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ABSTRACT Clustering is an important technique in data mining and knowledge discovery. Affinity
propagation clustering (AP) and density peaks and distance-based clustering (DDC) are two significant
clustering algorithms proposed in 2007 and 2014 respectively. The two clustering algorithms have simple
and clear design ideas, and are effective in finding meaningful clustering solutions. They have been widely
used in various applications successfully. However, a key disadvantage of AP is its high time complexity,
which has become a bottleneck when applying AP for large-scale problems. The core idea of DDC is to
construct the decision graph based on the local density and the distance of each data point, and then select
the cluster centers, but the selection of the cluster centers is relatively subjective, and sometimes it is difficult
to determine a suitable number of cluster centers. Here, we propose a two-stage clustering algorithm, called
DDAP, to overcome these shortcomings. First, we select a small number of potential exemplars based on
the two quantities of each data point in DDC to greatly compress the scale of the similarity matrix. Then we
implement message-passing on the incomplete similarity matrix. In experiments, two synthetic datasets, nine
publicly available datasets, and a real-world electronic medical records (EMRs) dataset are used to evaluate
the proposed method. The results demonstrate that DDAP can achieve comparable clustering performance
with the original AP algorithm, while the computational efficiency improves observably.

INDEX TERMS Exemplar-based clustering, affinity propagation, density peaks.

I. INTRODUCTION
Clustering is a discovery process that groups a set of data
such that the intracluster similarity is maximized and the
intercluster similarity is minimized [1]. Generally clustering
is used for two aims: (a) receiving a primary understanding
of raw data and (b) reducing the size of a huge amount of
raw data [2]. Because of the importance of clustering, a large
number of clustering algorithms have been proposed and
appliedwidely inmany domains [3], [4]. Affinity propagation
clustering (AP) [5] and density peaks and distance-based
clustering (DDC) [6] are two significant clustering algorithms
proposed in 2007 and 2014 respectively. The implementation
of an exemplar-based clustering is to find some representative
data points called exemplars as centers and assign the remain-
ing data points to their nearest centers [7]. How to determine
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the K appropriate exemplars from N data points is the key
to the exemplar-based clustering method, and it is an NP-
hard combinatorial optimization problem. However, AP and
DDC provide new methods for solving the problem. They
have been successfully used in many practical problems.

Different from traditional iterative algorithms, such as
k-means and k-centers, AP does not need to choose K initial
exemplars. The core idea of AP is to regard all the data
points as potential exemplars. Only the pairwise similarities
of data points are needed. Messages are exchanged between
data points until a high-quality set of exemplars emerges.
The number of exemplars is automatically generated. Due
to its effectiveness and simplicity, AP has been widely
used [8]–[10]. Meanwhile, a lot of variants of the AP algo-
rithm have been proposed (e.g., Semi-supervised AP [11];
K -AP [12]; Hierarchical AP [13]; Incremental AP [14]). The
AP algorithm uses the greedy strategy, which maximizes the
value of the global function of the clustering network during
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every iteration. In each iteration, some N × N matrices are
used, so the time complexity of AP is O(N 2T ), where N is
the number of data points and T is the number of iterations.
Because of the high computational complexity, AP clustering
has rarely been used in large-scale clustering problems.

DDC selects exemplars as centers at one time based on the
assumptions that cluster centers are surrounded by neighbors
with lower local density and that they are at a relatively large
distance from any points with a higher local density. The
framework of DDC is to determine, based on the distance
function, the local density of each data point and the shortest
distance among each data point and other data points with
higher local density are computed to construct the decision
graph first, then the cluster centers based on the decision
graph are selected, and finally, the remaining data points
are placed into the nearest cluster with higher local density.
As the two indicators are easy to compute and effective, DDC
has been widely used [15]–[17]. However, in most cases,
the centers of the data set are not very obvious. DDC has
relatively strong subjectivity for the selection of the cluster
centers based on the decision graph and the clustering result
sensitive to the parameters involved in the DDC algorithm.
The assignment strategy for the remaining points can create
a domino effect, that is, once one data point is assigned
erroneously, more data points may subsequently be assigned
erroneously [18].

As the time complexity of AP is high and the selection of
the cluster centers in DDC is relatively subjective, the aim
of this paper is to develop a clustering algorithm to over-
come these shortcomings. We propose a two-stage fast AP
clustering algorithm DDAP, which can largely improve the
efficiency of the AP algorithm while achieving comparable
clustering performance with the original AP. First, we select
a small number of potential exemplars based on the two
quantities of each data point in DDC to greatly compress the
scale of the similarity matrix. Then, we implement message-
passing on the incomplete similarity matrix. Fig.1 shows the
flow diagram of the proposed algorithm. In experiments, two
synthetic datasets, nine publicly available datasets, and a real-
world electronic medical records (EMRs) dataset are used to
evaluate the proposed method. The results demonstrate that
DDAP can achieve comparable clustering performances with
the original AP algorithm, while the computational efficiency
improves observably.

The rest of this paper is organized as follows. We briefly
review the related work in Section 2. In Section 3, we detail
the design ideas and propose the DDAP clustering algo-
rithm. Experimental results on different kinds of data sets
are presented in Section 4 to demonstrate the effectiveness
and efficiency of the proposed algorithm. Conclusions are
provided in Section 5.

II. RELATED WORK
In this section, we briefly introduce the related work about
exemplar-based clustering. Then we introduce the basic ideas

FIGURE 1. Flow diagram of the proposed algorithm.

and formulas of AP and DDC, and someworks about improv-
ing the efficiency of AP.

The goal of exemplar-based clustering is to find an exem-
plar set that the sum of similarities between each data point
and its exemplar is maximized. How to determine the K
appropriate exemplars from N data points is the key to the
exemplar-based clustering method, and it is an NP-hard prob-
lem [19]. Widely used algorithms for solving this problem
are k-means [20], k-centers [7], and some variants, which
are implemented in an iterative relocation manner. K-centers
uses ‘‘medoids’’ instead of ‘‘centroids’’, which makes it more
robust to noise and outliers. K-centers starts with an initial
exemplar set and then refines the exemplar set along the gra-
dient descent direction. The exemplar set found by k-centers
is usually a local optimal solution. AP clustering considers all
the data points as potential exemplars, and it does not need
to choose K initial exemplars in advance. More importantly,
a large number of experiments validate that the exemplar set
found by AP is usually superior to k-centers.

A. CLUSTERING BY AFFINITY PROPAGATION
Frey and Dueck [5] proposed the standard AP algorithm as a
clustering algorithm by propagating messages between a pair
of data points. There are two kinds of message exchanges
between data points, and each considers a different kind of
competition. The responsibility r(i, k) which expresses the
support of data point i to candidate exemplar point k , and
the availability a(i, k) which expresses the appropriateness
of data point k as the exemplar of data point i . The main
procedures of the standard AP algorithm include updating
r(i, k) and a(i, k) iteratively until convergence, i.e.,

r(i, k) ←− s(i, k)−maxk ′s.t.k ′ 6=k{a(i, k
′)+ s(i, k ′)} (1)

a(i, k) ←−


min{0, r(k, k)
+

∑
i′s.t.i′ 6={i,k}

max{0, r(i′, k)}}, i 6= k∑
i′s.t.i′ 6={i,k}

max{0, r(r ′, k)}, i = l

(2)
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where s(i, k) is the similarity between data point i and data
point k . The exemplar of data point i can be obtained by

e(i) = argmax
k
{r(i, k)+ a(i, k)} (3)

In the standard AP algorithm, the number of clusters is
not a prerequisite. It takes the pairwise similarities between
data points as input, so that it can deal with unstructured
data. Thus, the algorithm is suitable for a wide variety of
applications. However, the time computational complexity of
AP is high, and it is not suitable for large-scale clustering
problems.

According to the AP design principle, eliminating unnec-
essary message exchanges to make the algorithm converge
quickly is a reasonable method for improving the efficiency
of AP. Based on this idea, many fast sparse AP clustering
algorithms have been proposed [21]–[24]. Fujiwara et al. [21]
estimated the upper and lower bounds of exchanged mes-
sages between each object pair and then constructed a sparse
factor graph according to these bounds. Jia et al. [22] and
Xiao et al. [23] constructed a sparse factor graph using the
k-nearest neighbors (k-NN) technique. To solve the prob-
lem that the application of k-NN unexpectedly results in
too many fragments, which leads to too many exemplars
in a further step, Jia et al. [22] added some edges to the
original sparse factor graph and then implemented message
propagation again on the new sparse graph, Xiao et al. [23]
only implementedmessage propagation again between exem-
plars obtained by the k-NN sparse graph to obtain the final
clustering result. Sun et al. [24] used a center-based agglom-
erative clustering method to obtain a set of potential exem-
plars to compress the similarity matrix first and then further
reduced the new similarity matrix by sparseness according to
k-nearest neighbors.

B. CLUSTERING BY DENSITY PEAKS AND DISTANCE
Rodriguez and Laio [6] proposed a clustering method based
on density peaks and distance. This method is based on the
assumption that cluster centers have relatively high local
density and that they are at a relatively large distance from
any point with a higher local density. For each data point
i two indicators are computed: its local density ρi and its
distance δi from points of higher density. Both these quantities
depend only on the distances dik between data points. The
local density ρi of data point i is defined as

ρi =
∑
k

χ (dik − dc) (4)

where χ (x) = 1 if x < 0 , χ (x) = 0 and otherwise, and dc is
a cutoff distance. Then, the minimum distance between data
point i and any other data point with higher density can be
found by

δi =

max
k

(dik ) if ρi = max
j
(ρi)

max
k:ρk>ρi

(dik ) otherwise
(5)

Those data points with both relatively large ρi and δi are
chosen as centers of clusters. The other data points should be
assigned to the same cluster as its nearest neighbor of higher
density.

Due to the good property of density peaks, some
researchers have used it to improve the AP clustering algo-
rithm. In view of the unsatisfactory clustering effect of the AP
clustering algorithm when dealing with datasets of complex
structures,Wang et al. [25] used an algorithm of density peaks
which have an advantage in the manifold clustering with the
idea of semi-supervised, built pairwise constraints to adjust
the similarity matrix, and then executed the AP clustering on
the new similarity matrix. The original AP used the Euclidean
distance of the data sample as the only standard for similar-
ity calculation. This method of calculation has considerable
limitations for data with high dimensionality and sparsity,
and the convergence and clustering accuracy of the algorithm
are greatly affected. Wang et al. [26] constructed the density
property to calculate the similarity and proposed AP cluster-
ing based on gravity (GAP). The proposed algorithm is more
accurate in calculating the similarity of simple points through
the local density of corresponding points and then the gravity
formula is used to update the similarity matrix. In this paper,
we focus on how to improve the computational efficiency of
the AP clustering algorithm with the two indicators in DDC.

III. THE DDAP CLUSTERING ALGORITHM
A. DESIGN IDEAS
Both AP and DDC have been successfully used many practi-
cal problems. InAP, the number of exemplars is automatically
generated, but the time complexity is high. DDC can easily
select exemplars at one time, but the number of selected
exemplars is determined to be relatively subjective. There-
fore, we propose an algorithm that combines their strengths
while overcoming their shortcomings.

We know that reducing unnecessary message propagation
can improve AP algorithm efficiency. The standard AP algo-
rithm simultaneously considers all data points as potential
exemplars and propagatesmessages between each pair of data
points. When the number of data points is large, the com-
putation of the message propagating process is very huge.
An intuitive idea is to find a small representative potential
exemplar set in advance, in which each of these data points is
likely to be a final exemplar, then implement message propa-
gation based on these potential exemplars. The motivation of
the previous studies is inspired by the fact that a data point
plays an important role in the selection of exemplars near to
it, but has nothing to do with exemplars far away from it.
Therefore, message exchanges between distant objects can
be omitted. However, this idea only considers local similar-
ity information rather than both local and global similarity
information, which results in a fact that the distribution of
potential exemplars cannot well represent the distribution of
the whole data set, then a significant decline in clustering
performance appears [24]. To overcome this disadvantage,
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FIGURE 2. Schematic of DDAP. The compression of the similarity matrix
and the corresponding change in the message propagation.
X =

{
X1,X2, . . . ,XN

}
is the set of N data points and

PE =
{
PE1,PE2, . . . ,PEP

}
is the set of P potential exemplars.

we need to design a new method to find a representative
potential exemplar set to ensure that it contains most possible
exemplars and can reflect the distribution of the whole data
set. By doing this, the final exemplar set is guaranteed to be
not too far away from the real optimal exemplar set.

Cluster centers have relatively high local density and are at
a relatively large distance from any point with a higher local
density. In DDC, those data points with both relatively large
ρi and δi are chosen as cluster cores. The two indicators of
data points are easy to calculate and perform well.

Inspired by these, we can select a small representative
potential exemplar set based on the two indicators to com-
press the similarity matrix. We preserve the similarities of
each data point with the selected potential exemplars. There-
fore, the scale of the similarity matrix is reduced from N 2

to NP, where N is the number of data points and P is
the number of selected potential exemplars. The messages
are only exchanged between data points and the selected
potential exemplars. A large number of unnecessary message
exchanges are omitted. The schematic of the compression
phase in the DDAP algorithm is shown in Fig.2.

B. THE DDAP ALGORITHM
For each data point i, we calculate its local density ρi and its
distance δi from points of higher density. We combine the two
indicators to measure the representativeness of the data point
to become a potential exemplar. The product γi is

γi = ρi ∗ δi (6)

According to DDC, the data points with both relatively large
ρi and δi are chosen as cluster centers, so the γi of the
center is relatively large. We choose the top P data points of
the product γi as the representative potential exemplars, and
preserve the similarities of each data point with the selected
P potential exemplars.

Then, we implement message propagation based on these
potential exemplars. When the design strategy is applied,
the equations for responsibility and availability calculations
are transformed as follows:

r(i, k) ← s(i, k)−maxk ′s.t.k ′ 6=k∩k ′∈PE {a(i, k
′)+s(i, k ′)} (7)

a(i, k) ←


min{0, r(k, k)
+

∑
i′s.t.i′ /∈{i,k}∩i′∈PE

max{0, r(i′, k)}}, i 6= k∑
i′s.t.i′ 6=k∩i′∈PE

max{0, r(r ′, k)}, i = k

(8)

where PE is the representative potential exemplar set. The
equation for selecting the exemplar of data point i is now
given as

e(i) = argmax
k∈PE

{r(i, k)+ a(i, k)} (9)

Algorithm DDAP presents a full description of the pro-
posed algorithm. Fig.3 is a toy example to illustrate the
differences between the standard AP and the proposedDDAP.
The 25 two-dimensional data points were used by Frey and
Dueck in [5], using Euclidean distance as the similarity.

The standard AP clustering algorithm considers all data
points as potential exemplars and propagates messages
between each pair of data points. In each iteration, N × N
responsibilities and availabilities need to be computed, so the
time complexity of AP is O(N 2T ), where T is the number
of iterations. In DDAP, the similarity matrix is dramatically
compressed and messages propagate between data points and
the P potential exemplars. Only N × P responsibilities and
availabilities need to be computed in each iteration. There-
fore, the time complexity of DDAP in Step 4 and Step 5 is
O(NPT ), where P � N , and T is the number of iterations.
Computing the two indicators in Step 1 increases certain time
cost, which requires comparing two real values N 2 times.
However, this time cost is much less than the time cost of
computing responsibilities and availabilities (for example, N
sum operations and N−1 comparison operations are required
for computing one responsibility value). Therefore, the over-
all time complexity of DDAP is nearly O(NPT ) as the time
cost in Step 1 can be ignored compared with Steps 4 and 5.
By compressing the similarity matrix and propagating mes-
sages based on a high-quality potential exemplar set, the com-
plexity of AP clustering is reduced from quadratic complexity
to linear complexity.

IV. EXPERIMENTS
In this section, we evaluate our method on both synthetic data
and real-world data. The real-world data contain 9 datasets
from the UCI machine learning repository and an electronic
medical records (EMRs) dataset. The experiments are con-
ducted on a personal computer with an Intel i7-6700 CPU, 8G
RAM, Windows 10 64bit OS, and MATLAB 2016 program-
ming environment. We compare the proposed DDAP with
k-centers clustering, DDC, the standard AP clustering and
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FIGURE 3. A toy example to illustrate the differences between AP and DDAP. (a) ∼ (f) demonstrate how the standard AP clustering
works. The darkness of the arrow directed from data point i to data point j corresponds to the strength of the transmitted message that
point i belongs to exemplar point j . Exemplars are marked as solid points. Message propagation on the initially completed similarity
matrix in (a). Responsibilities and availabilities converge in (e) on the 5th iteration, and the clustering result is shown in (f).
(g) ∼ (n) show how the DDAP algorithm works. (g) is the decision graph constructed based on ρ and δ. There are only two prominent
points in the upper right corner. (h) shows the value of γ in decreasing order. We choose the top 5 data points as the potential
exemplars, which are marked as triangle points in (g)∼(i). Then, messages propagate on the compressed similarity matrix in (j). The
process converges in (m) on the second iteration. The final clustering result is shown in (n).

FastAP in [24]. The algorithms proposed in [21]–[23] are not
compared in this paper. On the one hand, it has been reported
that the clustering performance of these algorithms is inferior
to that of the original AP algorithm, although the clustering
efficiency has been improved, while the goal of this paper is to
propose a clustering algorithm in which its clustering quality
is comparable with that of the original AP. On the other hand,
the number of clusters is difficult to control in their work, and
the number of clusters will greatly affect the evaluation of the
clustering performance.

Clustering validation plays an important role in cluster
analysis, and numerous measures and methods have been
proposed [27], [28]. Clustering quality and running time are
the most widely used criteria to evaluate a clustering algo-
rithm. In this paper, we use three quality evaluation criteria
(sum of similarities, clustering accuracy, normalized mutual
information) and an efficiency criterion (CPU time).

The goal of exemplar-based clustering is to find an exem-
plar set in which the sum of similarities between each data
point and its exemplar is maximized. Therefore, the sum
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Algorithm 1 DDAP
Input: the similarity matrix S of N data points, the number
of potential exemplars P;
Output: the clustering result {e(i)}, where e(i) denotes the
exemplar of data point i;
Steps:
1. For each data point i, calculate ρi and δi according to

(4) and (5), then calculate γi according to (6);
2. Sort N data points by {γi} in descending order, select

the first P data points as the potential exemplar set
PE ;

3. Construct compressed similarity matrix S∗;
4. Implement message propagation on S∗ according

to (7) and (8);
5. Repeat Step 4 until convergence, and output the clus-

tering result {e(i)} according to (9);

of similarities (SS) is the most important criterion of the
exemplar-based clustering algorithm. It is defined as

SS =
N∑
i=1

s(i, e(i)) (10)

where s(i, e(i)) represents the similarity between data point i
and its exemplar e(i), and N is the number of data points. A
larger SS indicates a better clustering performance.

Normalized mutual information (NMI) evaluates the effec-
tiveness of clustering algorithms by computing the mutual
information between real cluster labels and the clustering
results. In the exemplar-based clustering, the result label of
each data point is equal to its exemplar’s label. According
to [29]

NMI =
I (e, ê)√
H (e)H (ê)

(11)

where I (e, ê) represents themutual information between clus-
tering results e and real cluster labels ê. H (·) represents the
information entropy of the variable.

Accuracy is a more intuitive criterion for reflecting the
clustering quality, which is defined as

ACC =

∑N
i=1 φ(e (i) , ê(i))

N
(12)

where e(i) represents the clustering result label of data point
i, which is equal to its exemplar’s label, ê(i) is the real cluster
label of data point i. φ(i, j) = 1 if i = j, and φ(i, j)= 0
otherwise.

In summary, four criteria are used to evaluate the perfor-
mance of the proposed algorithm. SS is a similarity-based
measure, NMI and ACC (accuracy) evaluate the consistency
of clustering results with real category labels, and computa-
tional time reflects the efficiency of the algorithms.

A. RESULTS ON SYNTHETIC DATASETS
The synthetic data contain uniformly distributed datasets
and Gaussian distributed datasets. The first experiment is

FIGURE 4. Comparison of DDAP and AP by SS on uniformly distributed
datasets.

FIGURE 5. Comparison of DDAP and AP by computational time on
uniformly distributed datasets.

performed on datasets randomly generated according to a
2D uniform distribution. The number of data points in these
datasets is set from 200 to 2,000, and the number of clusters
varies from 2 to 10. The cutoff distance in DDC is set to 0.15.
The compression rate (the ratio of the number of potential
exemplars to the total number of data points) is set to 0.1.

The complete experimental results are shown in Table 1.
The low time cost of DDC tells us that the computational
time of the two indicators in DDC is very short. In particular,
Fig.4 compares DDAP and the standard AP by SS, and it can
be concluded that AP achieves better clustering performance
in most cases (the ratio is lower than 1). DDAP can achieve
comparable clustering performance with AP (most ratios
are between 0.99 and 1), and the clustering performance of
DDAP andAP becomes close with the increase of data points.
Fig.5 shows the computational time of DDAP and AP. The
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FIGURE 6. Four Gaussian distributed datasets.

time cost of AP is quadric to the number of data points,
while the time cost of DDAP is linear to the number of
data points. The experimental result is consistent with the
theoretical analysis of the time complexity of AP and DDAP.

The second computational experiment is performed on
Gaussian distributed datasets. The algorithms are tested by
labeled data sets. We can not only compare AP and DDAP
by SS and Time, but also compare them with NMI and ACC.
Fig.6 shows the four synthetic datasets. The variance of each
Gaussian distribution is 0.2. The experimental results are
presented in Table 2. DDAP achieves comparable clustering
performance with AP while the computational efficiency has
been improved observably.

B. RESULTS ON UCI DATASETS
Nine real-world datasets in the UCI machine learning repos-
itory are used to evaluate the clustering algorithms, while
user knowledge modeling is abbreviated UKM, WDBC is
Wisconsin diagnostic breast cancer, MF is multiple features
and EGSSD is electrical grid stability simulated data. The
class label of each object in the nine datasets is known, which
means that the clustering algorithms can be compared with
four criteria in this experiment. We compare the proposed
DDAP with k-centers, DDC, the original AP algorithm and
FastAP in [24]. The k-NN sparsification rate in FastAP is 0.5.

TABLE 2. Computational experiments on Gaussian distributed datasets.

The compression rate of the first eight datasets is 0.1, and the
last one is 0.01.

Table 3 presents a brief description of the nine datasets and
their experimental results. It can be observed that SS achieved
by k-centers, AP, FastAP and DDAP is comparable while
DDC is slightly smaller. In terms of NMI and ACC, the five
methods are comparable in most cases. DDAP obtains the
highest NMI on UKM, WDBC, Yeast and EGSSD. From the
perspective of accuracy, DDAP performs the same as AP on
three datasets, and performs best on the other six datasets.
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TABLE 3. A brief description of the nine UCI datasets and their experimental results.
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TABLE 4. Computational experiments on UCI datasets. Comparison of
FastAP and DDAP in terms of computational time.

Regarding the computational efficiency, DDAP speeds up
2–8 times than AP. The larger the dataset, the more signif-
icantly DDAP speeds up. In particular, the dataset EGSSD
contains 10,000 nodes, and the compression rate is 0.01,
that is, 100 potential exemplars are selected for message
exchanges. The clustering results of DDAP and AP are the
same, but the DDAP computational time is less than one
minute while the AP computational time is nearly one hour.

Table 4 presents the specific computational time of DDAP
and FastAP, where T-PE represents the computational time of
selecting potential exemplars, T-KNN represents the time of
sparsing the similarity matrix by k-NN, T-CAP represents the
time of the AP clustering based on the compressed similarity
matrix, and Time is the overall time. When the dataset is
small, the overall times of DDAP and FastAP are comparable,
when the dataset becomes larger, DDAP is significantly faster
than FastAP. The main reason is that the method of select-
ing potential exemplars in FastAP is more time-consuming
than the method in DDAP, and the process of sparsing the
similarity matrix by k-NN also increases the computational
time of FastAP. Fig.7 shows the specific computational time
of DDAP and FastAP on UCI datasets. It demonstrates that
the time cost of selecting potential exemplars can be ignored
compared with the time cost of message propagation.

All the experiments demonstrate that DDAP can achieve
comparable clustering performance with the standard AP
with a significantly improved computational efficiency.

C. RESULTS ON THE EMRS DATASET
In the past decade, EMRs data mining has advanced rapidly
[30]. The availability of massive EMRs has enabled a new
paradigm for optimizing healthcare practices [31]. The EMRs

FIGURE 7. Comparison of DDAP and FastAP in terms of computational
time on UCI datasets.

dataset used in this paper was collected from the informa-
tion systems of 9 hospitals. All of the EMRs are about
patients who have used Xiyanping injection, which is a
traditional Chinese medicine injection with significant anti-
inflammatory and antipyretic effects and favorable safety.
This EMRs dataset was collected to evaluate the usage of
Xiyanping injection in actual clinical applications. For exam-
ple, safe and effective dosage, therapeutic effects for dif-
ferent diseases, safe and effective combinations with other
medicines, and some other research. In this paper, we focus on
discovering typical combinations of Xiyanping injection and
other medicines in patients with respiratory disease, which is
one of the most common diseases. In this dataset, respiratory
disease mainly includes three types: lung infections, bronchi-
tis, and upper respiratory tract infections.

For a patient, a doctor’s order consists of medicine name,
dosage, delivery route, frequency, starting time, and ending
time. After preprocessing the raw data, including removing
some incorrect records and unifying the medicine names,
we obtained 800 respiratory disease patients with 10,400
doctor’s orders, nearly 13 orders for each patient. The number
of all medicines used was 421.

Fig.8 is the medicine combination network we constructed,
where each node represents a medicine, the edge between
two nodes represents the combined use of two medicines by
a patient, and the weight of the edge represents the num-
ber of times the combination is used. The node degree in
this network is consistent with the power-law distribution.
We remove edges with low weights and obtain the core of
the network shown in Fig.9 Xiyanping injection, 5% dex-
trose injection and 0.9% sodium chloride injection are at the
center of the subnetwork. This subnetwork is a very densely
connected group and it is difficult to find high-quality typical
combinations of Xiyanping injection and other medicines by
a community partitioning algorithm.
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FIGURE 8. The medicine combination network.

FIGURE 9. The core of the medicine combination network.

We perform a cluster analysis of treatments to discover
the typical combined use of Xiyanping injection and other
medicines in actual clinical practice. The experiment consists
of three steps: 1) computing similarities between treatments,
2) clustering treatments, and 3) extracting typical medicine
combinations from treatment clusters.

For the sake of simplicity, the treatment of the patient i is
defined as

Ti = {Mi1, . . . ,Mik , . . . ,Mis} (13)

where Mik represents the kth medicine used by patient i, and
patient i used a total of s medicines. The similarity between
two treatments is measured by the Jaccard coefficient

s
(
Ti,Tj

)
=

∣∣Ti ∩ Tj∣∣∣∣Ti ∪ Tj∣∣ (14)

We calculate ρi and δi for each treatment. Fig.10 is the deci-
sion graph based on the two indicators. We can see that there
is only one obvious exemplar at the top right corner. Fig.11 is
the value of γi = ρiδi in decreasing order. It is difficult
to determine the number of exemplars and the decision is
subjective.

We implement our method with a compression rate of 0.1,
which means that the number of potential exemplars P = 80.

FIGURE 10. The decision graph of the EMRs dataset.

FIGURE 11. The value of γi = ρi δi in decreasing order for the EMR
dataset.

FIGURE 12. The number of clusters changes with the value of ptune,
which is a variant of the preference p. p = median

(
S
)
− ptune ∗ N , where

N is the number of data points, S is the similarity matrix, and ptune is
more stable than p.

One advantage of AP is that the number of clusters does not
need to be specified in advance, and the appropriate number
of clusters emerges from the message propagation method
and depends on the preference p. Fig.12 shows the effect of
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FIGURE 13. Four typical treatment medicine combinations extracted from the EMRs dataset.

TABLE 5. Computational experiments on the EMRs dataset.

TABLE 6. Clusters of the EMRs dataset by DDAP.

the value of ptune on the number of clusters. We can see that
the appropriate number of clusters can be 2 or 4. When the
number of clusters is 2, one cluster is too small and the other
one is too large, and most treatments are clustered in one
cluster. To obtain a meaningful result, we choose the number
of clusters to be 4. Table 5 shows the experimental results for
SS and Time.

We divide the 800 treatments into four clusters. Each
cluster corresponds to a typical combination of Xiyan-
ping injection and other medicines. Table 6 shows the size
of the four clusters found by DDAP. For each cluster,
we choose the top 10 popularly used medicines. A total
of 19 medicines are obtained for four clusters. The func-
tions of these medicines are divided into seven categories,
as shown in Table 7. Fig.13 illustrates the four extracted typi-
cal treatment medicine combinations for respiratory disease.

TABLE 7. The function of the main medicines.

Because Xiyanping injection needs to be diluted with 5%
dextrose injection or 0.9% sodium chloride injection, these
three medicines are the most frequently used in each cluster.
In typical medicine combination 1 (TMC1), salbutamol and
doxofylline are frequently used, which are antiasthmatic.
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Therefore, TMC1 is a combination of Xiyanping injection
and antiasthmatic medicines for patients with antiasthmatic
needs. In TMC2, in addition to salbutamol and doxofylline,
there is a set of medicines affecting humanmetabolism to pro-
vide energy and improve nutrition. This shows that patients in
this cluster are weak and need nutritional support. The patient
situations in this cluster are complicated. In TMC3, dexam-
ethasone and ribavirin are used frequently. For different types
of infections, Xiyanping injection can be combinedwith other
types of antibiotics to reduce the time of fever and shorten
the course of treatment. In TMC4, Xiyanping injection is
combined with expectorant ambroxol.

Our method can automatically extract typical treatments
from a large scale EMR dataset. These four typical treatment
medicine combinations are different from each other because
of the different usages of the 19 most popular medicines for
respiratory disease. By this experiment, we can conclude that
our DDAP method can quickly find representative exemplars
and obtain excellent clustering results while significantly
improving computational efficiency.

V. CONCLUSION
AP and DDC have been widely used in various applications
successfully. However, the time complexity of AP is high and
the selection of the cluster centers in DDC is relatively sub-
jective. In this paper, we propose a two-stage clustering algo-
rithm DDAP to overcome these shortcomings. We compress
the similarity matrix greatly by selecting a small number
of potential exemplars based on two quantities, then imple-
ment message-passing on the incomplete similarity matrix
to obtain the final clustering result. Experimental results
on two synthetic datasets, nine publicly available datasets,
and a real-world EMRs dataset demonstrate that DDAP can
achieve comparable clustering performance with the original
AP algorithm, while the computational efficiency improves
observably.

The main contribution of the paper is to greatly improve
the computing efficiency of the AP algorithm by selecting
representative potential exemplars. Since AP is an exemplar-
based clustering algorithm, it is only suitable for clustering
data with spherical clusters. In practical applications, the data
is more complicated. For the future work, we can extend
the fast AP algorithm to cluster data with complex shaped
clusters.
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