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ABSTRACT A matrix-partitioned domain decomposition method based on integral equation using the
out-of-core iterative solver is presented for accurately analyzing challenging electromagnetic scattering
problems with limited memory. The proposed method is based on the domain decomposition strategy, which
decomposes the original large complex matrix of the electrically large problem into several sub-matrices
of the electrically small sub-problems. Then, the out-of-core solver is used to solve the partitioned matrix
equation panel by panel. In the process of constructing sub-problems, the proposed method does not
introduce any additional unknowns. Thus, it can significantly reduce memory consumption, expanding the
scale of the problem that can be solved. Numerical examples demonstrate that the method is very accurate
even for the EM scattering targets the RCS of which are below −40 dBsm. And it can completely eliminate
the pseudo edge effect which often occurs in the implementation of the domain decomposition method.
In addition, modeling and partitioning the subdomains of the proposed method is easy and flexible.

INDEX TERMS Matrix partitioning, domain decomposition, surface integral equations, out-of-core solver.

I. INTRODUCTION
Accurate and efficient numerical analysis of large-scale
electromagnetic (EM) systems [1]–[6] is always a hot
research topic in computational electromagnetics. With the
increasing requirements of the accuracy, efficiency, and
simulation scale of electrically large targets and complex
structures, there are new challenges to the simulation capa-
bility of modern computational electromagnetics. In partic-
ular, the rapid increase in electrical scale has led to a sharp
increase in the computational requirements for full-wave
EM field simulation. The surface integral equation (SIE) of
method of moment (MoM) is a very powerful tool for the
solution of EM radiation and scattering problems [7]–[11].
MoM [12], [13] combined with Rao–Wilton–Glisson (RWG)
functions [14] is one of the most classic frequency-domain
numerical approach. The SIE only needs to perform geo-
metric mesh on the boundary surface. As SIE automatically
satisfies the boundary conditions of the radiation, there is no
need to set the additional truncation boundary. Moreover, SIE
does not suffer from the numerical dispersion error. Hence,
SIE has the advantage of high computation accuracy.
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The traditional MoM can hardly be applied into the
analysis of electrically large problems because of the
limitation on the memory. The high computational complex-
ity resulting from the dense MoM matrix, has been over-
come by the fast integral solvers. The first category of fast
integral solvers is an algorithm based on the fast Fourier
transform [15]–[17], such as the adaptive integration method,
etc. The second category is the algorithms based on low
rank matrix compression [18]–[21]. Typical methods of the
third category based on the series expansion of the inte-
gral kernel [22]–[26] include fast multipole method and its
extension: multilevel fast multipole algorithm (MLFMA).
Theoretically, they accelerate the calculation of matrix-vector
multiplication which is essential to an iterative process. The
computational complexity can be decreased from O(N 2) to
O(N logN ), which greatly improves the computational effi-
ciency. However, even for MLFMA [24]–[26], it is difficult
to deal with EM problems of thousands of wavelengths with
limited computing resources. Another strategy to improve the
computing capability of MoM is the parallel solver based on
clusters. However, for some electrically large objects of real-
world problems which require a huge amount of memory for
computing, it is quite difficult to be solved on the existing
distributedmemory clusters. The out-of-core solver can break
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the limitation of the clusters’ memory, and it can be effec-
tively implementedwithout reducing the accuracy. Therefore,
in order to furtherly expand the scale of the problem to be
solved, the parallel solver is combined with the out-of-core
solver in this work. [27].

In order to break the bottlenecks of SIE, we combine
two approaches in this article, namely the out-of-core solver
and the domain decomposition strategy [28]–[42]. These two
approaches are essentially based on the idea of ‘‘dividing
and conquering’’. On one hand, the out-of-core solver refers
to partitioning an original large matrix into several small
sub-matrices which transfers the huge memory pressure for
solving the matrix equation of MoM. On the other hand,
the domain decomposition strategy refers to partitioning an
original problem into several small sub-problems with small
memory requirements and easy to solved. In recent years, the
domain decomposition method based on the surface integral
equations (SIE-based DDM) has attracted much attention,
which is a feasible and efficient method for solving complex
and large problems. Generally, the SIE-based DDMs can be
categorized into two types: The enclosed-DDM (E-DDM)
[28]–[33] is to partition the whole solution domain into many
subdomains, and each subdomain is enclosed by a closed
surface. The other type does not require the subdomain to
be enclosed by a closed surface, which is referred to as
unclosed-DDM (U-DDM) [34]–[42]. The U-DDM method
consists of the overlapping domain decomposition method
(ODDM) [34]–[37] containing a buffer, and non-overlapping
domain decomposition method (NDDM) [38]–[42] without
a buffer.

On one hand, since E-DDM introduces a manual interface
to construct a closed surface, it cannot be used to simulate
an open-structure target, and it causes great inconvenience
to modeling. This brings great limitation to this type of
domain decomposition. On the other hand, some U-DDM
methods need additional unknowns, and the current across
the boundaries is not completely continuous. The increased
unknowns impose a heavy burden on the requirement of
memory and computation, especially when the EM problem
is large with a lot of subdomains. In this work, we investigate
a novel matrix-partitioned domain decomposition method
based on out-of-core solver (out-of-core MP-DDM), aim-
ing to address accurate analysis of electrically large targets
in engineering applications. During the out-of-core com-
putation, only a portion of the matrix is transferred from
the hard disk to the random access memory (RAM) which
participates in the computation at a certain period. The
entire computation is done by the data exchange between
the internal and external memory. Moreover, the proposed
scheme does not require modifications on the original CAD
object, nor does it introduce artificial interfaces and auxil-
iary unknowns. There is no need to construct an additional
contour domain or overlapping regions for the adjacent sub-
domains. This method uses the full RWG basis functions
across the boundaries, which guarantee the continuity of cur-
rent across the subdomains. Thus, no additional transmission

FIGURE 1. Schematic diagram of out-of-core MP-DDM: (a) the original
closed surface; (b) the opened decomposition surface.

conditions need to be implemented on the boundaries of
the subdomains. The matrix-partitioned method proposed in
this article, is a domain decomposition scheme which does
not introduce additional unknowns compared to the overall
solution. During the calculation process, the dimension of
the system matrix can be kept constant, and the submatrix
of each subdomain is independently evaluated. The domain
decomposition method in this article is a preconditioner of
the SIE method, and it is implemented in a matrix-partitioned
manner during the calculation process.

This article is organized as follows. In Section II, the two
strategies of domain decomposition method and out-of-core
solver are proposed, and the singular integrals are described
in detail. In Section III, several numerical examples are
demonstrated, which verify the accuracy and efficiency
of the proposed method. Moreover, the simulation of a
thousand-wavelength ship highlights the computing power of
the method. Conclusion are given in Section IV.

II. THEORY
A. DOMAIN DECOMPOSITION STRATEGY
It is assumed that there is a 3-D PEC object in the free space,
where (Einc,H inc) is the incident field. D is the domain of
the arbitrary shaped scattered object, S denotes the surface
of D, as shown in Fig. 1(a). From the equivalent principle
and the boundary conditions of the EM field, the surface
integral equations (SIEs) can be established on S. Therefore,
the unknown surface currents Js are expanded with the RWG
basis functions (RWGs) as follows

JS =
N∑
n=1

ISn f
S
n (r
′), (1)
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where N is the unknown number, In is the unknown coeffi-
cient, and f Sn

(
r′
)
is the RWGs. In order to solve the SIEs,

the MoM is employed. For the original problem, the matrix
equation of MoM can be written as

[Z] [I] = [V ] , (2)

where the elements of the above equation can be evaluated as

Zmn = jkη
∫
T+m +T

−
m

f Sm (r)

·

∫
T+n +T

−
n

[
f Sn
(
r′
)
+

1
k2
∇
′
• f Sn

(
r′
)
∇

]
G (R) ds′ds,

(3)

Vm =
∫
T+m +T

−
m

f Sm (r) • E
incds, (4)

where η =
√
µ
/
ε, k = ω

√
µε, andG(R) = e−jkR

/
(4πR) are

the wave impedance, the wave number, and the Green’s func-
tion in the free space, respectively.R =

∣∣r− r′∣∣ represents the
distance from the source point to the field point, f Sm (r) is the
testing function, using the Galerkin testing method.

Decompose domainD into two domainsD1 andD2, thus S
is decomposed into two open sub-surfaces S1 and S2. The red
dotted line in the figure indicates the boundary at which the
subdomains are separated. In order to ensure the complete-
ness of the RWGs, it is necessary to supplement the other
triangle of the triangle pair at the boundary line, as shown in
the shaded part of Fig. 1(b). This operation does not require
any actual modifications to the computer-aided design (CAD)
model, as all triangle information is already given in the
original meshing grid. We only need to do some reuse of the
information of the shadow triangles. It is worth noting that
the reuse of the grid information does not introduce any new
unknowns. If there are N RWGs f Sn (r) on the surface S, N1
RWGs on S1, and N2 RWGs on S2, respectively, the current
expansion is written as

JS =
N∑
n=1

ISn f
S
n (r) =

N1∑
n=1

IS11,nf
S1
1,n(r)+

N2∑
n=1

IS22,nf
S2
2,n(r). (5)

The total number of basis functions of each subdomain
equals the number of basis functions of the original model,
which is N1 + N2 = N . As it is necessary to complete
the triangle pairs at the dividing lines of the subdomains,
the triangle pairs only need to be supplement in just one
of the subdomains. For the system problem of subdomains
shown in Fig. 1(b), the system of equations can be written as[

Z11 Z12
Z21 Z22

] [
I1
I2

]
=

[
V1
V2

]
, (6)

where the matrices Z11 and Z22 describe self-actions on
the two subdomains D1 and D2, respectively. Z12 and Z21 the
interactions between different subdomains. As the sum of the
unknowns of S1 and S2 remains the same as the number of
unknowns in the original problem S, the dimensions of the
matrices of (2) and (6) are unchanged.

Rewrite matrix equation (6) in the form of a linear system
of equations, {

Z11I1 + Z12I2 = V1

Z21I1 + Z22I2 = V2.
(7)

When the matrix vector multiplication (MVM) is calcu-
lated along the row, a panel of the matrix is calculated in
core. The panel of the MVM is also decomposed into two
portions ZiiI i and ZijI i, and the number of rows in each
panel is equal to the number of unknowns in the subdo-
main. Denote the interaction ZijI i between subdomains as
1V i(Zij). The strategy of correcting 1V i(Zij) using mutual
impedance is referred as to the DDMZ. If subdomains of
equal size are assumed, when the whole domain is decom-
posed into n subdomains, the storage complexity of the
method isO

(
(N/n)2

)
, and the complexity of theMVM is still

O
(
N 2
)
per iteration. To reduce the computational complexity

of MVM, the linear equations (7) can be modified as follows,{
Z11I1 +

〈
f 1(r),−ηL

(
f 2(r
′)
)〉
I2 = V1〈

f 2(r),−ηL
(
f 1(r
′)
)〉
I1 + Z22I2 = V2,

(8)

L(X) = −jk
∫
S

[
X(r′)+

1
k2

(∇ ′ · X(r′))∇
]
G(R)ds′. (9)

According to the auxiliary bit function theory, we have{
Z11I1 −

〈
f 1(r),E12

〉
= V1

−
〈
f 2(r),E21

〉
+ Z22I2 = V2.

(10)

We arrive at the following expression as given by{
Z11I1 = V1 +1V1(E12)
Z22I2 = V2 +1V2(E21).

(11)

In MVM process, the multiplication of Zij and I j for
obtaining the coupling voltage between subdomains, can be
equivalent to the process of calculating the near field of
the subdomain Di generated by the surface current I (k+1)j
on the subdomain Dj, and getting the inner product of the
obtained near field and weight functions to obtain the cou-
pling voltage (1V i(Eij)) between subdomains. With this
scheme, we can eliminate the need to calculate and store
the mutual impedance matrix in (6), and only calculating
the additional field excitation in each iteration. The coupling
voltage (1V i(Eij)) can be obtained using the near scattered
field generated by the surface currents from other subdomains
That can furtherly reduce the storage complexity. The strategy
of correcting1V i(Eij) using only the near field is denoted as
the DDME.

B. CALCULATION OF SINGULAR INTEGRALS
In the last sub-section we mentioned that using the coupling
voltage (1V i(Eij)) to correct V can effectively reduce the
storage complexity, for the shaded triangles in Fig. 1(b), that
is, the part where the two subdomains reusing, there is a
near-field singularity of 1V i(Eij).

ES (J) = ηL(J)

= −jkη
∫
S

[
J(r′)+

1
k2

(∇ ′ · J(r′))∇
]
G(R)ds′. (12)
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FIGURE 2. Schematic diagram of special impedance element.

The Green’s function and its gradient results in the singu-
lar integrals when computing the surface EM field. For the
shaded triangles in Fig. 1(b), which are shared between two
adjacent subdomains to form the complete RWGs, there are
singularities when computing the near field on these triangu-
lar patches. Accordingly, these triangular patches should be
specially handled.

In order to eliminate the error caused by the singular points
in the surface field computation, we do the correction by mul-
tiplying the impedance element by the current coefficient in
the shaded triangles that shared by the adjacent subdomains,
as follows

1V i(Eij, Z
1/4
ij ) = 1V i(E′ij)−1V i(Z

1/4
ij · I

1/4
i ), (13)

where E′ij is the near-field value at the sampling point of

the triangular patches except for the shaded triangles. Z1/4ij
denotes quarter of the impedance element value of the shaded
triangles. I1/4i denotes the corresponding current coefficients
of the RWGs on the triangle pairs formed by the shaded
triangles and the triangles adjoining with them.

The complete impedance element Zmn should consist of
four parts, as given by

Zmn = ZT+m T+n + ZT+m T−n + ZT−m T+n + ZT−m T−n . (14)

In this approach, Z1/4ij is only related to the shaded
triangles. For example, as shown in Fig. 2, the 1/4 impedance
element Z1/4

ijmn only consists of one part as follows

Z1/4
ijmn = ZT−m T+n . (15)

Then, the sparse impedance matrix (actually a vector) Z1/4ij
should contain only m impedance elements. m is the number
of the basis functions across the boundary lines. The matrix
Z1/4ij is filled only once, which can be reused in each iteration.

The strategy of correcting1V i(Eij, Z
1/4
ij ) using the near field

combined with the quarter impedance elements across the
boundary lines is denoted as the DDMEZ. By this method,
smaller computing resources are required to solve larger EM
problems while ensuring the accuracy of computation.

C. OUT-OF-CORE ITERATIVE SOLVER
The MoM obtain a dense matrix equation, resulting in stor-
age complexity O

(
N 2
)
. Since the memory capacity cannot

meet the storage requirements involving large complex dense
matrix problems, we develop an out-of-core iterative solver

that some portions of the matrix are written to the hard disk.
Hence, the large matrix generated by the original problem is
decomposed into sub-matrices that can be addressed in RAM.

In the traditional implementation of MoM, the whole
systemmatrix should be stored. However, one task of DDM is
to reduce the demand for computer memory of integrated EM
computation. Therefore, by combining the out-of-core solver,
we calculate the impedance matrix and the voltage vector of
the whole system in different subdomains. We fill these small
sub-matrices in RAM in turn, and write them to the hard disk
as soon as it is filled. Sub-matrices are read into RAM in
turn when solving the whole system matrix equation panel-
wisely. For the DDME strategy, there is no need to fill and
store the mutual-impedance sub-matrices. For the DDMEZ
strategy, the mutual-impedance sub-matrices that needs to be
filled and stored is only a vector. This is an alternative way to
apply DDM to large and complex EM problems.

In out-of-core MP-DDM, the generalized minimum
residual method (GMRES) in Krylov subspace [43] is used
to solve (6). The GMRES solver selects the relative resid-
ual error as the convergence criterion, and its termination
criterion is defined as

ε =

∥∥P−1 (Ax − b)∥∥2∥∥P−1b∥∥2 . (16)

For the convenience of description, (6) is rewritten as[
A11 A12
A21 A22

] [
Xk,1
Xk,2

]
=

[
B1
B2

]
, (17)

where k represents the number of iterations.
From the domain decomposition strategy in subsection A,

we know that the unknowns among the subdomains
are independent of each other. The mutual couplings
between subdomains are effected by1V i. Specific strategies
include DDMZ (1V i(Zij)), DDME (1V i(Eij)) and DDMEZ
(1V i(Eij, Z

1/4
ij )). Therefore, the unknown coefficients in the

matrix equation of the system are sorted by subdomain. That
is, the first panel row corresponds to the first subdomain,
the second panel row corresponds to the second subdomain,
and so on. Different from the way the global solution is
solved, at each iteration, the initial N -dimension current
coefficient vector is partitioned according to the number of
subdomains and the number of unknowns of each subdomain.
Each subdomain retains only the portion of the current coef-
ficients of its own subdomain, thereby converting the global
MVM into the subdomain’s MVM, as shown in Fig. 3.

Taking two subdomains as an example, we partition the
initial current coefficient vector first as follows

X0 =

[
X0,1
X0,2

]
, (18)

where,

X0 =
[
x0,1 . . . x0,N

]
X0,1 =

[
x0,1 . . . x0,N1

]
X0,2 =

[
x0,N1+1 . . . x0,N

]
. (19)
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FIGURE 3. Schematic diagram of partitioning and assigning the global
current coefficient vector.

FIGURE 4. Schematic diagram of matrix vector multiplication in each step.

For the GMRES solver, in the MVM process of each
iteration, the mutual coupling between subdomains is calcu-
lated first and written to the hard disk, as shown in Fig. 4.
Then the total MVM of each subdomain are calculated one
by one. When generalizing to P subdomains, the calculation
of MVM process in each step of GMRES is shown in Fig. 5.
When theMVM is calculated along the row direction, a panel
of the matrix is calculated in core. The panel of the MVM
is also decomposed into two portions AiiX i and 1V i, and
the number of rows in each panel is equal to the number of
unknowns in the subdomain.

If subdomains of equal size are assumed, when the whole
domain is decomposed into n subdomains, the storage com-
plexity of the method is reduced to O

(
(N/n)2

)
. For the

DDMZ strategy, the out-of-core computing programs con-
tain a large number of operations on files. Because of the
slow speed of accessing disk data, I/O performance obvi-
ously becomes an important limiting factor than CPU per-
formance when dealing with large data problems. Although
the large complex dense matrix Z is decomposed into small
sub-matrices, the small complex matrices are still large for
I/O operations, which cause a long I/O time. In contrast,
the DDME and DDMEZ strategies can significantly reduce
the I/O time and the computational complexity of MVM.
We can further shorten the I/O time by changing the text input
and output to binary input and output.

III. NUMERICAL RESULTS
In this section, we study the performance of the proposed
out-of-core MP-DDM via numerical experiments. Firstly,
through an open-structure model and a closed-structure
model, the characteristics of the matrix elements of the
system are studied. The proposed method proved to keep
the total number of unknowns unchanged, while the well-
conditioned DDM system matrix equation provides robust
convergence in the numerical experiments. Secondly, through

FIGURE 5. Calculation flow chart of matrix-vector multiplication in
GMRES iterative solver.

comparing with the analytical solution, the accuracy of
out-of-core MP-DDM for the EM scattering problem is
certificated. Thirdly, the surface current continuity of the low
RCS carrier simulated by the proposed method is analyzed.
The numerical result of the conventional single-domain SIE
method (SD-SIE) is compared with it to prove the effective
suppression of the proposed new transmission conditions
on the reflected waves at the boundary between adjacent
subdomains. Finally, an electrically large problem of practical
interest is included to demonstrate the capability of the
proposed method.

For all numerical examples, the computations have been
done on a workstation which consists of two six-core 64 bit
Intel Xeon E5-2620 2.0 GHz CPUs, 64GB RAM and 6TB
disk.

A. IMPEDANCE MATRIX ANALYSIS: A DIHEDRAL
ANGLE AND A CUBE
Using Z1/4ij to correct 1V i, the near-field error due to the
singularity can be significantly reduced, which improves the
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computing accuracy. In order to verify the effectiveness of
this strategy, we compute the equivalent impedance element
value of each column by setting each element value in the
current coefficient vector to 1 one by one. A typical dihe-
dral angle model is chosen as the example, and the open
surface is decomposed into two subdomains along two mutu-
ally perpendicular PEC faces, as shown in Fig. 6(a). The
two subdomains are discretized with 5 and 3 unknowns,
respectively. Since the basis functions of No. 3 and No. 5 in
sub-domain 1 are two basis functions that cross the boundary
line, we focus on the values of the impedance elements
that contain these two basis functions. Since the simulation
target is an open structure, the EFIE is chosen here for
analyzing.

Fig. 6(b) and Fig. 6 (c) shows the comparison of impedance
element value of out-of-core MP-DDM based on EFIE
using DDMZ (black solid line), DDME (blue dashed line),
and DDMEZ (red dashed line). This improvement can be
observed very specifically by comparing the modulus val-
ues of the equivalent impedance elements. Theoretically,
the impedance element produced by the DDMZ should be
exactly the same as which produced by the global solution,
except that the impedance element distribution is slightly
different. It is obvious in Fig. 6 that the impedance ele-
ment value with an error between the blue dashed line and
the black solid line, that is the impedance element value
containing the information of the basis function across the
boundary line, is perfectly corrected in the red dashed line.
Therefore, by using the boundary impedance to correct the
deviation caused by the singularity of surface fields, the accu-
racy of the equivalent mutual impedance can be effectively
improved.

Fig. 7 shows the eigenvalue distribution for the proposed
DDM system matrix in (14). Cubes with a side length of
0.3 λ are decomposed into 2, 3, and 6 subdomains, and
the EFIE is still used in this example. The corresponding
eigenvalue spectra are demonstrated in Fig. 7 (a), (b) and (c),
respectively. Although there are several eigenvalues dis-
tributed outside the shifted unit circle, most of the eigenval-
ues are clustered around a certain point, and they are well
separated from the origin point. Thus, when using the Krylov
iterative solver, it can converge quickly. Although the increase
in the number of subdomains has some undesired influence
on the eigenvalue spectra, the influence is not large. If the
full basis functions across the boundary lines are considered
as a transmission condition, the results indicate the validity
of the proposed transmission condition. The reason is that
the proposed DDM imposes current continuity across the
boundary line by the full basis function between adjacent
subdomains, which is an effective transmission condition
on the subdomain boundaries. Moreover, such a strategy
has no restrictions on the shape of the boundary line. This
ensures the convenience of the domain decomposition when
analyzing complex large-scale problems, and the subdo-
mains can be adaptively constructed by the graph partitioning
algorithms.

FIGURE 6. Comparison of impedance element value for an open PEC
surface using out-of-core MP-DDM: (a) dihedral angle model;
(b) impedance elements in columns 3 and 5 in subdomain 1; (c) 3 column
impedance elements in subdomain 2.

B. ACCURACY STUDY: A PLANE-WAVE SCATTERING
FROM A SPHERE
In this subsection, we examine the solution accuracy of the
proposed method. We consider the EM scattering from a PEC
sphere with radius 1.0m at 1GHz, for which analytic solution
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FIGURE 7. Eigen-spectrum for a PEC cube with respect to number of
subdomains: (a) two subdomains; (b) three subdomains; (c) six
subdomains.

is available in the form of Mie series. The sphere is decom-
posed into eight subdomains (calculated by DDMZ, DDME
or DDMEZ), as shown in Fig. 8. The whole-domain solution
by the SD-SIE (DDM1) is also presented as comparison.

FIGURE 8. Bi-static RCS of a PEC sphere using analytic solutions, SD-SIE
and out-of-core MP-DDM.

FIGURE 9. Iterative solver convergence of a PEC sphere using SD-SIE and
out-of-core MP-DDM.

Then, we study the error convergence of the proposed
method with respect to different strategies for calculating the
interaction between subdomains. The convergence criterion
is set to ε = 1 × 10−4. Fig. 9 shows the convergence
of the SD-SIE (DDM1) and the MP-DDM using three dif-
ferent interaction calculating strategies (DDMZ, DDME or
DDMEZ).

In Fig. 8, it is illustrated that the DDME strategy that
uses only the near field to correct the 1V i(Eij), deviates
from the analytical solution. The numerical results obtained
from the out-of-core MP-DDM using DDMZ and DDMEZ
strategies agree very well with the analytic solution. For the
rate of convergence, DDME also has the worst performance.
The DDMZ strategy has the fastest convergence rate, but its
demand for hard disk storage resources is significantly higher
than those of DDMEZ and DDME strategies. The conver-
gence rate of DDMZ and DDMEZ are better than the whole-
domain solution. Therefore, we use the proposed DDMEZ to
form the MP-DDM strategy in the following examples.

The manner of impedance filling in each subdomain makes
the structure of the block diagonal preconditioning more
flexible in MP-DDM. We invert the self-action impedance
matrix of each subdomain to form a stable preconditioner
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TABLE 1. Computational statistics of a sphere.

FIGURE 10. Sphere model and partitioning: (a) two subdomains; (b) four
subdomains; (c) eight subdomains.

that is easy to implement. As shown in Table 1, the memory
consumption of the proposed method is significantly reduced
compared to SD-SIE. This breaks the storage bottleneck of
the SIEmethod, making it possible to simulate the electrically
large problem that could not be solved before.

Next, the CPU time and memory cost for a different
number of subdomains are compared. The sphere is decom-
posed into 2, 4, and 8 subdomains respectively, as shown
in Fig. 10. The sphere consisting of 2 subdomains is par-
titioned into 24499 and 24083 unknowns, respectively. The
sphere consisting of 4 subdomains is partitioned into 12353,
12146, 12145, and 11938 unknowns, respectively. The results
are shown in Fig. 11. And a comparison of computation time
and memory consumption is given in Table 2. It can be seen
that the advantages of this algorithm are obvious.

C. SURFACE CURRENT CONTINUITY: A PLANE-WAVE
SCATTERING FROM A LOW RCS CARRIER
In this subsection, the scattering behavior of an almond is
investigated using the out-of-core MP-DDM. The size of the
almond is 0.97 m × 0.31 m × 0.04 m as shown in Fig. 12,
which is partitioned into three subdomains along x direction
with 588, 522, 204 unknowns, respectively. The plane-wave
at 600MHz illuminates the PEC almond from −x direc-
tion and the electric field is polarized in the +z direction.
The numerical results in Fig. 12 demonstrate the current
continuity across the adjacent subdomains. The proposed
method fully suppresses reflections from the boundary in a
straightforward manner.

It is illustrated in Fig. 12 that the surface electric current
distributions at 600MHz using the conventional SD-SIE
method (DDM1) and the out-of-core MP-DDM (DDM3).
The out-of-core MP-DDM gives a nearly identical solution to
that of the SD-SIEmethod, and the erroneous reflections from

FIGURE 11. Bi-static RCS and iterative solver convergence of a PEC sphere
with respect to number of subdomains: (a) bi-static RCS; (b) iterative
solver convergence.

TABLE 2. Computational statistics of a sphere.

the boundaries are suppressed completely, which demon-
strate the current continuity across the adjacent subdomains.
The bi-static RCS of the PEC almond using the four meth-
ods (including a commercial software (FEKO) and a tradi-
tional non-overlapping DDM (NDDM) [28]) are shown in
Fig. 13 Evidently, the results obtained from FEKO, DDM1,
and DDM3 agree very well even for the results below
−40 dBsm. NDDM’s results are unreliable below−30 dBsm.
Fig. 14 shows the convergence of the SD-SIE method
(DDM1) and the out-of-core MP-DDM (DDM3). The con-
vergence criterion is set to ε = 1 × 10−3. The out-of-core
MP-DDMcan achieve convergencewithin 30 steps, while the
SD-SIE method needs 52 steps.
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FIGURE 12. Domain partitions and surface current distributions
(magnitude in A/m) on an almond: (a) DDM1; (b)DDM3.

D. APPLICATION: A PLANE-WAVE SCATTERING
FROM A SHIP
In this subsection, we s hall present a numerical example
to demonstrate the capability of the proposed MP-DDM in
simulating electrically large PEC targets. The out-of-core
MD-DDM in the example is accelerated by MLFMA [51]
to speed up the impedance filling of the subdomains and
the MVM of iterative processes. By the octree structure
formed byMLFMA in space, the unknowns can be adaptively
grouped to realize the decomposition of subdomains, so that
the proposed transmission conditions can be naturally intro-
duced conveniently. The parallel scale is 12 processes. The
convergence criterion is set to ε = 5× 10−3.
The parameter of the ship is 160.57-m long, 24.10-mwide,

and 29.76-m high, as shown in Fig. 15. The incident plane
wave is toward the bow (−x), and the polarization direction
is +z. The operating frequency is 2GHz. The whole ship
model has 63,016,119 unknowns, which is decomposed into
76 subdomains by oct-tree graphical partitioning algorithm.
The largest subdomain contains 1,879,869 unknowns. If the
MLFMA global solution is used, at least 793.86 GB of
memory would be required, while the peak memory of the
domain decomposition solution is 17.48 GB. For the scatter-
ing problem of such an electrically large platform, the mem-
ory required for the global solution is too enormous for the

FIGURE 13. Bi-static RCS of an almond using MoM and out-of-core
MP-DDM: (a) x-y plane; (b) x-z plane.

FIGURE 14. Iterative solver convergence of a PEC almond using SD-SIE
and out-of-core MP-DDM.

workstation used in this study. With the domain decomposi-
tion method, the memory consumption is saved by approxi-
mately 97.7%. The surface current distribution is illustrated
in Fig. 16, which shows a smooth current distribution without
discontinuities on subdomain boundaries.

By the proposed method, a common workstation can ana-
lyze the EM problem of an electrically large target, which is a
great convenience for the users. If the program is transplanted
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FIGURE 15. Ship model and partitioning.

FIGURE 16. Surface current distributions (magnitude in A/m) on a ship.

to a high-performance computing platform, the scale of the
problems that can be solved will double.

IV. CONCLUSION
A novel matrix-partitioned DDM based on SIE is proposed to
solve challenging EM scattering from electrically large PEC
objects with limited memory using an out-of-core solver. The
surface continuity of the current is constrained by the full
RWG basis functions in this article, which can effectively
avoid unphysical reflections from the subdomain bound-
aries. This scheme of forcing the surface current continu-
ity can also be regarded as a new transmission condition.
There are three advantages of this scheme. The first is that

there are no additional unknowns introducing, and the stor-
age resources required for the computation are really small.
The second one is to completely eliminate the reflected
waves from the subdomain boundaries, and the proposed
method is highly consistent with the results of the global
solution. Third, the model can be arbitrarily decomposed,
which simplifies the pre-processing operation and facilitates
the analysis of large-scale multi-domain EM problems. The
proposed MP-DDM method is effectively verified by several
numerical examples involving open and closed objects. The
results simulated by MP-DDM are in very good agreements
with those obtained by single-domain SIE method, even for
low RCS carriers. In addition, it has been shown that the

140670 VOLUME 8, 2020



Y.-Y. Liu et al.: Matrix-Partitioned DDM for the Accurate Analysis of Challenging Scattering Problems

matrix eigenvalue spectrum of the DDM system performs
well. Since the method can adaptively construct the load bal-
ancing subdomains through the mesher, the future work is to
transplant the algorithm to the high performance computing
platform for handling even larger objects with much more
subdomains.

In the follow-up work, the half-RWG basis functions can
be used for the non-conformal meshes at the boundary.
However, it will cause the increase in the number
of unknowns. By using the full-RWGs combing with
half-RWGs can reduce the increase.
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