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ABSTRACT Vehicle sideslip angle is a key state for lateral vehicle dynamics, but measuring it is expensive
and unpractical. Still, knowledge of this state would be really valuable for vehicle control systems aimed at
enhancing vehicle safety, to help to reduce worldwide fatal car accidents. This has motivated the research
community to investigate techniques to estimate vehicle sideslip angle, which is still a challenging problem.
One of the major issues is the need for accurate tyre model parameters, which are difficult to characterise
and subject to change during vehicle operation. This paper proposes a new method for estimating vehicle
sideslip angle using an Extended Kalman Filter. The main novelties are: i) the tyre behaviour is described
using a Rational tyre model whose parameters are estimated and updated online to account for their variation
due to e.g. tyre wear and environmental conditions affecting the tyre behaviour; ii) the proposed technique
is compared with two other methods available in the literature by means of experimental tests on a heavy-
duty vehicle. Results show that: i) the proposed method effectively estimates vehicle sideslip angle with an
error limited to 0.5 deg in standard driving conditions, and less than 1 deg for a high-speed run; ii) the tyre
parameters are successfully updated online, contributing to outclassing estimation methods based on tyre
models that are either excessively simple or with non-varying parameters.

INDEX TERMS Kalman filter, sideslip angle, state estimation, rational tyre model, vehicle dynamics.

LIST OF SYMBOLS
Symbol Unit Quantity
A various Dynamic matrix
ai m Vehicle semi-wheelbase
ay m/s2 Lateral acceleration
B various Matrix used to work out Q
Bc various Matrix used to work out B
CF N/rad Front cornering stiffness
CR N/rad Rear cornering stiffness
ck various Control input vector
c1i rad2 Rational tyre model parameter
c2i N/rad Rational tyre model parameter
Fyi N Lateral force
Fzi N Vertical load
Fzi,0 N Nominal vertical load
f - Function defining the dynamics of

the analysed system

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Ersin Soken .

H various Matrix relating z to x
h - Function defining the measurements as a

function of the state
J kg m2 Vehicle moment of inertia about a

vertical axis
K - Kalman gain
k - Time step
l m Vehicle wheelbase
M kg Vehicle mass
P various State covariance
P− various Predicted state covariance
Q various Process covariance matrix
R various Measurement covariance matrix
r rad/s Yaw rate
ṙ rad/s2 Yaw acceleration
ti m Vehicle track width
u m/s Longitudinal vehicle speed
uij m/s Corrected wheel speed
um,ij m/s Measured wheel speed
V m/s Vehicle speed (centre of mass)
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Vi m/s Vehicle speed at axle i
v various Measurement noise
w various Process noise
x various State vector
x̂− various Predicted state vector
x̂ various Estimated state vector
z various Measurement vector
αi rad Slip angle
β rad Vehicle sideslip angle
β̇ rad/s Sideslip angle rate
1t s Discretisation time
δ rad Front wheel steering angle
3 various Matrix used to work out Q
µ - Friction coefficient
σciF various Square root of the covariance of ciF
σciR various Square root of the covariance of ciR
σCF rad Square root of the covariance of CF
σCR rad Square root of the covariance of CR
σay m/s2 Square root of the covariance of the

accelerometer
σr rad/s Square root of the covariance of the

gyroscope
σδ rad Square root of the covariance of the

steering angle sensor
Subscripts : i = F(Front),R(Rear); j = L(Left),R(Right)

I. INTRODUCTION
The potential of many vehicle control systems, such as the
ESC (Electronic Stability Control), could be significantly
enhanced with the availability of the vehicle sideslip angle.
Unfortunately such parameter can only be measured with
expensive optical sensors. That has motivated researchers to
investigate techniques to estimate vehicle sideslip angle.

Common techniques include model-based approaches and
neural networks [1]. The former are generally preferred
because they are explicitly linked to the physics of the studied
phenomenon, e.g. through equations describing the vehicle
dynamics. Many model-based approaches exist, including
Luenberger Observers [2], Sliding Mode Observers [3], and
the most commonly adopted approach, i.e. the Kalman Fil-
ter [4]. Over time, several authors have proposed numerous
techniques to estimate vehicle sideslip angle via Kalman
Filters and their variants, including Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF), Cubature Kalman
Filter (CKF), Square-Root Cubature Kalman Filter (SCKF)
etc. [5]–[8]. Each technique adopts different hypotheses and
assumptions on the available inputs, the measurable out-
puts, the tyre model, and the environmental/road condi-
tions [9]–[11]. In some cases tyre force sensors are used to
facilitate the estimation process [12], but that approach is
not cost-effective for passenger cars and often tyre forces
need to be estimated, too [13]. Some other studies pro-
pose kinematics-based techniques that do not need a tyre
model [14], [15]. More recent studies investigate the option
of particle filters, which normally are rather demanding in

terms of computational capability but can provide very good
performance [16], [17].

As of yet, a general solution, that works in all condi-
tions, does not exist. That is essentially down to the high
complexity and variability of the possible driving conditions,
which include e.g. the progressive wear of the tyres, their
behaviour in different road conditions (e.g. dry, wet, ice), the
characteristics of the road (e.g. irregularity, presence of slope
and/or bank angle) etc. The biggest issue with model-based
approaches is that their accuracy depends on whether they
include a truly representative model of the tyre behaviour,
which is very challenging. In general it is difficult to obtain
tyre models and/or their parameters from, e.g., the tyre man-
ufacturers. Even so, such values are (or should be) represen-
tative only for new tyres. So the models should somehow
account for changes in the tyre behaviour. Some interesting
attempts in the literature propose estimators based on linear
tyre models, with the estimator computing the cornering stiff-
ness of each axle, that is updated in real time or according to
rule-based criteria [5], [18], [19]. Yet, it is well known that
linear tyre models are accurate only for relatively low values
of tyre slip angle. Another relevant aspect of sideslip angle
estimation is that the majority of works deal with standard
passenger cars. Very few works deal with other types of
vehicles. For example, [20] investigates articulated heavy-
duty vehicles in conditions of limit of adhesion.

This paper proposes a novel vehicle sideslip angle esti-
mator, consisting of a simple single-stage EKF approach
(differently from more complex approaches such as [22])
with the following main novelties:

- the Rational tyre model [21], [22] is adopted and its
parameters are estimated and updated in real time, for a better
accuracy of the estimator with respect to parameter-varying
estimators based on linear tyre models and estimators based
on fixed tyre parameters;

- the EKF performance is assessed on experimental data
collected on a heavy-duty vehicle equipped with a sideslip
angle sensor. The performance of the proposed algorithm
is also compared to a similar approach using a linear tyre
model (inspired to the recent paper [19]) and to a Rational
model-based filter with no tyre parameter update.

An EKF is preferred over an UKF structure due to the
peculiarities of the problem at hand, including the need of
ease of tuning and low computational burden [23], with
the perspective of real-time application of the estimator for
advanced real-time controllers, aimed at enhancing vehicle
safety.

The remainder of this paper is structured as follows.
Section II introduces the vehicle model and the tyre mod-
els. Section III discusses the framework of the three filters.
Results are presented in Section IV, and the main conclusions
are in Section V.

II. VEHICLE MODEL
The dynamics of the vehicle is based on the well-known
single-track vehicle model (Fig. 1) [24], [25], which assumes
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FIGURE 1. Single-track vehicle model: main parameters.

small steering angles:

β̇ =
FyF
Mu
+
FyR
Mu
− r (1)

ṙ =
FyFaF
J
−
FyRaR
J

(2)

The Adapted ISO sign convention [26] is used throughout the
paper. Two different approaches are investigated as regards
the tyre model: i) linear model; ii) Rational tyre model.

The linear tyre model is expressed as:

Fyi = Ciαi (3)

which is a relatively good approximation only for small slip
angles. The Rational model, instead, allows to capture the
nonlinear behaviour of the tyre as well as its saturation. The
Rational tyre model was proposed in the literature to provide
a simple alternative to Pacejka’s Magic Formula [21], [22],
still incorporating features such as explicit dependence on
normal load and road adhesion coefficient. The expression
of the Rational tyre model herein adopted is ([22]):

Fyi = c2iµ
Fzi
Fzi,0

(
αic1i (µ+ 1)

α2i + c1i (µ+ 1)

)
(4)

where c1 and c2 are constant parameters andµ is the tyre-road
friction coefficient.

Taking into account the standard linearised congruence
equations [14]:

αF = δ −
(
β +

r
u
aF
)

(5)

αR = −
(
β −

r
u
aR
)

(6)

and using them in (3) and (4), the constitutive equations for
the front and rear axles can be rewritten for the linear model
as:

FyF = CF
(
δ − β −

r
u
aF
)

(7)

FyR = −CR
(
β −

r
u
aR
)

(8)

and for the Rational tyre model as:

FyF = c2Fµ
FzF
FzF,0

(
δ − β − r

uaF
)
c1F (µ+ 1)(

δ − β − r
uaF

)2
+ c1F (µ+ 1)

(9)

FyR = c2Rµ
FzR
FzR,0

(
−β + r

uaR
)
c1R (µ+ 1)(

−β + r
uaR

)2
+ c1R (µ+ 1)

(10)

III. DESIGN OF THE EXTENDED KALMAN FILTER
According to the general formulation of an Extended Kalman
Filter (EKF), the dynamics of the system at a generic dis-
cretisation step can be expressed by the non-linear stochastic
difference equation [4]:

xk+1 = f (xk , ck ,wk) (11)

where the process noise, w, is meant to account for unmod-
elled effects and external disturbances. w has zero mean and
covariance Q. A model is also needed to relate the available
measurements to the state vector:

zk+1 = h (xk+1, vk+1) (12)

which accounts for sensor noise through the measurement
noise vector v, that has zero mean and covariance R.

The estimation operates through the well-known
prediction-correction cycle [4] expressed by an a-priori esti-
mation (prediction):

x̂−k+1 = f (x̂k , ck , 0) (13)

P−k+1 = AkPkATk + Q (14)

and an a-posteriori estimation (correction) based on the avail-
able measurements:

x̂k+1 = x̂−k+1 + Kk+1
(
zk+1 − Hk+1x̂

−

k+1

)
(15)

where

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−

k+1H
T
k+1 + R

)−1
(16)

Pk+1 = (I − Kk+1Hk+1)P
−

k+1 (17)

Ak is the Jacobian matrix of partial derivatives of f with
respect to the state vector x:

Ak =
∂f
∂x

(x̂k , ck , 0) (18)

and Hk+1 is the Jacobian matrix of partial derivatives of h
with respect to x:

Hk+1 =
∂h
∂x

(x̂−k+1) (19)

In the present case study, the control input is the front wheel
steering angle, δ, and the measured quantities are the yaw
rate, r , and the lateral acceleration, ay. Both measurements
are obtained through an Inertial Measurement Unit (IMU)
which integrates a three-axis gyroscope and a three-axis
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accelerometer. The sensor noise is reflected in the diagonal
matrix R:

R = diag
(
σ 2
r , σ

2
ay

)
(20)

where the values of σr and σay were obtained through the
sensor datasheet.

The definitions of x, f , h and Q depend on the adopted
tyre model and on whether the estimator is also aimed at
estimating the tyre model parameters. A schematic of the
EKF framework is depicted in Fig. 2.

FIGURE 2. Schematic of the EKF framework.

The subsequent subsections investigate three cases: i) filter
with linear tyre model and estimation of tyre parameters
(LINT); ii) filter with Rational tyre model (RATT); iii) filter
with Rational tyre model and estimation of tyre parameters
(RATTE).

A. FILTER WITH LINEAR TYRE MODEL (LINT)
This version of the filter employs equations (7) and (8)
in equations (1) and (2). Differently from conventional
approaches, the values of CF and CR are not fixed. The state
vector includes them as augmented variables, to be estimated
by the filter. As discussed, the rationale is that the potentially
available values of CF and CR might not be accurate, and that
anyway they are subject to change.

The state vector is chosen as:

x =
[
β, r, β̇,ṙ,CF ,CR

]T (21)

and, by using the forward Euler method, the equations of the
dynamics of the system in discrete time are:

βk+1 = βk + β̇k1t (22)

rk+1 = rk + ṙk1t (23)

β̇k+1 = −

(
CF,k+CR,k

Mu

)
βk−

(
CF,kaF − CR,kaR

Mu2
+1
)
rk

+
CF,kδk
Mu

(24)

ṙk+1 = −
(
CF,kaF − CR,kaR

J

)
βk

−

(
CF,ka2F + CR,ka

2
R

Ju

)
rk +

CF,kaFδk
J

(25)

CF,k+1 = CF,k (26)

CR,k+1 = CR,k (27)

By studying the stability of the system defined by
equations (1-3) and (5-6), it turns out that the problem is not
stiff [27]. Specifically, for the case study vehicle, the ratio
between the two eigenvalues of the system is 1 above 6 m/s,
and up to ∼1.3 at low speeds. This supports the use of the
forward Euler method.

Equations (26) and (27) show that no change is expected
for CF and CR in the prediction model. The reason is that
their dynamics is not known. Therefore, the variation of such
parameters takes place within the correction phase of the
filter.

The dynamics of the system is nonlinear - hence an EKF
is used - only because of the presence of the augmented
variables CF and CR in the state vector. Otherwise, a classical
linear Kalman Filter could be used.

By applying equation (18), Ak results as:

Ak =


1 0 1t 0 0 0
0 1 0 1t 0 0
A31 A32 0 0 A35 A36
A41 A42 0 0 A45 A46
0 0 0 0 1 0
0 0 0 0 0 1

 (28)

where

A31 = −
ĈF,k + ĈR,k

Mu
(29)

A32 = −

(
ĈF,kaF − ĈR,kaR

Mu2
+ 1

)
(30)

A35 =
δk

Mu
−
β̂k

Mu
−
r̂kaF
Mu2

(31)

A36 =
aRr̂k
Mu2
−
β̂k

Mu
(32)

A41 = −
ĈF,kaF − ĈR,kaR

J
(33)

A42 = −
ĈF,ka2F + ĈR,ka

2
R

Ju
(34)

A45 =
δkaF
J
−
r̂ka2F
Ju
−
β̂kaF
J

(35)

A46 =
β̂kaR
J
−
r̂ka2R
Ju

(36)

where the symbol (̂ ) represents the estimated value of a
quantity, in other words:

x̂k =
[
β̂k , r̂k , ˆ̇β, ˆ̇r, ĈF,k , ĈR,k

]T
(37)

The measurement vector is:

z =
[
r, ay

]T (38)
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Note that the measured lateral acceleration can be directly
used in the filter equations because of the particular choice of
variables in the state vector. This follows from:

ay,k = uβ̇k + urk (39)

and from the fact that β̇ appears in the state vector. This
is inspired from [19] and is not common in the literature.
In alternative approaches that include the lateral acceler-
ation in the measurement vector, the lateral acceleration
explicitly depends on the control input, i.e. the steering
angle [5], [28], [29]. Based on equations (38) and (39),
it results:

Hk =
[
0 1 0 0 0 0
0 u u 0 0 0

]
(40)

The process noise w is assumed to be generated by uncer-
tainties on the input (the steering angle) and the unknown
dynamics of the augmented variables. So, according to [30]
and by accounting for the presence of augmented variables:

Q = 1tBk3BTk (41)

where

3 = diag
(
σ 2
δ , σ

2
CF , σ

2
CR

)
(42)

Bk =



0 0
...

...

Bc,k 0
...

1 0
0 1

 (43)

Bc,k =
∂f
∂c

(x̂k , ck , 0) (44)

Bk includes the Jacobian matrix of partial derivatives of f
with respect to c, evaluated at step k , denoted as Bc,k , while
the subsequent columns of Bk correspond to the augmented
variables CF and CR. Specifically:

Bk =



0 0 0
0 0 0

CF,k
Mu

0 0
CF,kaF
J

0 0

0 1 0
0 0 1


(45)

B. FILTER WITH RATIONAL TYRE MODEL (RATT)
This version of the filter employs equations (9) and (10)
in equations (1) and (2). The tyre model parameters c1, c2
and µ are assumed constant. The parameters c1 and c2 were
obtained via fitting equation (4) by using the Matlab function
‘‘lsqnonlin’’ on an extensive amount of experimental data,
with the assumption µ = 1. For the purposes of fitting,
the values of lateral and vertical forces for front and rear
axles were obtained through the TRICK tool [31], [32].
Fig. 3 shows the results of the fitting, and Table 1 reports the
obtained parameters.

FIGURE 3. Data fitting for (top) front axle and (bottom) rear axle.

TABLE 1. Rational tyre model parameters for section III.B.

Since the tyre parameters are constant, the state vector
reads:

x =
[
β, r, β̇,ṙ

]T (46)

and the dynamics of the system is represented by four equa-
tions, i.e. equations (22) and (23) together with:

β̇k+1 =

c2Fµ
FzF
FzF,0

( (
δk−βk−

rk
u aF

)
c1F (µ+1)(

δk−βk−
rk
u aF

)2
+c1F (µ+1)

)
Mu

+

c2Rµ
FzR
FzR,0

( (
−βk+

rk
u aR

)
c1R(µ+1)(

−βk+
rk
u aR

)2
+c1R(µ+1)

)
Mu

− rk (47)

ṙk+1 =
c2Fµ

FzF
FzF,0

( (
δk−βk−

rk
u aF

)
c1F (µ+1)(

δk−βk−
rk
u aF

)2
+c1F (µ+1)

)
aF

J

−

c2Rµ
FzR
FzR,0

( (
−βk+

rk
u aR

)
c1R(µ+1)(

−βk+
rk
u aR

)2
+c1R(µ+1)

)
aR

J
(48)

As a result:

Ak =


1 0 1t 0
0 1 0 1t
A31 A32 0 0
A41 A42 0 0

 (49)
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where the expressions of each term are reported in the
Appendix.

With the state vector in (46) and the same available mea-
surements, Hk changes to:

Hk =
[
0 1 0 0
0 u u 0

]
(50)

Finally, (41) holds with:

3 = diag
(
σ 2
δ

)
(51)

and

Bk = Bc,k =


0
0
B31
B41

 (52)

where the expressions of B31 and B41 are detailed in the
Appendix.

C. FILTER WITH RATIONAL TYRE MODEL AND TYRE
PARAMETER ESTIMATION (RATTE)
Similarly to the previous case, this filter uses equations (9)
and (10) in equations (1) and (2). However the tyre parameters
c1 and c2 are now augmented variables in the state vector:

x =
[
β, r, β̇,ṙ, c1F , c2F , c1R, c2R

]T (53)

The dynamics of the system is given by eight equations, i.e.
equations (22), (23), (48), (49) and

c1F,k+1 = c1F,k (54)

c2F,k+1 = c2F,k (55)

c1R,k+1 = c1R,k (56)

c2R,k+1 = c2R,k (57)

Therefore:

Ak =



1 0 1t 0 0 0 0 0
0 1 0 1t 0 0 0 0
A31 A32 0 0 A35 A36 A37 A38
A41 A42 0 0 A45 A46 A47 A48
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(58)

Finally, (41) holds with:

3 = diag
(
σ 2
δ , σ

2
c1F , σ

2
c2F , σ

2
c1R , σ

2
c2R

)
(59)

and

Bk =



0 0 0 0 0
0 0 0 0 0
B31 0 0 0 0
B41 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(60)

IV. RESULTS
The performance of the three filters was assessed through
experimental data obtained on the heavy-duty vehicle shown
in Fig. 4. The main vehicle parameters are in Table 2. The
vehicle was equipped with wheel speed sensors, a steer-
ing wheel sensor, a Racelogic Inertial Measurement Unit
RLVBIMU04 V2, and a Kistler Correvit S-350 sensor. The
sampling frequency was 20 Hz, resulting in a filter discreti-
sation time step of 0.05 s. This is enough to capture the fre-
quencies of interest in vehicle dynamics [33] while limiting
the computational burden.

FIGURE 4. The instrumented vehicle used in the experimental analysis.

TABLE 2. Vehicle parameters.

As shown in the equations of the filters in the previ-
ous section, the longitudinal velocity, u, is needed. That is
computed as a function of the measured four wheel speeds.
Specifically, such values are corrected, as suggested by [14]:

uFL = uFL,m cos (δ)+ r
(
tF
2

)
(61)

uFR = uFR,m cos (δ)− r
(
tF
2

)
(62)

uRL = uRL,m + r
(
tR
2

)
(63)

uRR = uRR,m − r
(
tR
2

)
(64)
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and then their average is taken as the estimated longitudinal
velocity.

Fig. 5 shows a sample timeframe comparing the four wheel
speeds before and after correction, together with the actual
longitudinal vehicle velocity, u, measured by the Kistler Cor-
revit sensor.

FIGURE 5. Longitudinal speed comparison: (top) measured values;
(bottom) corrected values.

Fig. 6 shows the measured sideslip angle (from the Cor-
revit sensor) along with the estimate of the filters along
three consecutive laps on the Vairano track, Italy. The speed
of each lap was around 30, 40 and 45 km/h respectively.
The speed profile and the lateral acceleration are depicted
in Figure 7, showing that lap 1 was between 0 and 299 s,
lap 2 between 299 and 526 s, and lap 3 between 526 and 721 s.
Bymultiplying each laptime and speed, the approximate track
length is obtained, i.e. 2.5 km. The pattern of the lateral
acceleration profile is the same for the three laps, with a few
positive and negative peaks at the beginning of the lap due
to the handling section (highlighted in green in Fig. 6a), then
another important peak at the hairpin bend before the main
straight. The magnitude of the acceleration peaks increases
as the lap speed increases.

By looking at Fig. 6b, the RATTE filter produces a good
estimate of the sideslip angle all round, performing much
better than LINT and RATT. Interestingly, the filter perfor-
mance improves with the vehicle speed. In straight driving
conditions the performance of LINT, RATT and RATTE is
rather similar, as shown in Fig. 6c which refers to the straight
highlighted in red in Fig. 6a. On the other hand, the RATTE
filter is significantly better in cornering conditions - which is
when sideslip angle matters the most - as shown in Fig. 6d,
which refers to the handling section highlighted in green
in Fig. 6a. In particular, Fig. 6b clearly shows that LINT
and RATT tend to underestimate the vehicle sideslip angle,
which is an important drawback from the safety point of view.
In fact, potential safety-critical condition are normally asso-
ciated to relatively large values of sideslip angle [34], hence
the need to promptly detect such instances, which the RATTE
filter proved able to do. It is also important to note that at the

FIGURE 6. (a) Vairano track, highlight of the start/finish point, a straight
(red) and a handling section (green); (b) Measured and estimated β;
(c) Detail of the filter performance on the highlighted straight; (d) Detail
of the filter performance on the highlighted handling section.

end of the three laps the vehicle decelerated from 45 km/h to
zero speed in around 5 seconds, and the performance of the
three filters remained satisfactory until ∼0.4 seconds before
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FIGURE 7. Vehicle speed and lateral acceleration during three constant
speed laps.

stopping, when also the measured value started to diverge due
to the optical nature of the sensor.

To assess the performance of each filter, the sideslip angle
Root Mean Square Error (RMSE) was introduced:

RMSE =

√√√√∑N
k=1

(
β̂k − βk

)2
N

(65)

in which β̂k is the estimated value of the sideslip angle and
βk is the value of the measured sideslip angle, at time step
k . N is the number of samples. The RMSE values of the
three filters are reported in Table 3, which confirms that
the RATTE filter outperforms the other two. By comparing
RATT and LINT, the former presents a 37% improvement
with respect to latter. By allowing the tyre parameters to
change, RATTE improves RATT by 44%, with an overall
65% improvement with respect to LINT. In terms of absolute
values the performance of RATTE is deemed satisfactory,
with an error smaller than 0.5 deg.

TABLE 3. Performance analysis, constant speed laps.

The time histories of the estimated tyre parameters are
shown in Fig. 8 (LINT) and Fig. 9 (RATTE). As expected
their variation is relatively limited, yet significant for the filter
performance.

The performance of the developed filters was also assessed
on a high speed lap with a top speed of 115 km/h and average
speed 76 km/h. As depicted in Fig. 10, the RATTE filter still
works well and outperforms the other two. Its RMSE value
is 0.62 deg, a bit larger than for the constant speed laps due

FIGURE 8. Cornering stiffness values, LINT filter.

FIGURE 9. Rational tyre model parameters, RATTE filter.

FIGURE 10. Measured and estimated β during a high speed lap.

to the more challenging manoeuvre (see speed and lateral
acceleration profiles in Fig. 11), but still satisfactory in terms
of sideslip angle tracking. Both LINT and RATT resulted less
accurate, with RMSE values slightly above 1 deg.
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FIGURE 11. Vehicle speed and lateral acceleration during a high speed
lap.

V. CONCLUSION
This paper presented an EKF approach to the estimation
of the vehicle sideslip angle. After analysing a linear tyre
model approach inspired to a recent approach proposed in
the literature, an EKF framework was developed based on
the Rational tyre model. A further evolution of the algorithm
was also conceived, allowing the possibility for the filter to
estimate relevant tyre parameters. The experimental results
confirmed the effectiveness of the proposed approach, pro-
viding significant benefits with respect to the linear approach,
with a limited increase in complexity.

Future developments include: i) the development of a more
detailed vehicle model, including effects such as road slope,
bank angle, vehicle roll and pitch motions; ii) the investiga-
tion of further alternative tyre models; iii) the implementation
of a more advanced estimation algorithm, bearing in mind
the need for low computational cost; and iv) the real-time
implementation of the filter on the vehicle (e.g. through a
dSPACE board) and the execution of further experimental
tests, including scenarios with variable friction conditions
(e.g. dry-wet).

APPENDIX
The terms in equations (49) are:

A31 =
2F zFµc1Fc2F (µ+ 1)

(
−δk + β̂k +

r̂k
u aF

)2
FzF,0Mu

((
−δk + β̂k +

r̂k
u aF

)2
+ c1F (µ+ 1)

)2

−
Fz1µc1Fc2F (µ+ 1)

FzF,0Mu
((
−δk + β̂k +

r̂k
u aF

)2
+ c1F (µ+ 1)

)

+

2F zRµc1Rc2R (µ+ 1)
(
β̂k −

r̂k
u aR

)2
FzR,0Mu

((
β̂k −

r̂k
u aR

)2
+ c1R (µ+ 1)

)2
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FzR,0Mu
((
β̂k −

r̂k
u aR

)2
+ c1R (µ+ 1)

)

A32 =
2F zFµaFc1Fc2F (µ+ 1)

(
−δk + β̂k +

r̂k
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)2
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((
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) − 1
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The terms in equations (58) include the expressions given
above for A31,A32,A41,A42 (with ĉ1F,k , ĉ2F,k , ĉ1Rk , ĉ2R,k
instead of, respectively, c1F , c2F , c1R, c2R) and:

A35 =
FzFµĉ1F,k ĉ2F,k (µ+ 1)2
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−δk + β̂k +

r̂k
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)
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+ ĉ1R,k (µ+ 1)

)

A45 =
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+ ĉ1F,k (µ+ 1)

)2

−

FzFµaF ĉ2F,k (µ+ 1)
(
−δk + β̂k +

r̂k
u aF

)
FzF,0J

((
−δk + β̂k +

r̂k
u aF

)2
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FzRµaRĉ2R,k (µ+ 1)
(
β̂k −

r̂k
u aR

)
FzR,0J

((
β̂k −

r̂k
u aR

)2
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The terms in equation (52) are:

B31 = −
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The terms in equation (60) include the expressions given
above for B31 and B32, using ĉ1F,k , ĉ2F,k , ĉ1Rk , ĉ2R,k instead
of, respectively, c1F , c2F , c1R, c2R.
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