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ABSTRACT The U-Net architecture is a state-of-the-art neural network for semantic image segmentation
that is widely used in biomedical research. It is based on an encoder-decoder framework and its vanilla
version shows already high performance in terms of segmentation quality. Due to its large parameter space,
however, it has high computational costs on both, CPUs and GPUs. In a research setting, inference time
is relevant, but not crucial for the results. However, especially in mobile, clinical applications a light and
fast variant would allow deep-learning assisted, objective diagnosis at the point of care. In this work,
we suggest an optimized, tiny-weight U-Net for an inexpensive hardware accelerator. We first mined the
U-Net architecture to reduce computational complexity to increase runtime performance by simultaneously
keeping the accuracy on a high level. Using an open, biomedical dataset for high-speed videoendoscopy
(BAGLS), we show that we can dramatically reduce the parameter space and computations by over
99.8% while keeping the segmentation performance at 95% of our baseline. Using a custom upscaling
routine, we further successfully deployed our optimized U-Net to an EdgeTPU hardware accelerator to
gain cost-effective speed improvements on conventional computers and to showcase the applicability of
EdgeTPUs for biomedical imaging processing of large images on portable devices. Combining the optimized
architecture and the EdgeTPU, we gain a speedup of >79-times compared to our initial baseline while
keeping high accuracy. This combination allows to provide immediate results to the clinician, especially in
constrained computational environments, and an objective diagnosis at the point of care.

INDEX TERMS EdgeTPU, convolutional neural network, coral, semantic segmentation.

I. INTRODUCTION
Image processing and analysis becomes increasingly impor-
tant to be performed efficiently and accurately, and ideally
physically close to the device where the image is acquired.
For example, in autonomous driving, camera images need
to be processed in real-time in the car to detect danger-
ous situations, such as a passing subject, in order to react
with almost no latency. Especially mobile environments have
strong limitations in power consumption and computational
efficiency, and mostly lack any on-site sophisticated image
processing. This is also true for portable biomedical imaging
devices, such as laryngeal videoendoscopy systems. Here,
latest convolutional neural networks for image analysis and
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classification are rarely applied, as they need special environ-
ments, such as graphical processing units (GPUs), to operate
decently. The classical modus operandi is to transfer the data
to a specific data processing unit, analyze the data and report
the result back. This is not only potentially affecting privacy
and exhibits data protection issues, but also involves trans-
ferring large amounts of data, which is almost impossible in
remote settings. Therefore, there is an urgent need to bring
efficient biomedical image processing to the point of care.

Laryngeal high-speed videoendoscopy (HSV) is a clinical
imaging procedure using a mobile imaging unit that has
since decades a bottleneck in immediate processing of large,
acquired data. In a typical examination, several thousands of
frames are acquired using a high-speed camera connected to
an oral or nasal endoscope (Figure 1) resulting in a view
from above onto the oscillating vocal folds. The standard
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FIGURE 1. High-speed video endoscopy and segmentation task, with
current and ideal diagnosis at point of care. A patient examination results
in thousands of endoscopic video frames. For every frame, the glottal
area is segmented by a deep neural network for further clinical parameter
computation to ideally result in an objective diagnosis.

analysis procedure is the frame by frame segmentation of
the glottal area, i.e. the opening between the vocal folds
(Figure 1). With this procedure, we are able to quantify vocal
fold oscillations directly from aHSV recording. The resulting
oscillation behaviors are capable to describe and diagnose
voice disorders, such as functional dysphonias [1]–[3]. How-
ever, HSV is rarely applied in a clinical setting, because
the current state-of-the-art data analysis is cumbersome and
tedious, performed by specialists and not directly at the point
of care [4]–[6]. As data cannot be analyzed in time, the rich
and quantifiable, objective HSV data is not considered at all
in the diagnosis, rendering it purely subjective.

We and others recently showed that training and apply-
ing deep neural networks to segment the glottal area
is feasible and became the state-of-the-art segmentation
technique [7]–[10], outperforming previously described
methods for automatic glottis segmentations, such as 3D
active contours [11] or threshold-based techniques combined
with level set methods [12]. Nevertheless, the inference
time/latency spent per frame on a consumer-grade CPU,
as normally available at the point of care, is rather large
(around 2 s per frame), rendering it almost impossible to
analyze a 1,000 frame long video (an around 250 ms long
recording) in a reasonable amount of time (ca. 33 min).
The rationale would be to provide a neural network that
has increased performance on a consumer-grade CPU or
affordable external accessories, without losing significantly
segmentation accuracy to ensure a reliable diagnosis.

In this study, we perform an in-depth analysis of the U-Net
architecture in terms of inference speed and computational
load by reducing the amount of computations and parameters
in the model. Our main contributions are summarized as
follows:
• We found that the second convolutional layer in encoder
and decoder is not required in the U-Net architecture for
high accuracy segmentations and only residual propa-
gation is relevant, not its type. Replacing the activation
function improves the network accuracy.

• We were able to reduce the total parameter (and thus
computational) space by over 99.8 %, while keeping

95 % of the baseline accuracy as measured by the inter-
section over union.

• We introduced a custom upscaling routine that ensures
large images are upscaled on the EdgeTPU and that is
relevant across multiple architectures

• By porting our modified, optimized architecture to an
EdgeTPU hardware accelerator, we were able to analyze
a typical 1,000 frame long dataset in less than 25 s
resulting in a 79× speed improvement compared to our
initial baseline.

Taken together, this allows the immediate, local data anal-
ysis, and thus, a diagnosis based on objective parameters
directly at the point of care.

II. RELATED WORK
Increasing neural network performance is of general inter-
est. Especially on mobile devices, where computational
power is limited, computationally efficient networks are
desired [13], [14]. We utilize several of these key ideas here,
such as separable convolutions [15], to reduce the computa-
tional load and the parameters dramatically.

Despite the fact that neural architecture search (NAS) is
a common way of optimizing architectures, even for mobile
applications [16]–[19], we consciously decided to mine the
U-Net to identify hot-spots and operations that are crucial to
maintain U-Net accuracy. We therefore thought to optimize
the U-Net itself, with features known from different previous
works, and to systematically investigate each part of the
network. Improving U-Nets in terms of efficiency is rarely
performed, compared to accuracy, but has been proposed
recently by coupling stacked U-Nets for landmark detection
together with evaluating several quantization approaches [20]
or to use a very reduced U-Net for low power satellite seg-
mentation [21].

Other encoder-decoder networks similar to, derived
from or inspired by the U-Net with superior perfor-
mance in biomedical imaging have been proposed, such
as Linknet [22], V-Net [23], nnU-Net [24], U-Net++ [25]
and Attention U-Net [26]. In Linknet, the encoding layers
feed forward the residuals, and use special convolutional
layer structures in encoder and decoder. Further, instead of
concatenate the residuals, Linknet adds the residuals from
encoder to decoder block, thus, removing another source for
trainable parameters. In U-Net++, the skip connections were
intensively mined yielding an architecture outperforming the
classical U-Net in 2D and 3D medical datasets. In our study,
we investigate different ideas derived from these works, such
as residual propagation.

Porting a neural network to hardware accelerators has
been performed for various architectures [27]. This is espe-
cially common for FPGAs [28], [29], and used for exam-
ple in hand tracking [30] or language processing [31].
Special attention is also on adapting key principles in
neural network architectures, such as depth-wise convolu-
tions for FPGAs [32] or quantized-based operations, such
as binary neural networks [33]. In contrast to general,
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‘‘all purpose’’ GPUs, tensor-processing units (TPUs) are spe-
cialised on matrix operations, such as multiplications and
additions, as massively used in neural networks. EdgeTPUs
use int8 and int16 data types for computations, can compute
up to 4 trillion operations per second (TOPS), and has a power
efficiency of 2 TOPS per Watt. Recently, EdgeTPUs are
available as additional hardware accelerators that can easily
be added to any computer using conventional USB 3.1 ports.
Similar to other hardware architectures, neural networks have
to be adjusted to successfully deploy it. This can lead to main
changes in the neural network architecture, as shown for the
EfficientNet [34] in this blog post [35]. Still, the deployment
procedure is more streamlined and efficient compared to
deploying a neural network to a FPGA (see also Methods).

III. METHODS
We trained deep neural networks using TensorFlow 1.14 [36]
using the high-level Keras package. All layers used are found
in the naive TensorFlow library or are derived thereof. For
training, we used the Dice loss [23] and optimized the net-
work using the Adam classifier [37] using a cyclic learning
rate between 10−3 and 10−6 [38]. The BAGLS dataset [7]
served as training, validation and test image set. We re-scaled
all images to 512 × 256 px for training, to avoid losing
segmentation accuracy by shrinking the image, as previous
works have shown that image-derived parameters are highly
resolution dependent [39], and to allow the combination of
several image sources in the same batch. We normalized
images in general to a range between −1 and 1, and for
EdgeTPU-deployed networks to a range between 0 and 1.
We trainedmodels on a Titan RTX formaximal 25 epochs and
chose the network that performed best on the validation data.
All networks were k-fold cross-validated (k=3) by shuffling
training and validation set, and all networks were evaluated
on both, validation and test data set. As we see similar behav-
ior of validation and test data, we decided to show validation
data for visualization purposes. Figures showing the test data
are nevertheless provided in the Supplementary Material.
CPU performance was tested on a Xenon Silver 4116 at
2.10 GHz. To utilize the EdgeTPU built into the Coral USB
Accelerator (Google), we enabled quantization aware train-
ing (ready for uint8 conversion). Next, we saved our Keras
models to TensorFlow protobuf format and further converted
these files to TensorFlow Lite file format with 8 bit unsigned
integer quantization using TensorFlow 1.15. Then, we com-
piled the TensorFlow Lite files with the EdgeTPU compiler to
map operations to the EdgeTPU. Notably, the EdgeTPU does
not yet support all TensorFlow operations at time of publica-
tion, such as dilation rate and index unpooling, therefore we
adapted accordingly models to allow successful deployment,
if possible. As evaluation metric we used the intersection
over union [40] (IoU) that compares two segmentation maps.
The IoU ranges from 0 (no overlap) to 1 (perfect overlap),
suggesting that higher IoU scores indicate better network
performance. If not otherwise stated, we refer with IoU to
the IoU on the validation set.

Clinical parameters for validation, i.e. fundamental fre-
quency (F0), jitter and shimmer were calculated as described
elsewhere [41]. Data used for the validation section were
acquired using a commercially available system (KayPentax
HSV 9710) that provides a maximal resolution of 512× 256
px at 4,000 frames per second and were already analyzed in
another study [39]. We selected a 1,000 frame long subset of
the recordings, segmented the glottal area using deep neural
networks developed in this study, and analyzed the resulting
glottal area waveform (GAW, sum of segmented pixels per
frame). First, individual cycles were detected in the GAW
by finding maxima in the periodic signal [42]. Next, F0 was
determined by the average period duration of the detected
maxima T (eq. 1).

F0 =
1
N

N∑
i=1

1000
Ti

(1)

Jitter and shimmer in percent were computed as follows:

Jitter[%] =
1

N−1

∑N−1
i=1 |Ti − Ti−1|

1
N

∑N−1
i=0 Ti

· 100, (2)

Shimmer[%] =

20
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i=0 | log10

[
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Ai+1

]
|

20
N

∑N−1
i=0 | log10 Ai|

· 100, (3)

where Ti are the detected maxima in time, and Ai their respec-
tive amplitude.

IV. RESULTS
We started with a vanilla U-Net as described in [43]
(Figure 2).We changed the padding option to ‘‘same’’, to eas-
ily down- and upscale our image. The transposed convolu-
tional layers were replaced by simple upsampling operations
followed by a normal convolutional layer to further decrease

FIGURE 2. Our U-Net baseline variant is based on an encoder/decoder
architecture that contains two convolutional layers in each main layer,
followed by a MaxPool2D and Upsample2D operation in the encoder and
decoder, respectively. Residuals are propagated from encoder to decoder
by default via concatenation.
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the parameter space. We further added Batch Normalization
before the activation in each convolutional layer, similar
to [44], and thus, removing the need of a bias term in each
convolutional layer. Throughout the network, we used 3× 3
convolutions similar to [43].

A. REDUCING LAYERS AND FILTERS INCREASES
PERFORMANCE
The U-Net consists of an encoder-decoder structure with by
default four depth layers L in encoder and decoder (Figure 2).
In the vanilla U-Net, the filter number for each convolutional
layer is calculated using the following equation:

flayer = fbase · 2L−1, with fbase = 64

Thatmeans, that the two convolutional layers in depth layer
L = 1 have flayer = 64 filters, in depth layer L = 2
128 filters, and so on. An obvious way to downscale the
network is by reducing the amount of depth layers L in the
encoding and decoding network (in the vanilla U-Net four),
as well as changing the base filter count fbase as introduced
above. Further, one can adjust each filter number in each filter
individually, however, in this study we focused on changing
solely fbase. In the following, we are using the U-Net with
L = 4 and fbase = 64 with the settings described above as
baseline.

By alternating the number of layers and the base filter
count fbase, we see a strong dependence of the IoU, our
evaluation metric, on the depth of the network (Figure 3,
Supplementary Figure 1a). Three layers perform slightly
worse than four layers, however, only two layers dramat-
ically perform worse. As depth is in line with detection
of high-level features [45], we expected that relationship.
However, there are three aspects we noted: first, already a
shallow network with only two depth layers L = 2 and
fbase = 8, consisting of only 21,088 parameters (0.1% of
our baseline U-Net, Table 1), is able to gain a high IoU score
of 0.792 on the validation set. Evenmore striking is that a neu-
ral network that consists of only 1,384 trainable parameters

FIGURE 3. Segmentation accuracy is stable across most layer and filter
settings. IoU: Intersection over Union. Gray ellipses (noted A and B)
indicate two settings with almost identical number of parameters.

TABLE 1. Trainable parameters with different layer L and filter fbase
configurations.

(0.006% of baseline) is still able to converge to a decent IoU
score on the BAGLS dataset.

Second, when keeping the number of layers stable and
varying fbase, the IoU score slowly declines with an abrupt
effect at around fbase = 8. When comparing the four fbase net-
work to the 64 fbase network with L = 4, the validation IoU is
only slightly reduced (IoU = 0.887 and 0.895, respectively),
but we save 98.4% of the parameters. Further, the training
time per epoch is greatly reduced from 40.57 min (64 fbase)
to 9.37 min (8 fbase).

Third, the effect of depth is especially obvious when com-
paring these two setting combinations: 4L/4F, 3L/8F and
3L/4F, 2L/8F (xL/yF in short notation for L = x and
fbase = y). Both combinations feature around the same
amount of parameters (ca. 86,000 parameters, 0.4% of base-
line, and ca. 21,000 parameters, 0.1% of baseline, respec-
tively), but have notably deviations in their IoU (0.869 vs
0.854, and 0.834 vs. 0.792, respectively). This is also high-
lighted in Figure 3 with grey ellipses labelled with A and B.
We found that the architecture consisting of four main lay-
ers together with eight fbase (4L/8F) has the best trade-off
between speed, accuracy and number of parameters involved.
Thus, we focus on investigating the architecture with this
setting, and as a comparison we use 3L/8F, 4L/4F and 3L/4F.

B. STACKED CONVOLUTIONS ARE NOT A NECESSITY
We next tested if the second convolutional layer in the encod-
ing and decoding pathway is necessary (Figure 2, orange
and light-blue convolutional blocks). We abbreviate convolu-
tional layers in encoder as ‘‘E’’ and in decoder as ‘‘D’’, their
removal with ‘‘x’’. By removing either one (Ex/DD or EE/Dx
for encoding or decoding layer, respectively) or both (Ex/Dx),
we do observe a small decline, but overall a rather stable level
of accuracy (Figure 4, Supplementary Figure 1b, exemplary
for 4L/8F) when using ordinary two-dimensional convolu-
tions. This suggests, that additional layers on the same depth
level are slightly beneficial for the network, however, we do
not see a necessity of the second encoder or decoder layer in
glottis segmentation. In training time, we see improvements
ranging from 8.37 min (EE/DD), over 7.73 min (Ex/DD,
EE/Dx) to 6.26 min (Ex/Dx) for the 4L/8F configuration.
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FIGURE 4. Effect of second convolutional block in encoder (EE and Ex)
and decoder (DD and Dx), for ordinary convolutions and depth-wise (DW)
convolutional layers.

We also observe similar results for the other configurations
(3L/8F, 4L/4F, 3L/4F).

C. DEPTH-WISE CONVOLUTIONS ONLY AFFECT LITTLE
PERFORMANCE
Replacing ordinary convolutional layers with separable con-
volutional layers (a depth-wise convolution followed by a
point-wise convolution) is a common computational trick to
enhance efficiency. First described by Sifre [15] and widely
used in MobileNets [13], separable or depth-wise convolu-
tions are now part of various architectures [46]–[49].

We therefore replaced each ordinary convolutional layer
by a separable convolutional layer except of the very first
convolutional block in the encoder and the last convolutional
layer that results in the segmentation mask. We found that
we further reduce massively our parameter space (Table 2),
as expected. Notably, the segmentation accuracy was only
little affected, so we decided to keep the separable convolu-
tions in our optimized architecture (Figure 4). Interestingly,
using separable convolutions we do not observe an effect in
removing either of the second encoder/decoder convolutional
layer. There is only a slight decrease in performance when
removing both of the second convolutional layers (Figure 4).

TABLE 2. Parameters in separable convolutions.

D. RESIDUAL PROPAGATION IS IMPORTANT, NOT THE
PROPAGATION METHOD
We next investigated if any residual propagation is impor-
tant, and if so, which residual propagation method performs
better. We found that no residual propagation worsens the
results dramatically (Figure 5, Supplementary Figure 1c).
Next, we compared the classical propagation, i.e. concate-
nation, [43] to simply adding the encoder residuals to the
corresponding decoder block as used in the LinkNet architec-
ture [22].We found that both, adding or concatenating residu-
als, are improving the network performance. Notably, in some
cases we even achieved better results by adding the residuals

FIGURE 5. Residual propagation.

(Figure 5). Additionally, by using addition instead of con-
catenation we reduced the parameter space from 55,384 to
46,520 parameters, i.e. by 16.0 % in the 4L/8F architecture.

E. SWISH ACTIVATION FUNCTION IMPROVES
PERFORMANCE
Changing the activation function in convolutional layers
has shown dramatic training and performance improve-
ments [50]. As default, we were using the ReLU activa-
tion function (eq. 4). As the ultimate goal is to deploy our
neural network to a hardware accelerator that operates on
uint8 models, we tested if ReLU6 (eq. 5), a clipped variant of
the ReLU function often used in neural networks optimized
for mobile phones, performs equally to the unconstrained
ReLU function. We further tested the h-swish function (eq. 6)
[50], as it becomes popular in the use of MobileNets [47],
EfficientNets [34] and semantic segmentation [51]. For com-
parison, all activation functions are shown in Figure 6a.

ReLU(x) = max(0, x) (4)

ReLU6(x) = min(max(0, x), 6) (5)

h-swish(x) = x ·
ReLU6(x + 3)

6
(6)

When changing the activation function in each convolu-
tional layer to ReLU6, we did not determine large differences,
suggesting that our architectures are able to perform the seg-
mentation task in this constrained boundary (Figure 6). How-
ever, when training the network with h-swish, we observed
that h-swish performs slightly better than ReLU and ReLU6
(0.877 h-swish vs 0.871 and 0.874 for ReLU and ReLU6,
respectively), similar to previous reports [51], most likely

FIGURE 6. ReLU vs ReLU6 vs h-swish. a) comparison of activation
functions with different ranges. ReLU is partially behind ReLU6 and swish.
b) performance as mIoU of ReLU, ReLU6 and h-swish.
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FIGURE 7. Latency for different U-Net configurations (4L, 4, 8, 16, 32 or 64F) and image sizes. a) performance as
fully quantized model mapped to CPU. b) Performance of models that compiled successfully for EdgeTPU. Dashed
lines indicate 30 frames per second (fps), i.e. video rate, 100 and 500 fps.

due to the small, but existing hysteresis close to the origin
(Figure 6a).

F. PORTING TO EdgeTPU
GPUs are highly optimized to perform computations using
floating point variables. However, mobile CPUs and TPUs
can increase their performance if the computations are based
on 8-bit integer values [52], [53]. To reduce the load of
the main CPU and accelerate the neural network execution,
we thought to utilize the inexpensive Coral platform [54]
to perform fast and high quality segmentations. We further
focused on the Coral USB Accelerator that contains a dedi-
cated EdgeTPU and is connected via a USB 3.1 interface.

The EdgeTPU is able to perform all operations in our opti-
mized U-Net architecture, including separable convolutions
and resizing using nearest neighbour (default Upsample2D
behavior). Unfortunately, the h-swish function is currently
not supported, and we use the h-swish function only for better
CPU inference if the USB Accelerator is not available, but
use the ReLU6 activation function for the EdgeTPU vari-
ant (similar to deployed MobileNetV3 and EfficientNets on
EdgeTPUs). We further tested if separable convolutions have
another gain in speed compared to ordinary convolutions, as it
has been shown that on the EdgeTPU ordinary convolutions
perform faster [35].

To create a baseline, we first deployed a range of basic
U-Net configurations (similar to Figure 3 and Table 1), fully
quantized to uint8 and converted to TFLITE, and measured
the performance in terms of latency across several image sizes
(Figure 7a). The reason to use different image sizes is to run
inference using a region of interest of the original image and
to determine speed effects depending on image size. Only
three configurations are able to perform in video rate, i.e.
30 frames per second (fps), only one configurationwas able to
run at 100 fps (4F/64×64, Figure 7a). Next, we recompiled all
models using the EdgeTPU compiler to map operations to the
EdgeTPU. Large U-Net configurations did not compile for
the EdgeTPU, i.e. 64F/256×256, 64F/512×512, 32F/512×
512 and 16F/512×512, because of model size limitations on

the hardware accelerator (Figure 7b).We observed a dramatic
speedup running inference on the EdgeTPU ranging from
3.7 to 127.2× compared to CPU-bound inference (Table 3
and Figure 7). Detailed latencies are given in Table 3. Nine
of the twenty models tested are now able to process images
at 100 fps (Figure 7b), using very small images (64× 64 px)
we are able to exceed the 500 fps margin for some models.

TABLE 3. Speed improvements on EdgeTPU compared to CPU when
model compiled as TFLITE.

The EdgeTPU compiler decides, which operations are
mapped to the EdgeTPU or to the CPU. As we are operating
with relatively large images (512×256), the compiler is map-
ping some Upsample2D operations to the CPU because of
precision reasons. However, when operations are performed
on both, CPU and EdgeTPU, the performance drops and
results in lower throughput, contrary to our main goal in this
study. Therefore, we changed the classic Upsample2D block
to a custom upsampling routine that splits the image into tiles,
upsamples the tiles and then merges the tiles back together
(Figure 8). We provide an example implementation for Keras
in the Supplementary Material (Supplementary Code). Our
upscaling routine is computationally rather expensive, how-
ever, with this routine we can map 100% of the network
operations to the EdgeTPU and thus, circumventing the even
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TABLE 4. Performance across platforms. Architectures are abbreviated similar to previous Figures. EE/Ex (Encoder with and without second convolution),
DD, Dx (Decoder with and without second convolution), C (Convolution), SC (Separable Convolution).

FIGURE 8. Upsampling operation on CPU vs. EdgeTPU for large images.
See sample code in the Supplementary Material.

more expensive switch between CPU and EdgeTPU (see also
later paragraphs).We compared the latency of four interesting
configurations as gained from our in-depth analysis above
in the default Keras inference mode (float32) on a CPU,
converted to TFLITE mapped to the CPU, and converted to
TFLITE and mapped to the EdgeTPU (Table 4). The low
parametric models mapped to the EdgeTPU outperform sig-
nificantly the same models executed on the CPU in the naive
Keras environment (Table 4, Models 2-4). With latencies
as low as 25 ms per frame, we yield a processing speed
of 40 fps for a full 512 × 256 image, indicating that a
typical 1,000 frame recording is analyzed in 25 s. Overall,
we gain a speed-up 2.1× - 3.4× using solely the EdgeTPU
for computation on Models 2-4. The larger model Model 1
(4L/16F) performs slightly worse on the EdgeTPU compared
to the CPU (180 vs 195 ms, 0.9x). In line with previous stud-
ies [35], separable convolutions are faster on CPUs, whereas
ordinary convolutions are slightly faster on the EdgeTPU
(Table 4, compare Model 3 and 4). Taken together, all mod-
els tested are able to execute fully on the EdgeTPU and
especially models with a low parameter space, as gained
from our optimization procedure, outperform largely a
consumer CPU.

G. TRANSFER ABILITY OF TECHNIQUES

To investigate if our approaches are applicable to
other semantic segmentation neural network architectures,
we tested different approaches to improve the SegNet [55]
and Deeplabv3+ [56] architecture.

First, we tested the performance of the SegNet architecture
when reducing the base filter count similar to Figure 3. Inter-
estingly, we found that reducing the base filter count does
even improve the performance in terms of IoU score (64 fbase:
IoU = 0.704 vs 4 fbase: IoU = 0.772) as shown in Supple-
mentary Figure 2a, however, performed consistently worse on
the BAGLS dataset compared to our U-Net implementations
(SegNet best IoU=0.798, U-Net best IoU=0.895). Inference
speed was strongly improved (64 fbase 4293 ms to 4 fbase
165 ms on CPU, Supplementary Figure 2b), similar fast as
our first proposed neural network in Table 4. However, due to
technical limitations in the TFLITE and EdgeTPU compiler
network in respect to the index unpooling, we were not able
to port SegNet to the EdgeTPU.

Second, we tested the DeeplabV3+ architecture. We found
that both common backbones, Xception [46] and
MobileNetV2 [49], result in high IoU (validation) scores
(0.861 and 0.849, respectively). Because both IoU scores are
very close to each other, but the MobileNetV2 backbone has
only 5% of the Xception parameter space, we opted to further
optimize the MobileNetV2 backbone. The alpha-parameter
in the MobileNetV2 architecture scales basically the base
filter count (fbase). We investigated alpha values of 1 (full
backbone), 0.75, 0.5 and 0.25, resulting in an fbase of 32, 24,
16 and 8, respectively.We found that reducing the alpha value
does not largely impact the mean IoU scores (Supplementary
Figure 3a,b, alpha=1 IoU=0.850 vs. alpha=.25 IoU=0.840
(validation set)). However, by reducing fbase using lower
alpha values, we could save up to 85.22% of parameters
(Supplementary Figure 3b). This leads to a large infer-
ence time speed-up in the naive Keras environment (CPU,
Supplementary Figure 3c). When porting the architectures
to the EdgeTPU (see Methods), the inference latency is
already lower compared to the naive Keras environment
(alpha=1, 166 ms vs. 478 ms for EdgeTPU and naive Keras,
respectively). However, when reducing alpha, the EdgeTPU
latency remained stable, whereas the naive Keras environ-
ment gained lower latencies (168 ms vs. 107 ms). We found
that this phenomenon is due to the upscaling layers that
remain partially on the CPU and are not fully mapped to the
EdgeTPU. By using our introduced custom upscaling routine
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(Figure 8), we were able to fully port the networks to the
EdgeTPU and outperform largely the naive Keras environ-
ment gaining almost video rate inference times (alpha=.25,
fully mapped to EdgeTPU, 36 ms, Supplementary Figure 3d).
Thus, a 1,000 frame long video will be processed in roughly
34 s. Similar to the U-Net, the relatively expensive upscal-
ing algorithm worsens the performance in the naive Keras
environment. However, due to the complete mapping of all
layers to the EdgeTPU, we gain significant speedups in the
EdgeTPU environment (Supplementary Figure 3d,e). Still,
with all optimizations we neither gain lower latencies nor
better performance as available in our optimized U-Net archi-
tecture (compare Supplementary Figure 3b,e and Table 4).
In summary, our proposed methods are also applica-

ble on other semantic segmentation architectures. Still, the
U-Net is outperforms other state-of-the-art networks in terms
of performance (IoU and latency), as well as portability to
the EdgeTPU.

H. CLINICAL RELEVANCE
To show the segmentation performance of the architectures
provided in Table 4, we tested images from the BAGLS
test dataset that have not been presented during training. All
networks reliably produce segmentation maps with high IoU
scores (Figure 9).

FIGURE 9. Segmentation performance across tested neural networks on
images of BAGLS benchmark dataset. (a) original endoscopy image used
as input for neural network, (b) inset of (a), white box, (c) ground-truth,
(d) first, (e) second, (f) third, and (g) fourth neural network configuration
as shown in Table 4.

To clinically validate our reduced, EdgeTPU-mapped
architectures, we compared commonly used, clinical rele-
vant, GAW extracted parameters, such as fundamental fre-
quency (F0), jitter and shimmer [41] (see also Methods).
We analyzed 57 recordings from young, healthy individu-
als, a random subset of a recording collection segmented
and analyzed in a previous study [39]. There, segmentations

were generated by the current gold-standard, semi-automatic
threshold-based region growing [6], and are used in the fol-
lowing as ground truth.

After fully automatically segmenting the same
1,000 frames as analyzed in [39], we computed the glottal
area waveforms (GAW), i.e. the sum of segmented pixels
across frames. All GAWs do not show large differences
across architectures, only slight differences in amplitude (an
example is shown in Figure 10a), potentially affecting clinical
parameters dependent on the amplitude, such as shimmer
(see eq. 3). In Figure 10b-d, we show, however, that these

FIGURE 10. (a) Glottal Area Waveform comparison. Note that mainly
peaks differ. (b) Fundamental frequency (F0) ground-truth (GT) vs neural
networks (NN1-4) provided in Table 4. (c) Jitter-%, (d) Shimmer-%
(e) Differences in px relative to the ground-truth for each recordings.
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clinical relevant parameters are barely affected and still retain
their validity. Even though shimmer seems to be slightly
affected (Figure 10d), the absolute error is less than 0.5% on
a scale that ranges between 0 and 300% as shown in [41].
These differences in amplitude are due to small changes
at border pixels in the segmentation that are on average
2.5% of the total segmented pixels across architectures as
shown in Figure 10e. Taken together, these differences in
amplitude are therefore negligible. We therefore conclude
that our EdgeTPU-mapped, optimized U-Net architecture is
suitable for glottal area segmentation at the point of care and
provides clinically valid, objective parameters.

V. DISCUSSION AND CONCLUSION
In this study, we have shown that the U-Net architecture
is a powerful architecture to perform glottis segmentation.
We reduced the parameter space by changing the filter size,
the network depth, the residual propagation, the encoder and
decoder network and the activation function. In terms of glot-
tis segmentation, we can show that a small, but well-chosen
network is capable to produce reliable segmentation results,
without the need of convolutional LSTMs as suggested else-
where [8]. Our results lie in the range of inter-segmenter
variability common to glottis segmentation [57], and thus,
are performing as good as experts in the field. Our method
is also superior to other (fully automatic) glottis segmen-
tation algorithms available [8], [9], [12], as it is validated
on a diverse dataset, computationally highly efficient and
also highly portable. However, by constraining the network
capacity, the network may generalize less and thus, produce
potentially erroneous segmentations depending on the input
data. We therefore propose a potential solution by training
multiple segmentation networks with different features, such
as capacity or training data, and introducing a classifier that
selects the most appropriate network for the given input data.
These network selection classifiers also ensures that networks
can specialize, but not overfit to a given data. We also sug-
gest that implementing other common architecture features,
such as (inverted) residual layers [47], [49] or Inception
modules [58] are able to improve segmentation perfor-
mance by simultaneously not decreasing the inference speed
dramatically.

In our medical use case, we used full endoscopic images
(512 × 256 px) in the inference and gained a rather slow
processing speed of 40 fps. By cropping the full endoscopic
image to a region of interest (ROI) containing the glottis (sim-
ilar to the inset in Figure 9), one can gain even lower latencies,
i.e. speed improvements, as shown in Table 3 and Figure 7.
As many medical image datasets rely on adjacent image
features, cropping might not be feasible. By introducing our
custom upscaling routine (Figure 8), we allow the inference
of large images on EdgeTPUs. For a future study, we propose
an architecture that evaluates and therefore combines both,
relevant ROI detection and efficient segmentation.

We further envision that other optimization factors, such as
pruning [59]–[62], neural architecture search [35], [63]–[66],

neural unit optimization [67], [68], or the use of Mix-
Convs [18] may lead to more efficient architectures in general
(such as the EfficientNet-EdgeTPU [35]) or to more special-
ized architectures for a medical use case, e.g. glottal area seg-
mentation. Notably, current pruning algorithms implemented
in TensorFlow are only creating sparsity, allowing efficient
model compression, however, do not yield any speed improv-
ments. Interestingly, by using quantization aware training
and converting the neural networks from float32 to uint8,
we are still able to produce very accurate segmentation maps.
Previously, quantization strategies that lower the bit depth
showed that networks are still able to produce astonishing
results, for example shown by [69], where the authors used
binary convolutional neural networks, achieved a 69.2%Top-
5 accuracy on the ImageNet dataset and due to the efficient
implementation of binary operations gained a (theoretical)
58× speed-up compared to conventional convolutions. Here
we show a real 79× speedup on commercial available hard-
ware and environments compared to our initial baseline.

The EdgeTPU is a specialized integrated circuit for deep
learning purposes. In our study we show that EdgeTPUs are a
cost-effective alternative to GPUs for optimized neural archi-
tectures, and even show that they outperform costly CPUs.
EdgeTPUs can be used as external hardware accelera-
tor (this study), permanent attached to the system using
PCIe or M.2 interfaces, or directly attached on embedded
solution as ASICs. Although EdgeTPUs are not covering
yet all TensorFlow operations to port every neural archi-
tecture, such as dilation rate that is important for atrous
convolutions in the Deeplabv3+ architecture [56], adapted,
EdgeTPU-optimized architectures can reach similar perfor-
mance levels [35].

To our knowledge, this is the first application of a med-
ical semantic segmentation task mapped completely to an
EdgeTPU and ready for clinical deployment at the point of
care. While we focus here on glottis segmentation, the gen-
eral concepts of this study, neural network optimization and
EdgeTPU deployment, are transferable to other architectures
and semantic segmantion tasks. We envision that biomedical
imaging tasks, e.g. optical coherence tomography (OCT) or
medical ultrasound techniques, such as echocardiography,
will benefit from this real-time segmentation approach. Espe-
cially mobile and remote imaging platforms with highly lim-
ited resources would be able to use EdgeTPUs to implement
end-to-end artificial intelligence applications. Our concept
can also be extended to the automotive and industrial sec-
tor, where fast, remote and online semantic segmentation is
important.
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