-attention block
in our framework to learn a more robust metric ability, which
can avoid this problem.

B. OPTIMIZATION-BASED METHODS
Besides explicitly considering the semantic relationship of
data, optimization-based methods focus on the optimiza-
tion process over support-set during FSL. The MAML [33]
approach attempts to continuously update the original param-
eter using the fine-tuning manner. The success of this strat-
egy depends heavily on an appropriate based model, and
the result of the fine-tuning operation can not lead to a
qualitative leap with a few samples. The latent embed-
ding optimization method [34] overcomes the over-fitting
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FIGURE 2. An overview of our method under the C-way K -shot (C = 5, K = 1) object recognition task with one query sample. There are three parts
of our method: embedding module, compare module, and loss function module.

problem by learning a initial representation of model
parameters and implementing gradient descent as the
adaptation process in this low-dimensional latent space.
MetaOptNet [21] exploits two properties of linear classifiers,
which use high-dimensional embeddings with improved gen-
eralization at a modest increase in computational overhead.
In this paper, we introduce a simple smooth L1 loss to enhance
the generalization ability of our method.

C. DATA AUGMENTATION BASED METHODS
Another line of FSL try to utilize data augmentation mecha-
nism. The classical data augmentation methods often perform
different transformations on the input images, such as scale,
crop, flip, cut out, and elastic distortions [24], [25]. More
sophisticated augmentation methods have been explored in
FSL as well. For example, Wang et al. [35] proposes to com-
bine a meta-learner with a ‘‘hallucinator’’ that produces addi-
tional training examples. Zhong et al. [36] randomly selects a
rectangle region in an image and erases its pixels with random
values, which reduces the risk of over-fitting and makes
the model robust to occlusion. Hariharan and Girshick [37]
proposes a regularization technique to hallucinate additional
training examples for data-starved classes. Chen et al. [38]
proposes to directly synthesize instance features by leverag-
ing semantics using a novel auto-encoder network called dual
TriNet. Wu et al. [39] proposes a position-aware relation net-
work, which uses a deformable feature extractor to discover
the diversity between data.

The most relevant works of existing methods are
[30] and [39]. However, they ignored the robustness of
the network. By contrast, we apply the shift-invariant and
self-attention mechanisms, which can draw inferences about

other cases from one example. This new method requires no
additional learning cost and is more generalized.

III. METHODOLOGY
In this section, firstly, we give a formal definition to FSL.
Then, we introduce the overall framework of our network.
Finally, we describe the shift-invariant block and self-
attention block in our architecture in detail.

A. PROBLEM DEFINITION
FSL is actually a weakly supervised learning task [13],
which aims to achieve the image classification with a data
set D = {Dtrain,Dsupport,Dtest

}. Formally, given a labeled
dataset Dtrain with a large amount of images in each class,
the goal of FSL is to learn concepts in novel classes Dnew

=

{Dsupport,Dtest
} with a few samples in each class. In a

N -way K -shot few-shot task, the support setDsupport contains
K labelled samples in N different classes, the test set Dtest

contains Q samples in N different classes. And the goal is to
classify theN×Q unlabelled samples into differentN classes.
More details about FSL definition can be found in [9], [30].

Episodic trainingmechanism is an effectiveway to train the
network [28]. In each training iteration, we randomly select
C classes from the training setDtrain with K labelled samples
to act as the sample set S = {(xi, yi)}mi=1 (m = K × C).
At the same time, we choose the remainder of thoseC classes’
sample to serve as the query set Q =

{(
xj, yj

)}n
j=1. This

sample set S and query set Q are designed to mimic the
support set Dsupport and the test set Dtest. The model trained
from sample set S and query set Q can be further fine-tuned
using the support set Dsupport.

However, due to the different label space between the
training set Dtrain and the novel set Dnew, the performance
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of FSL is usually not satisfactory. To address this prob-
lem, meta-learning is used on the training set, which is to
extract the prior knowledge for better FSL. Nevertheless,
few-shot samples inevitably contain noise through acquisi-
tion, which makes meta-learning unstable. Therefore, in this
paper, we attempted to perform a novel contrastive learning
model, whose robustness is directly built in the architecture.
Our method extends traditional contrastive learning in three
key ways: it provides the shift-invariant feature for relation
network, it focuses on the global contextual information of
each input, and it uses a more powerful loss function. Each
of these modifications provides improvements over other
methods.

B. NETWORK ARCHITECTURE
As illustrated in Fig. 2, our Robust Compare Network (RCN)
consists of three modules: an embedding module fϕ , a com-
pare module gφ , and a loss function module. In the embed-
ding module, we use four-layer convolutional network with
shift-invariant blocks and an attention block to extract fea-
tures. Let fϕ (xi) and fϕ

(
xj
)
denote the features maps of one

support image xi and a query image xj, respectively. Then,
we concatenate the feature maps fϕ (xi) and fϕ

(
xj
)
in depth.

In order to determine whether xi and xj are from the same
class, the combined feature maps C

(
fϕ (xi) , fϕ

(
xj
))

are feed
into the compare module gφ . Concretely, the architecture of
compare module gφ is composed of two shift-invariant blocks
and two convolution blocks. The compare module gφ will
produce a compare score, which is in the range of 0 to 1 for
representing the similarity of xi and xj.
Therefore, in the 5-way 1-shot setting, we can generate

5 compare scores ri,j for xi and xj,

ri,j = gφ
(
C
(
fϕ (xi) , fϕ

(
xj
)))
, i = 1, 2, . . . , 5 (1)

In K -shot setting, where K > 1, we element-wise sum
the feature maps of all samples from each training class
as proposed in [30]. Thus, for one-shot or few-shot setting,
the quantity of compare scores for every query is always the
same.

Smooth L1 loss (a kind of Huber loss) was used to train our
model, which constrain the compare score ri,j to the ground
truth. If z is the difference between ri,j and the ground truth,
the smooth L1 loss can be calculated as:

smoothL1(z) =

{
0.5z2 if |z| < 1
|z| − 0.5 otherwise

(2)

It is worth to notice that the smooth L1 loss is different
from the standard choice mean square error (MSE) loss in
FSL as in [30]. MSE loss is convenient to make a derivation
and has a stable result because each point is continuously
smooth. However, once there is an abnormal and far from
the center point, MSE will appear as a gradient explosion.
In other words,MSE is stable but not robust. Therefore, in this
paper, we introduce the smooth L1 loss to avoid gradient
explosion. Smooth L1 loss is actually a piecewise function.

Based on theMSE, the smooth L1 loss uses the mean absolute
mechanism that can adaptively employ the abnormal points
and have satisfying robustness and stability.

C. SHIFT-INVARIANT FOR ENHANCING ROBUSTNESS
Feature extractor is one of the most significant steps for few-
shot object recognition. However, convolutional networks
are not shift-invariant [40]. A small input translation will
cause unstable output for FSL. In practice, most existing FSL
methods adopt data argumentation to achieve shift-invariance
[38], [39]. In this paper, we adopt shift-invariant blocks in our
embedding module fϕ and compare module gφ without data
augmentation.

We assume the output of one middle layer l of our network
to be Fl ∈ RH×W×C with spatial resolution H × W and
C channels. Shift-invariant means the shifting operation can
obtain an identical representation compared to the input.

F(x) = F
(
Shift1h,1w(x)

)
∀(1h,1w) (3)

where F(.) represents a feature extractor, 1h and 1w repre-
sent the shift variables.

In convolutional networks, the max-pooling operation
is not shift-invariant. Formally, we can decompose the
max-pooling operation into two functions:

MaxPoolk,s = Subsamples ◦Maxk (4)

where k, s are the kernel and stride, respectively.
By combining the blur and subsample operations,

the defect of subsampling may be compensated by adding
an anti-aliasing filter with kernel m×m, which is denoted as
Blurm, as illustrated in Fig. 3. Specifically, the max operation
(padding=1, kernel=2) does not change the feature dimen-
sionality, and the anti-aliasing filter (a low-pass filter) is
used to compute a convincing feature map circularly without
dimension reduction. Finally, a common pooling operation
do downsampling in a shift-invariant max-pooling block.
Therefore, the shift-invariant max-pooling can be defined as:

MaxPoolk,s → Subsamples ◦ Blurm ◦Maxk
= BlurPoolm,s ◦Maxk (5)

FIGURE 3. Shift-invariant computation combined of max-pooling
operation.

As illustrated in Fig. 2, we applied the shift-invariant
max-pooling four times in our framework, which is used
twice in the embedding module and twice in the relation
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module. By applying the shift-invariant model, we can further
improve the consistency in FSL when the data distribution is
changing. In addition, as far as we known, we are the first one
to apply this method to improve FSL.

D. ATTENTION MECHANISM FOR BETTER FEATURE
REPRESENTATIONS
Due to the inadequate data in few-shot setting, traditional
convolution operations can not fully explore global contex-
tual information. We attempt to mitigate this problem by
introducing a self-attention mechanism into our embedding
module, as illustrated in Fig. 4. Our attention mechanism
contains two attention blocks, a position attention block and a
channel attention block, with a common inputA ∈ RH×W×C .
Two identical dimensions of output are fed into a sum fusion
operation without changing dimension as well.

FIGURE 4. Position attention block and channel attention block are
illustrated in (a) and (b).

1) POSITION ATTENTION BLOCK
All classification tasks are based on the clearly distinguish-
able feature map. However, recent works [41]–[43] find the
features generated by FCNs [44] might lead to misclassifi-
cation. The position attention module attempts to generate
a spatial related feature with a long range of contextual
characteristic.

As illustrated in Fig. 4 (a), we first feed the feature
A ∈ RH×W×C into a convolution layer and get new feature
maps Ã ∈ RH×W×C . Then, we reshape the output into three
new feature maps {B̃, C̃, D̃} ∈ RC×N , where N = H × W .
Secondly, we multiply the transpose matrix B̃ by matrix C̃,
and feed their result into a softmax layer to obtain a spatial
attention matrix. We multiply the spatial attention matrix

by D̃ and reshape the result to RC×H×W . Finally, we perform
an element-wise sum with features A and obtain the position
attention output E1 ∈ RC×H×W as follows:

E1 = α ∗ reshape(D̃× softmax(B̃T × C̃))+ A (6)

where α is set to 0 at the beginning and gradually changes
during the training process.

2) CHANNEL ATTENTION BLOCK
The channel maps can reflect internal dependencies between
different semantic classes [43]. We attempt to improve the
feature representation of classification by obtaining channel
attention maps (as illustrated in Fig.4 (b)). Different from
the position attention module, we firstly reshape and copy
the feature A into three new features {B,C,D} ∈ RC×N

without a convolutional operation. Secondly, we multiply the
transpose of B by C. After that, the result is sent into a soft-
max layer to obtain a channel attention matrix. We multiply
the channel attention matrix by D and reshape the result to
RC×H×W . Finally, we perform an element-wise sum with
features A and obtain the channel attention output E2 ∈

RC×H×W as follows:

E2 = β ∗ reshape(softmax(C× BT )× D)+ A (7)

where β is set to 0 at the beginning and gradually changes
during the training process.

The self-attention mechanism enhances the global correla-
tion of local features, which allows different classes to clear
the boundaries and prevent errors from being identified by
ignoring some small features. For FSL, a clear and defi-
nite feature map can alleviate the recognition difficulty, and
improve the accuracy of the model. We introduce it into the
embedding module and use a small amount of memory and
computational cost, but obtain a good result.

IV. EXPERIMENTS
To evaluate the effectiveness of our method, we per-
form few-shot classification experiments on the Omniglot
dataset [1]. In the next subsections, we first introduce the
dataset and implementation details, then we perform a series
of ablation experiments on the Omniglot dataset. Finally,
we report our results.

A. DATASETS AND SETTINGS
The Omniglot dataset [1] is designed to develop human-like
learning algorithms. Human participants can achieve an error
rate of 4.5% on this dataset. It has 1623 handwritten charac-
ters with 24×24 resolution from 50 different alphabets. Each
of these characters is drawn online by 20 different people
from Amazon’s Mechanical Turk (as illustrated in Fig. 5).
We select 1200 classes as training set and the rest 423 classes
are used as testing set.

Following the training setting of [30], the 5-way 1-shot has
19 query images for each class. The 5-way 5-shot contains
15 query images. And the 20-way 1-shot and 20-way 5-shot
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TABLE 1. The recognition accuracy of different methods on the Omniglot dataset. The best results are highlighted by bold, and the second best results
are highlighted by underline.

FIGURE 5. A new character is presented on the top. And the goal of FSL is
to select another example from the same alphabet amongst other
characters.

contain 10 and 5 query images respectively. And we also
resized all input images into 28 × 28. Finally, our model is
tested over 600 episodes and averaged as the last accuracy.

All experiments are trained from scratch by Pytorch [52]
with an initialized learning rate of 0.001 and Adamax opti-
mizer. And the parameter α and β are set to 0 at the beginning
and gradually change during the training process. What’s
more, our models use end-to-end training and finish after
100,000 episodes.

B. MAIN RESULTS
We compare the proposed method with other 10 state-of-
the-art FSL approaches, including Mann [45], Convolutional
Siamese Nets [46], Matching Nets [28], Siamese Nets with
Memory [47], Neural Statistician [48], Meta Nets [49],
Prototypical Nets [29], Two-Stage [50], Relation Net [30],
and Sampler-FC [51].

The comparative results of different methods are shown
in Table 1. From Table 1, we can see that our method

can outperform other state-of-the-art FSL methods. More
specifically, in the 5-way 1-shot recognition experiment, our
model outperforms the other methods and increase 0.2% than
the second best result. For 20-way 1-shot and 20-way 5-shot,
we improve the accuracy of 0.5% and 0.2% over the second
best result. In 5-way 5-shot recognition task, our method
and Relation Net [30] achieve the best result, which is 0.1%
higher than the second best result.

There are three main reasons for the good results of our
method. First, shift-invariant block increases the robustness
of FSL. Second, the attention block enforces the embedding
module to pay more attention to the relation information
inside images, which encourage our network to learn more
essential features. Finally, the smooth L1 loss boosts the
stability of the optimization objective.

C. ABLATION STUDY
In order to better demonstrate the contribution of each
module of our method, we compare our method (with smooth
L1 loss, shift-invariant mechanism, and attention mecha-
nism, named Baseline+M1+M2+M3) with three simpli-
fied versions: (1) the original compare network with MSE
loss (Baseline); (2) the original compare network with
smooth L1 loss (Baseline+M1); (3) the original compare
network with smooth L1 loss and shift-invariant mechanism
(Baseline+M1+M2); (4) our method.

The ablative results on the Omniglot dataset are shown
in Table 2. And we can have three observations.
Baseline vs. Baseline+M1: The smooth L1 loss can

improve the stability of the model to some extent. The 20-
way 1-shot recognition task useing this loss has a significant
improvement, which improves 0.4% than the baseline model.
However, the accuracy of 5-way 5-shot recognition task has a
little improvement, which improves 0.04% than the baseline
model. This phenomenon shows that the smooth L1 loss can
further improve the performance in more difficult tasks.
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TABLE 2. Ablation study results for our method under different setting.
Baseline is the original model. ‘‘M1’’ represents smooth L1 loss function,
‘‘M2’’ represents shift-invariant mechanism, and ‘‘M3’’ represents
attention mechanism.

Baseline+M1+M2: Shift-invariant mechanism have a
significant impact on the 5-way 1-shot and the 20-way 1-shot
recognition tasks. They improve 0.13% and 0.92% respec-
tively compared to the baseline model.

Baseline+M1+M2+M3: The attention mechanism can
further improve the accuracy of FSL. The 5-way 1-shot and
20-way 1-shot recognition task achieve 99.84% and 98.05%,
which is 0.2% and approximately 1% higher than original
model, respectively. In addition, the 5-way 5-shot recognition
task has an obvious improvement than the prior strategies,
which is 0.12% than the original model.

D. ROBUST PERFORMANCE ANALYSIS
In FSL, unpleasant shifts and geometric changes of input
images will influence the robustness of outputs. We test
our method and Relation Net [30] with manual pixel shift
conditions to demonstrate the robust ability of our method.
The results of 5-way 1-shot with pixel movement in different
directions on the Omniglot dataset are illustrated in Table 3.

TABLE 3. The robust performance of different methods. Left, right, upper,
and down denote one pixel shift in this direction.

From Table 3, we can see that pixel movement greatly
degrades the performance of Relation Net [30]. This phe-
nomenon demonstrates that some pixel perturbations in the
input image can cause lower stability and robustness for mod-
els and decrease the recognition accuracy. However, suffering
from some perturbations in the input image, our method still
can outperform the Relation Net [30].

E. FEATURE VISUALIZATION
In this subsection, we perform visualization experiments on
the Omniglot dataset to demonstrate the credibility of our
method. As illustrated in Fig. 6, the results from our model

FIGURE 6. The visualization results for the same input images. The first
rows are Relation Net [30], and the second rows are our method.

(second rows) obviously better than the results from Relation
Net [30] (first rows). Specifically, we find that our method
can extract the features from the regions that the target object
corresponds to the characters. In addition, our visualization
results further reveal the existence of a strong correlation
between human attention and the explicit saliency field.

V. CONCLUSION
In this paper, we propose a novel compare network to perform
robust FSL in a meta-learned end-to-end manner. Firstly,
we introduce shift-invariant blocks and a self-attention block
in our framework, which can leverage label information
more effectively for FSL. Secondly, we introduce the smooth
L1 loss to avoid gradient explosion. Therefore, our method
is more robust and flexible to learn better representations.
Finally, we provide ablative analyses of different blocks to
help understand how each term contributes to performance.
Extensive experiments demonstrates the superiority of our
RCN method in FSL recognition applications.

In the future, we will focus on using multi-modality infor-
mation in designing FSL methods. In addition, we also want
to extend the Auto-fpn methods [53] to FSL in an economic,
efficient, and effective manner.
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