
Received July 5, 2020, accepted July 16, 2020, date of publication July 29, 2020, date of current version August 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012738

P4-IPsec: Site-to-Site and Host-to-Site VPN
With IPsec in P4-Based SDN
FREDERIK HAUSER , (Graduate Student Member, IEEE),
MARCO HÄBERLE , (Student Member, IEEE), MARK SCHMIDT, (Member, IEEE),
AND MICHAEL MENTH , (Senior Member, IEEE)
Chair of Communication Networks, University of Tübingen, 72076 Tübingen, Germany

Corresponding author: Frederik Hauser (frederik.hauser@uni-tuebingen.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/1-2 and the bwNET100G+ project which
is funded by the Ministry of Science, Research and the Arts Baden-Württemberg (MWK). The authors alone are responsible for the content
of this paper.

ABSTRACT In this work, we present P4-IPsec, a concept for IPsec in software-defined networks (SDN)
using P4 programmable data planes. The prototype implementation features ESP in tunnelmode and supports
different cipher suites. P4-capable switches are programmed to serve as IPsec tunnel endpoints. We also
provide a client agent to configure tunnel endpoints on Linux hosts so that site-to-site and host-to-site
application scenarios can be supported which are the base for virtual private networks (VPNs). While
traditional VPNs require complex key exchange protocols like IKE to set up and renew tunnel endpoints,
P4-IPsec benefits from an SDN controller to accomplish these tasks. One goal of this experimental work is
to investigate how well P4-IPsec can be implemented on existing P4 switches. We present a prototype for the
BMv2 P4 software switch, evaluate its performance, and publish its source code on GitHub [1]. We explain
whywe could not provide a useful implementationwith the NetFPGASUMEboard. For the EdgecoreWedge
100BF-32XTofino-based switch, we presented two prototype implementations to cope with amissing crypto
unit. As another contribution of this paper, we provide technological background of P4 and IPsec and give a
comprehensive review of security applications in P4, IPsec in SDN, and IPsec data plane implementations.
According to our knowledge, P4-IPsec is the first implementation of IPsec for P4-based SDN.

INDEX TERMS IPsec, P4, software-defined networking, VPN.

I. INTRODUCTION
Virtual Private Networks (VPNs) extend private networks
across public networks by adding authentication and encryp-
tion to network traffic. Internet Protocol Security (IPsec) is
one of the oldest, but still most widespread VPN protocols.
Standardized by the IETF, it introduces protection on the
Internet Protocol (IP) layer. Due to its large distribution,
many implementations for network appliances and operat-
ing systems are available. Although it is criticized for its
complexity, proven deployment patterns allow efficient and
reliable operation.

IPsec tunnel setup requires user configuration plus keying
material that is exchanged by IPsec peers via the Internet
Key Exchange (IKE) protocol. The complexity grows with
the number of IPsec peers, especially in highly dynamic
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environments such as campus or enterprise networks with
many users and sites. Several works investigate how to
leverage the centralized control plane of software-defined
networking (SDN) to simplify IPsec operation. However,
the possibilities for IPsec deployment in SDN were limited.
Typical SDN switches have a fixed function data plane that
does not provide support for IPsec. As a result, IPsec data
plane processing needs to bemoved to an additional software-
based packet processing function (PPF). Besides being an
additional component, this adds latency as traffic needs to
be forwarded back and forth. Programmable data planes as
offered by P4 are a game changer. Data plane behavior can
be described in a high-level programming language. Those
network programs can be executed by software or hardware
devices. For IPsec, this means that instead of shifting IPsec
functionality to PPFs, functions can be implemented directly
on the data plane of SDN switches. In our previous work
P4-MACsec [2], we introduced MACsec for P4-based SDN.
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We proposed a data plane implementation in P4 and intro-
duced a novel concept for automated deployment and opera-
tion of MACsec.

In this paper, we present the first integration of IPsec VPN
for P4-based SDN.We give an introduction on the technolog-
ical background and provide an extensive survey on related
work in that field. We present an IPsec data plane imple-
mentation that integrates IPsec components and processes
with constructs and components under the given constraints
of the P4 data plane programming language. Cryptographic
operations for authentication, encryption, and decryption
are implemented in P4 externs where IPsec components
such as the Security Policy Database (SPD) and Security
Association Database (SAD) are part of the P4 processing
pipeline. P4 switches that implement the functionality of
P4-IPsec can be deployed in host-to-site and site-to-site VPN
scenarios. The control plane functions for IPsec operation are
part of a central SDN controller that maintains IPsec tunnels
without the help of distributed key exchange protocols such
as IKE. As these components are steered by a centralized
control plane through an authenticated and encrypted con-
trol connection, complex IKE-based key exchange proto-
cols are substituted by controller-based tunnel setup and
renewal procedures. For host-to-site operation, we introduce
a client agent for Linux operating systems that runs on the
roadwarrior hosts. It establishes an interface to the central
SDN controller via a gRPC connection. To investigate how
well P4-IPsec can be implemented on existing P4 targets,
we work on three prototypes. We successfully implement
a prototype for the Behavioral Model version 2 (BMv2)
P4 software target and conduct a performance evaluation.
We release the source code of our prototype with its testbed
environment under the Apache v2 license on GitHub [1].
In addition, we report on implementation experiences for
the NetFPGA SUME board and Edgecore Wedge 100BF-
32X P4 switch. For the latter, we present two workaround
implementations and compare them in performance
experiments.

P4-IPsec introduces several benefits over traditional IPsec
operation. First, we improve scalability by making switches
and roadwarrior hosts stateless components whose func-
tionality is only managed by an SDN controller. Second,
we improve flexibility by converting P4 targets into IPsec
endpoints, i.e., IPsec tunnels can terminate close to the net-
work hosts that should be made accessible via the VPN. This
limits the size of the perimeter and improves security through
better isolation. Last, we encourage open networking research
and operation. Network functionality can be modified in
agile development processes, source code can be audited and
improved by a larger audience.

The rest of the paper is organized as follows. Section II
gives an overview on IPsec, VPN, and data plane program-
ming with P4. In Section III, we describe related work
on P4-based network security applications, IPsec in SDN,
and IPsec data plane implementations. Section IV presents
the architecture of P4-IPsec. In Section V, we describe the

prototypical implementation of P4-IPsec with Mininet and
BMv2. Section VI presents the performance evaluation of
that prototype. In Section VII, we report implementation
experiences for the NetFPGA SUME board and Edgecore
Wedge 100BF-32X P4 switch. Section VIII concludes this
work. The appendices include a list of the acronyms used in
the paper.

II. TECHNICAL BACKGROUND
We give an introduction to VPN with IPsec and data plane
programming with P4.

A. IPsec VPN
Internet Protocol Security (IPsec) is a widespread VPN pro-
tocol suite. It applies authentication and encryption on the
Internet Protocol (IP) in host-to-host, site-to-site, and host-
to-site communication scenarios. RFC 4301 [3] is the latest
version of its specification.

1) PROTOCOLS
IPsec comprises the Authentication Header (AH) and
Encrypted Secured Payload (ESP) protocol. AH [4] protects
IP packets by sender authentication and packet integrity
validation. It applies a hash function with a shared key
(e.g., HMAC-SHA256) to calculate Integrity Check Values
(ICVs) and adds packet sequence numbers to protect against
replay attacks. ESP [5] protects the confidentiality of IP
packets by symmetric encryption. As for AH, it also adds
sender authentication, packet integrity validation, and protec-
tion against replay attacks. ESP supports symmetric ciphers
such as Triple Data Encryption Standard (3DES), Blow-
fish, and Advanced Encryption Standard (AES). Ciphers that
only apply encryption are combined with an authentication
function. AES in cipher block chaining (CBC) or counter
(CTR) mode are examples for such ciphers that might be
combined with secure hash algorithm (SHA) for authentica-
tion. Authenticated encryption (AE) ciphers such as AES in
galois/counter mode (GCM) [6] include both packet encryp-
tion and authentication. IPsec provides support for IP Payload
Compression (IPComp) [7] so that the payload of IP packets
can be compressed before encryption.

2) OPERATION MODES
IPsec can be deployed in either transport or tunnel oper-
ation mode. Transport mode protects IP traffic that is
exchanged between two network hosts (host-to-host sce-
nario). An AH or ESP header is inserted between the IP
header and the IP payload. Tunnel mode protects IP traffic
in host-to-host, host-to-site, and site-to-site communication
scenarios. Figure 1 depicts how tunnel mode with ESP is
applied to an IP packet. A new outer IP header with the
IP addresses of the IPsec peers is created. The original IP
packet is inserted between the ESP header and the ESP trailer.
Encryption protects the original IP packet while authentica-
tion is applied to the complete ESP packet.

139568 VOLUME 8, 2020



F. Hauser et al.: P4-IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-Based SDN

FIGURE 1. Tunnel mode with ESP. The original IP packet is inserted
between the ESP header and the ESP trailer. The inner IP packet is
encrypted while the complete ESP packet is authenticated.

FIGURE 2. IPsec packet processing between two IPsec peers. Each peer
features a SPD, SAD, PAD, and AH/ESP processing functions. The SPD and
PAD are configured manually, where SAD entries are managed by the IKE
daemon.

3) CORE COMPONENTS
We describe the core components of IPsec implementa-
tions that are part of hosts or gateways. The Security Pol-
icy Database (SPD) holds security policies that decide on
traffic protection using IPsec. Entries have match keys,
e.g., IP src/dst address, IP protocol, and TCP/UDP port,
with an assigned action. IPsec allows three actions: DROP
(discard packet), BYPASS (no protection), and PROTECT
(apply IPsec protection). In case the table yields no match,
the DROP action is applied. SPD entries for IPsec connec-
tions point to the protocol (AH/ESP), the operation mode
(transport/tunnel), and the cipher suite. An IPsec tunnel
between two peers is described by two unidirectional security
associations (SAs). An IPsec SA contains all required data
for AH/ESP processing, e.g., cipher keys, valid sequence
numbers, and SA lifetimes for rekeying and tear down. SAs
are part of the Security Association Database (SAD). With
the information from the SAD, packets then can be processed
by ESP/AH processing. Although manual configuration of
SAs is possible, they are typically configured between IPsec
peers with the help of the Internet Key Exchange (IKE)
protocol [8] that was introduced with IPsec. It authenticates
both peers, sets up a secure channel for key exchange, and
negotiates SAs. Today, its successor Internet Key Exchange
v2 (IKEv2) [9] should be used. It is less complex and solves
incompatibility issues of IKE. IKE relies on the Peer Authen-
tication Database (PAD) for authentication of other IPsec
peers.

FIGURE 3. IPsec ingress processing. Arriving packets with an ESP/AH
header are processed with the help of the SAD. ESP/AH processing relies
on data in the SAD. In case of no match, the packet is dropped.

4) PACKET PROCESSING
IPsec differentiates between ingress and egress processing of
packets. Figure 3 depicts ingress processing. Arriving packets
that have an ESP/AH header are processed with the help
of the SAD. If the SAD has an entry for the corresponding
SA, the SA data is forwarded to the ESP/AH processing func-
tion that removes IPsec protection. Afterwards, the packet is
forwarded to default network processing.

FIGURE 4. IPsec egress processing. The SPD matches packets and maps
them to the actions DISCARD, BYPASS, and PROTECT. In case of BYPASS,
the packet is passed to IP forwarding. In case of PROTECT, the SAD is
searched for a corresponding entry for ESP/AH processing. In case of no
match, the packet is dropped.

Figure 4 depicts egress processing where IP packets are
matched with SPD entries as explained before. In case of
PROTECT, data for ESP/AH processing is selected from the
SAD. If the SADhas nomatching entry, SA setup is requested
from the IKE daemon. In case of BYPASS, the packet is
passed to IP forwarding. In case of DISCARD, the packet is
dropped.

5) DISCUSSION
Among more recent alternatives such as OpenVPN and
WireGuard, IPsec is still one of the most widespread
VPN technologies nowadays. IPsec implementations are
part of most operating systems for computers, servers, and
mobile devices. Most network hardware appliances, e.g.,
firewalls, routers, or security appliances, include an IPsec
implementation.

However, IPsec is highly criticized for its complexity. The
most encompassing analysis was performed by Ferguson
and Schneier [10] in 2003. The authors mainly criticize the
redundancy of functionality caused by AH, ESP, and the
two operation modes, the complex key exchange with IKE,
and the complex configuration caused by the SPD and SAD.
However, those issues can be easily solved. Transport mode
and AH should be avoided. Instead, AE ciphers that combine
encryption and authentication should be used in conjunction
with ESP with tunnel mode. IKE should be substituted by
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a less complex protocol for key exchange. In P4-IPsec,
we follow those recommendations and restrict the IPsec
implementation to ESP and tunnel mode with controller-
based SA management without IKE.

B. DATA PLANE PROGRAMMING WITH P4
SDN introduces network programmability by shifting control
plane functions to a software-based controller that determines
the packet processing behavior of network devices. Open-
Flow (OF) [11] is the most widely used SDN approach.
It relies on data plane devices with a fixed set of func-
tions and a southbound interface to the SDN controller. The
SDN controller defines how these functions are applied to
network packets. Programmable data planes extend network
programmability to data plane functionality. Packet process-
ing can be defined on an abstract layer using a dedicated
programming language. Thereby, packet processing behavior
is decoupled from the underlying hardware. This new princi-
ple facilitates open network research with support for agile
development processes and flexible deployment options.
Bifulco and Rétvári [12] give an overview on programmable
data planes. Target platforms include software targets, net-
work interface cards (NICs), NICs with a field programmable
gate array (FPGA) unit, and hardware appliances with
network processing units (NPUs). P4 is the most widely
used data plane programming language nowadays. Initially
presented as a research paper in 2014, the project is now
standardized by the P4 Language Consortium under the
Open Network Foundation (ONF). Its latest specification is
version 16 (P416) [13].

1) PROCESSING PIPELINE
Figure 5 depicts a simplified view on the packet processing
pipeline of P4. It consists of three core abstractions that help
to express forwarding behavior.

FIGURE 5. Simplified view on the P4 processing pipeline of P416.
It comprises the parser, control blocks, and the deparser. Each control
block may include MATs, actions, and externs.

a: PARSER
The parser extracts header fields of packets into inter-
nal data structures. P4 does not include predefined header
types, i.e., programmers need to define packet formats and
extraction behavior. Packet header formats are defined using
P4 header types such as fixed- and variable-length bit

strings or integers. The extraction behavior of the parser is
expressed as finite state machine (FSM). Parsing is initiated
in the state start, possible outcome states are accept (proceed
in packet processing) and reject (drop the packet). Custom
states that are positioned between start and end states imple-
ment the extraction of header data. The transitions between
those states are formulated using conditions. For example,
after successfully parsing an IP header, state transitions to
TCP or UDP parsing might follow.

b: CONTROL BLOCKS
Control blocks are functions that modify packet head-
ers and metadata. The P4 processing pipeline can include
multiple control blocks that are typically separated by
queues or buffers. Packet processing in control blocks is
stateless: the outcome of packet processing applied to one
packet can not influence packet processing applied on a sub-
sequent packet. Actual packet processing is implemented in
actions, code fragments within control blocks that implement
read/write operations with functions provided by P4, e.g.,
setting header fields or adding/removing headers. Actions can
be called from other actions, explicitly with the start of the
control block, or implicitly by match-action tables (MATs).
MATs map match keys to particular actions with associated
parameters. When applying aMAT to packets, the header and
metadata are matched in exact, ternary, or in longest prefix
manner against the keys of the MAT. If matching yields a
particular row entry, the specified action is called with the
associated parameters. If there is no match, a default action is
applied. P4 programs only contain the declaration of MATs,
their entries are maintained by a control plane via an appli-
cation programming interface (API) in runtime. Some targets
may provide additional functions for packet processing, e.g.,
particular functions such as checksum generation, or stateful
components such as counters, meters, and registers. These
components can be used within P4 programs as so-called
externs. Externs have an interface with defined instantiation
methods, functions, and parameters. After import and decla-
ration, they can be used in control blocks just like any other
P4 function.

c: DEPARSER
The deparser reassembles the packet header and payload and
serializes it to be sent out via an egress port.

2) DEPLOYMENT MODEL
Software or hardware platforms that execute P4 programs
are called P4 targets. Common software P4 targets are the
BMv2 [14] software target, eBPF packet filters, and the
T4P4S [15] software target that includes hardware inter-
faces via Data Plane Development Kit (DPDK) [16] and
Open Data Plane (ODP) [17]. The hardware P4 targets
include FPGA-based targets and NICs, NPU-based NICs,
and whitebox switches featuring the Tofino application-
specific integrated circuit (ASIC) from Barefoot Networks.
P4 programs are implemented for a particular P4 architecture.
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P4 architectures can be seen as programming models that
represent the logical view of a P4 processing pipeline. They
serve as an intermediate layer to decouple P4 programs from
P4 targets, i.e., P4 programs that are implemented for a par-
ticular P4 architecture can be deployed to all P4 targets that
implement this architecture. A front-end compiler translates
P4 programs into a target-independent high-level intermedi-
ate representation (HLIR). Afterwards, the HLIR is compiled
to the particular P4 target using a back-end compiler that is
provided by the manufacturer.

3) CONTROL PLANE API: P4Runtime
The runtime behavior of P4 targets can be controlled by
managing MATs or stateful components (e.g., counters,
meters, registers, or externs) that are part of the P4 program.
P4Runtime API [18] is a target- and program-independent
API standardized by the P4 Language Consortium.
P4Runtime uses gRPC for communication between the con-
trol plane and P4 targets and protobuf [19] data structures
for packet serialization/parsing. gRPC connections can be
secured with Transport Layer Security (TLS) and mutual
authentication with certificates. In P4Runtime, the SDN
controller establishes gRPC connections to preconfigured
P4 targets. P4Runtime supports P4 object access (e.g., on
MATs and externs), session management (master/slave con-
trollers), role-based access control, and a packet-in/-out
mechanism to receive and send out packets via the control
plane. The PI Library is the reference implementation of the
P4Runtime server that is part of P4 targets. It implements
generic functionality for internal P4 objects such as MATs.
This functionality can be extended by target- or architecture-
specific configuration objects. p4runtime_lib [20] is an exem-
plary implementation of the P4Runtime API in Python to be
used for building SDN controllers. P4Runtime API plugins
are also available for common SDN controllers such as
ONOS or OpenDaylight.

4) APPLICATION DOMAINS
Most research works on P4-based network applications target
data center or wide area networks. In traffic management
and congestion control, P4 is leveraged to implement new
congestion notification mechanisms, novel traffic scheduling
mechanisms, or novel mechanisms for active queue manage-
ment. In routing and forwarding, special routing and for-
warding mechanisms, publish-subscribe systems, or novel
concepts from the area of named data networks are imple-
mented. A large focus also lies on monitoring, where several
works implement monitoring systems, sketch-based moni-
toring mechanisms, and in-band network telemetry (INT)
systems. Besides, P4 is used in data center scenarios to
implement switching, load balancing, network function vir-
tualization (NFV), and service function chaining (SFC)
mechanisms.

III. RELATED WORK
We describe related work on network security applications
built with P4, IPsec in SDN, and implementation of IPsec
packet processing.

A. NETWORK SECURITY APPLICATIONS WITH P4
Although network security is not the prevalent application
domain of P4, some scientific work has been published in this
field.We describe relatedwork on firewalls, DDoSmitigation
mechanisms, and other security applications.

1) FIREWALLS
Vörös and Kiss [21] introduce a P4-based firewall for fil-
tering IPv4, IPv6, TCP, and UDP packets. It includes a
ban list for instant drop, counters, e.g., for measuring the
packet rate or unsuccessful connection attempts, and MATs
for applying whitelist firewall rules. P4Guard [22] follows a
similar approach. Its authors focus on simplified updated pro-
cesses by deploying recompiled versions of the P4 program.
Ricart-Sanchez et al. [23] implement a P4-based firewall for
5G networks. It includes parser definitions for filtering GPRS
tunneling protocol data. CoFilter [24] introduces a hash func-
tion for efficient flow identification. It is built as P4 action
and uses hashes instead of 5-tuples for flow identification to
save table space. Including the function directly on the packet
processing devices keeps latency low. Zaballa et al. [25] and
Almaini et al. [26] introduce port knocking on P4 switches.

2) DDoS MITIGATION MECHANISMS
Paolucci et al. [27], [28] propose a DDoS mitigation mecha-
nism that runs on P4 switches. A stateful mechanism detects
and blocks DDoS port scan attacks with incremental TCP and
UDP destination port numbers. Dimolianis et al. [29] also
implement a DDoS attack mitigation mechanism that runs
completely on P4 switches. The collected flow data ismapped
to distinct time intervals where DDoS attacks are detected
by analyzing the symmetry ratio of incoming and outgoing
traffic. TDoSD@DP [30] implements a mitigation scheme
against DDoS attacks on SIP proxies. The authors introduce
a simple state machine that monitors SIP message sequences.
Valid sequences of INVITE and BYE messages keep the
port open. Febro et al. [31] implement another DDoS mitiga-
tion mechanism for SIP INVITE DDoS attacks. P4 switches
keep per-port counters for INVITE or REGISTER packets
that are monitored by an SDN controller to detect DDoS
attacks. LAMP [32] implements cooperative mitigation of
application layer DDoS attacks via in-band signaling with P4.
Afek et al. [33] implement known mitigation mechanisms
for SYN and DNS spoofing in DDoS attacks in P4.
Lapolli et al. [34] describe a novel algorithmic approach
based on the Shannon entropy to detect and stop DDoS
attacks on P4 switches. Kuka et al. [35] introduce an FPGA-
based system for DDoS attack mitigation. P4 is used to
extract header data from packets and send it to an SDN
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controller where DDoS attack identification is implemented.
Mi andWang [36] propose a similar approachwhere collected
data is sent to a deep learning module that runs on a server in
the network.

3) OTHER SECURITY APPLICATIONS
Lewis et al. [37] implement an IDS offloading mechanism
in P4. A rule parser translates Snort IDS rules into MAT
entries for a P4 switch. Then, IDS pipeline stages decide if
packets should be forwarded, dropped, or sent to an external
IDS for analysis. Poise [38] is a security-related network
control system that translates high-level policies into P4 pro-
grams for network control. In P4-MACsec [2], we implement
IEEE 802.1AE (MACsec) in P4 and introduce an automated
deploymentmechanism provisionsMACsec on detected links
between P4 switches. Link monitoring is implemented using
a novel variant of Link Layer Discovery Protocol (LLDP).
It relies on encrypted payloads and sequence numbers to
protect against LLDP packet manipulation and replay attacks.

B. IPsec IN SDN
Several works investigate the application of SDN to
IPsec operation. We describe and discuss operation modes,
southbound interfaces, and use cases.

1) OPERATION MODES
Related work can be categorized by three different operation
modes that are depicted in Figure 6.

FIGURE 6. Operation modes for data plane management of IPsec.
In (a), IKE is part of the IPsec node. In (b), IKE is part of the control plane.
In (c), IKE is substituted by controller-based SA management.

a: IPsec NODE WITH IKE
In the first operation mode, IPsec processing nodes fea-
ture an IKE daemon, SDN assists in preconfiguration.
Aragon et al. [39], [40] propose that an SDN controller
preconfigures authentication keys in the PAD. Carrel and
Weiss [41] propose that an SDN controller distributes Diffie-
Hellman public values to all associated IPsec data plane
nodes. Guo et al. [42] propose a similar approach that is
compatible to older IKE daemons that only support IKEv1.
Lopez-Millan et al. [43] propose an IKE mode, where the

SDN controller only provides information for the configu-
ration of the SPD, PAD, and IKE daemon. All proposals
aim to reduce the message exchanges in an IKE process by
preconfiguring it by an SDN controller.

b: IKE ON THE SDN CONTROLLER
In the second operation mode, the IKE daemon is part of an
SDN controller. Son et al. [44] present an approach where
the IKE daemon running on the SDN controller performs
key exchange with peers and manages the SAD of the IPsec
data plane nodes. This approach even supports migration
schemes so that the SA can be transferred to other IPsec data
plane nodes, e.g., in fail-over or load-balancing operations.
Vajaranta et al. [45] describe a similar approach where IKE
is executed as a network function that can be scaled up by
creating additional instances.

c: IKE-LESS OPERATION
In the third operation mode, SAs are maintained without
IKE. Lopez-Millan et al. [43] describe an IKE-less mode
where the SA maintenance is delegated to an SDN controller.
Here, the IPsec processing nodes only implement IPsec logic
where the complete key management logic is moved to the
SDN controller. As there is no IKE, no PAD is required.
The authors differentiate between a proactive mode, where
SPD and SAD are preconfigured by the SDN controller, and
a reactive mode, where only the SPD is preconfigured by
the SDN controller. Several works [39], [46]–[48] propose
SA management without IKE. The SDN controller generates
keying material and sets up SAs in the SAD of associated
IPsec data plane nodes. Gunleifsen et al. [49] introduce a
key management server that creates and distributes IPsec
SAs for encryption virtual network functions (VNFs).
In consecutive works, Gunleifsen et al. [50], [51] name this
concept as Software-Defined Security Associations (SD-SAs).
Encryption VNFs only perform IPsec processing. SAs are
created and distributed by an authentication center.

2) DISCUSSION ON OPERATION MODES
We briefly discuss the benefits and drawbacks of the three
operation modes. The first operation mode benefits from easy
migration. As legacy IPsec devices already feature an IKE
daemon, they can be easily extended by an interface to profit
from SDN-assisted operation of IPsec (see [43]). The second
operation mode especially introduces flexibility and scala-
bility. Separating IPsec processing and SA establishing to
different entities improves scalability (see [45]). The third
operation mode removes the overhead of peer-to-peer key
exchange with IKE. In SDNs, IKE might be unnecessary
as both IPsec peers are controlled by an SDN controller.
Besides, IKE requires connectivity for IKE packet exchange
between both peers which could be not given in particular
scenarios (see [51]). Lopez-Millan et al. [43] show in an
analytical evaluation that IKE-based and IKE-less operation
of IPsec have approximately the same process loads in terms
of messages and configuration data exchange.
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3) SOUTHBOUND PROTOCOLS
On legacy network devices that feature IPsec devices, SNMP
(e.g., [52]) is used for basic configuration and monitoring.
Guo et al. [42] extend this usage in making an IKE dae-
mon manageable by SNMP as well. Alharbi et al. [53]
use SSH as a southbound interface to manage and mon-
itor IPsec data plane nodes. Marin-Lopez et al. [46] use
NETCONF with YANG configuration models. In addition
to the southbound protocol, they consider east-/westbound
interfaces for controller-to-controller communication via
different domains. Aragon et al. [39] use OAuth 2.0 to
deliver configuration data within authorization messages.
Braadland [47] extends OpenFlow (OF) using experimenter
messages for IPsec management. Sajassi et al. [48] lever-
age BGP. Li and Mao [54] use a custom southbound pro-
tocol to interface an IPsec extension module on an Open
vSwitch. Li et al. [55] propose a custom southbound protocol
with notification, configuration, and query messages that
are transmitted via TCP or TLS. Lopez-Millan et al. [43]
use NETCONF with YANG models as southbound protocol.
Gunleifsen et al. [50], [51] rely on REST with JSON.

4) USE CASES
Use cases that benefit from controller-based operation of
IPsec are SD-WAN, cloud provider networks, and dynamic
VPN setup.

a: SD-WAN
Large organizations with distributed locations require net-
work connectivity between the different sites. As dedicated
links are expensive, site-to-site IPsec-VPNs over provider
networks are increasingly used. However, manually setting
up VPN connections between all branches is time-intensive
and complex. SD-WAN [42], [53], [54] proposes IPsec data
plane functionality as part of hardware appliances or software
modules at the perimeter of the different sites of the organi-
zation. Then, a centralized SDN controller automatically sets
up and maintains IPsec-VPN connections.

b: CLOUD PROVIDER NETWORKS
Often, internal services offered by a public or private cloud
provider need to be accessed from within networks of an
organization. Again, site-to-site IPsec-VPN tunnels are a
cost-efficient alternative to dedicated links. Administrators
define IPsec-VPN gateways via a cloud management inter-
face. Then, the cloud orchestrator deploys IPsec-VPN gate-
ways as VNFs on the cloud provider’s infrastructure. Its
runtime operation is managed by a SDN controller. In addi-
tion, controller-based operation of IPsec can be also used
to dynamically connect different cloud networks by a multi-
cloud orchestrator [56]. Gunleifsen et al. [49], [50] propose
hop-by-hop protection for SFCs using IPsec and controller-
based operation.

c: DYNAMIC VPN SETUP
Managing many IPsec-VPN connections to different
hosts or services on a client host can be cumbersome.
Dynamic VPN setup performed by a SDN controller
takes over the tasks of tunnel setup and management.
Van der Pol et al. [57] present a concept where users request
VPN access to a particular network device from the SDN
controller. It then automatically sets up a VPN tunnel to
the remote domain. Aragon et al. [39] combine dynamic
VPN setup with authentication and authorization to auto-
matically deploy IPsec-VPN tunnels between IoT network
devices. This introduces several advantages over traditional
deployment. First, the control plane has an encompassing
view on the network topology with all devices. It can monitor
usage and detect outages for reliable operation. Second,
the centralized control plane features northbound interfaces
for management applications and southbound interfaces for
controlling data plane devices. Instead of manual per-device
configuration, VPNs are operated via a management layer
with policy languages that allow rule validation. Last, the cen-
tralized control plane offers flexibility so that the VPN
operation can be extended by other mechanisms, e.g., user
authentication with 802.1X [54].

C. IMPLEMENTATION OF IPsec PACKET PROCESSING
With P4-IPsec, we present the first data plane implementation
of IPsec in P4. We give an overview on IPsec data plane
implementations as related work.

1) SOFTWARE IMPLEMENTATIONS WITH
HARDWARE ACCELERATION
IPsec software programs represent the simplest packet pro-
cessing implementations. Their I/O performance depends
on the hardware, the chosen cryptographic algorithm, and
the average packet size. For Linux host systems, optimiza-
tion techniques such as DPDK [16], Netmap [58], and
PF_RING [59] tweak network stack processing to increase
packet I/O rates. Other works propose to increase IPsec
packet I/O by using multiple CPU cores [60], [61] or the
GPU [62]. Gallenmüller et al. [63] compare several mech-
anisms in an extensive study. Most of the described opti-
mization mechanisms are only applicable to Linux operating
systems.

IPsec packet I/O of software implementations can be
improved by offloading crypto operations or IPsec operations
to hardware. For the former, current CPU architectures pro-
vide hardware acceleration for common crypto operations.
AES-NI [64] or ARMv8 Cryptographic Extensions [65] are
examples of AES instruction sets that replace pure software
implementations. System on a chip (SoC) platforms or cir-
cuit boards may contain chips for offloading cryptographic
processing. Examples are theMarvell Cryptographic Engines
Security Accelerator (CESA) or Intel QuickAssist [66]. Such
processors can be also part of extension circuit boards that
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are connected to the mainboard via PCI. FPGAs might be
also used for implementing crypto operations, several ven-
dors (e.g., [67]) supply implementations of cryptographic
algorithms as program cores. For the latter, IPsec hardware
accelerators are available as ASIC [68], [69], NPU [70], [71],
accellerated processing unit (APU) [72], or FPGA [73], [74].

2) HARDWARE IMPLEMENTATIONS
Proprietary IPsec hardware concentrators, e.g., as sold by
Cisco or Juniper, are optimized for high IPsec I/O rates and,
therefore, might implement a larger degree of the overall
IPsec processing operations in hardware (e.g., on ASICs).
Due to their disclosed architectural details, we cannot get
insight into technical details. In addition, encompassing IPsec
implementations for FPGAs exist [75], [76] where only the
SPD and SAD are managed by an SDN controller.

3) IMPLEMENTATIONS ON PROGRAMMABLE DATA PLANES
In 2016, a Xilinx employee reported on the P4-Development
mailing list [77] that IPsec was successfully implemented in
PX [78], a high-level domain specific programming language
for programmable data planes. Crypto primitives are imple-
mented via an extern mechanism similar to P4 externs. The
authors report that the crypto primitives were programmed as
Register Transfer Level (RTL) designs targeting FPGAs. The
authors report that the principle should be the same for P4,
but it was not ported so far.

IV. CONCEPT
We describe the concept of P4-IPsec. We give an overview,
discuss design choices, and describe its data plane and control
plane in detail.

A. OVERVIEW
Figure 7 gives an overview on the functionality of P4-IPsec.

FIGURE 7. Overview on the functionality of P4-IPsec. In host-to-site
operation, roadwarrior hosts run a client agent to set up an IPsec tunnel
to a P4 switch via the SDN controller. In site-to-site operation, the SDN
controller sets up IPsec tunnels for pairs of P4 switches.

P4-IPsec supports two IPsec tunnel operation modes: host-
to-site and site-to-site. In host-to-site mode, roadwarrior hosts
establish IPsec tunnels to get access to internal networks.
Roadwarrior hosts run a client agent that interacts with the
SDN controller for tunnel setup. In site-to-site mode, two
internal networks are connected via an IPsec tunnel that is
established between two P4 switches. As a core principle of

P4-IPsec, every P4 switch implements the same IPsec func-
tionality, i.e., it can act as both IPsec tunnel endpoint for road-
warrior hosts in host-to-site mode and for other P4 switches
in site-to-sitemode. This facilitates very flexible deployments
where IPsec tunnels do not necessarily terminate at a central
VPN concentrator but can be distributed to many P4 switches
instead.

B. DESIGN CHOICES
P4 programs describe the packet forwarding behavior of
switches or routers. Thereby, an implementation of IPsec in
P4 is limited to data-plane-centric parts. Additional mech-
anisms such as IKE need to be part of an SDN controller
implementing the control plane and interfacing the P4 switch.
For P4-IPsec, our integration of IPsec in P4, we make the
following design choices:

1) USE OF IKE-LESS OPERATION MODE
Referring to the results of Lopez-Millan et al. [43] (see
Section III-B.1), we choose to implement IKE-less SA man-
agement via the SDN controller. Our proposed P4 processing
pipeline comprises equivalent representations for the SAD
and SPD that are both maintained by the SDN controller. Due
to the lack of IKE, no PAD is required. Selecting IKE-less
operation mode does not exclude an integration of IKE on
the SDN controller at a later stage.

2) RESTRICTION TO ESP IN TUNNEL MODE
To keep our proposed concept as minimalistic as possible,
we adopt the recommendations of Ferguson and Schneier [10]
and restrict our implementation to ESP in tunnel mode.

3) IMPLEMENTATION OF CIPHER SUITES WITH EXTERNS
P4 does not provide functions for encryption, decryption,
and message authentication. In contrast to related work,
we decide against offloading IPsec processing to external
software-based processing nodes and implement cipher suites
with the help of P4 externs (see Section II-B). This should
decrease the latency introduced by external processing while
keeping the overall system more minimalistic. Each cipher
suite is implemented by two externs; one that implements
encryption functionality, and one that implements decryption
functionality.

4) PROTOTYPE SIMPLIFICATIONS
We limit P4-IPsec to IPv4 and omit support for IPv6. We also
omit support for IPComp. For applicability in experiments,
we implement simple L3 forwarding based on longest-prefix
matching (LPM). Clearly, this is not a requirement from the
IPsec standard.

C. DATA PLANE OF P4-IPsec
We first give an overview on the P4 processing pipeline of
P4-IPsec. For the sake of simplicity in presentation, we com-
bine functions into function blocks and describe them later in
detail.
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FIGURE 8. Data plane processing pipeline of P4-IPsec. For ease of understanding, related functionalities are grouped together as function block.

1) P4 PROCESSING PIPELINE
Figure 8 depicts the P4 packet processing pipeline of
P4-IPsec. It consists of a parser, a deparser, and four function
blocks in between. When a packet arrives via the ingress,
the P4 parser first extracts the packet headers. In case of
a header other than ESP, the parser forwards the packet to
optional higher-layer functions that operate on protocol layers
such as TCP or UDP. Afterwards, the SPDmatching function
block processes the packet. Following the IPsec standard,
entries in the SPD determine about the action to be executed
on the packet. In case of DISCARD, the packet is dropped.
In case of BYPASS, the packet is passed to the L3 forwarding
function block. In case of PROTECT, the packet is passed to
the ESP encrypt function block. In the ESP encryption func-
tion block, encryption using SA data from the SADenc MAT is
applied to the IP packet. In the L3 forwarding function block,
the packet is forwarded based on the rules defined in the
forwardingMAT.Going back to the parser again: if the packet
has an ESP header, it is forwarded to the ESP decryption
function block. It validates the packet’s authenticity, decrypts
the ESP message, and extracts the original IP packet that is
then passed to the L3 forwarding function block. In case of
missing entries in the SPD, SADdec, SADenc, or LPM-FWD
MAT, the packet is dropped. As the final step, the deparser
reassembles all headers and re-calculates the IPv4 checksum
as some fields, e.g., the time to live (TTL), are changed.
Runtime behavior of the data plane can be managed by
manipulating the MATs via an SDN controller.

2) FUNCTION BLOCK: L3 FORWARDING
Figure 9 depicts the function block of L3 forwarding.
It implements packet forwarding to the next hop via a par-
ticular output port of the P4 switch. The LPM-FWD MAT
matches packets using their IPv4 destination addresses to two
actions: forward_packet and drop. The forward_packet action
receives the MAC address of the next hop and the output
port as parameters from the MAT. Then, it sets the MAC

FIGURE 9. L3 forwarding function block. IP packets are processed by the
LPM-FWD MAT that either applies the forward_packet or drop action.
In case of no match, the drop action is applied.

destination address of the packet to the MAC address of the
next hop, decreases the TTL by 1 in the IP header, and sets
the output port. Afterwards, the packet is forwarded to the
deparser and sent out via the egress. drop directly discards
the packet; this action is also applied if no match in the
LPM-FWD MAT is found.

FIGURE 10. SPD matching function block. IP packets are processed by the
SPD MAT. The add_spd_mark action adds the given parameter to the user
metadata of the packet. It decides if the packet is protected by IPsec
(PROTECT) or forwarded without protection (BYPASS) in later stages.

3) FUNCTION BLOCK: SPD MATCHING
Figure 10 depicts the function block of SPD matching.
We introduce a security policy (SP) MAT that resembles the
SPD from the IPsec standard (see Section II-A). It matches
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given packets with SPD rules and adds a mark to the
user metadata of each packet that is used in further pro-
cessing within the P4 processing pipeline. We implement
IPv4 source and destination address and IP protocol as exem-
plary match keys. Due to P4’s flexibility in defining packet
parsing, more match keys, e.g., TCP/UDP ports or even
application-layer ports, could be added easily. Actions are
either add_spd_mark or drop. The add_spd_mark action adds
‘‘spd_mark= 1’’ for BYPASS or ‘‘spd_mark= 2’’ for PRO-
TECT to the user metadata field of the packet. drop directly
discards the packet; this action is also applied if no match is
found.

FIGURE 11. ESP encryption function block. IP packets are processed by
the SAD-ENC MAT. It holds entries for each SA with the corresponding
data that is required for applying the associated cipher suite externs for
encryption.

4) FUNCTION BLOCK: ESP ENCRYPTION
Figure 11 depicts the function block of ESP encryption.
We introduce a SAD-ENC MAT that resembles the SAD
from the IPsec standard (see Section II-A). Each entry in
the MAT represents a particular SA that is identified by the
IPv4 destination address, i.e., packets are matched based on
their IPv4 destination address.

We implement cipher suites as actions that rely on
externs and registers. Representing a variety of cipher suites,
we implement theAES-CTR andNULL cipher suites as exam-
ples. The NULL cipher suite is intended for testing purposes
only. It uses the identity function instead of encrypting data
and skips calculating an integrity check value. Cipher suite
actions receive two types of parameters: base data that is
required by all cipher suites and cipher-specific data.

We first describe base data. The Security Parameter Index
(SPI) is part of the ESP header. It identifies the SA. The tunnel
endpoint addresses (IPv4 source/destination address) identify
the source and destination of the IPsec tunnel. Both are part of
the new outer IPv4 header that encapsulates the ESP frame.
The register index points to a particular index that holds the
packet counter for the particular SA used by the cipher suite
extern. Packet limits declare timeout conditions in terms of

packet count thresholds for SAs. If a soft limit is reached,
rekeying is triggered. If a hard limit is reached, packets that
belong to that SA are dropped.

The NULL cipher suite is an example that only requires
this set of base data. Typical cipher suites that implement
particular encryption and authentication mechanisms require
additional parameters such as keys, initialization vectors
(IVs), or even additional constructs to keep cipher state, e.g.,
registers. AES-CTR, as an example for such a cipher suite,
requires a key for AES and a key for keyed-hash message
authentication code (HMAC).

The functionality within the cipher suite action is as fol-
lows. First, the packet counter for the particular SA is read
from the register and incremented. Second, an ESP header
is created with the SPI and sequence number of the packet.
For the creation of the ESP packet, the action passes the
original IP packet, the newly created ESP header, and the
required keys of the cipher suite to the corresponding extern.
The cipher suite extern performs encryption/authentication
and responds with the ESP packet. Fourth, the new outer
IP packet is created with the tunnel endpoint addresses.
It encapsulates the newly created ESP packet. Last, timeout
conditions are checked. The user metadata structure includes
flags for soft_limit_reached and hard_limit_reached that are
set in case of matching conditions. For soft_limit_reached,
the packet is forwarded to the SDN controller to trigger tunnel
renewal. In case of hard_limit_reached, the packet is dropped.

FIGURE 12. ESP decryption function block. ESP packets are processed by
the SAD-DEC MAT. It holds entries for each SA with the corresponding
data that is required for applying the associated cipher suite externs for
decryption.

5) FUNCTION BLOCK: ESP DECRYPTION
Figure 12 depicts the function block of ESP decryption.
We introduce the SAD-DECMAT that resembles the decryp-
tion SAD from the IPsec standard (see Section II-A). Each
entry in the MAT represents a particular SA that is identified
by the outer IPv4 source and destination address (tunnel
endpoints), and the SPI. As in the function block of ESP
Encryption, cipher suites are implemented as actions that
rely on externs and registers with a different set of action
parameters.

The functionality within the cipher suite action is as fol-
lows. First, the packet counter for the particular SA is read
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from the register and incremented. Second, the original IP
packet is extracted from the ESP packet. Therefore, the action
passes the ESP packet and the required keys of the cipher suite
to the corresponding extern. The cipher suite extern performs
decryption/authentication and responds with the original IP
packet. Last, timeout conditions are checked as described in
ESP encryption.

D. CONTROL PLANE OPERATION OF P4-IPsec
We first give an overview on the control plane operation of
P4-IPsec. We describe how configuration data is generated
on the SDN controller and how it is set up in both host-to-site
and site-to-site operation mode.

FIGURE 13. Control plane operation in P4-IPsec. The client agent on the
roadwarrior host holds a control channel via gRPC to the SDN controller.
P4 switches are connected via P4Runtime. The SDN controller includes
IPsec tunnel profiles with configuration data for tunnel setup and
management.

1) OVERVIEW
Figure 13 depicts the control plane interaction in the two oper-
ation modes of P4-IPsec, host-to-site and site-to-site mode.
In both operation modes, IPsec tunnels are set up by the SDN
controller on the basis of IPsec tunnel profiles. Those can be
manually defined by an administrator or generated by another
software component, e.g., a network operation platform.
In host-to-site operation mode, the SDN controller interacts
with the client agent via a gRPC tunnel andwith the P4 switch
via P4Runtime. In site-to-site operation mode, the SDN
controller interacts with both P4 switches via P4Runtime.
On roadwarrior hosts, configuration data is converted into
ip xfrm commands that set up the tunnel. For P4 switches,
the SDN controller directly writes toMATs and receives noti-
fications, e.g., if an SA needs to be renewed, via P4Runtime.
For the sake of simplicity, we restrict our implementa-
tion to proactive IPsec tunnel setup. In site-to-site mode,
IPsec tunnels are set up and kept alive for all configured
P4 switches. For host-to-site mode, the client agent presents
a selection of available tunnels. The user then can select
one or multiple IPsec tunnel profiles to be set up by the SDN
controller.

This mechanism can be extended or substituted by more
sophisticated approaches such as on-demand VPN setup.
Predefined conditions (e.g., a request for a network resource
in an internal network) may trigger IPsec tunnel setup via the
SDN controller.

2) IPsec TUNNEL PROFILES
An IPsec tunnel between two peers consists of two unidi-
rectional SAs, each identified by a unique SPI. Due to their
direction, the first peer of an SA is called ‘‘left’’ where
the second peer of the SA is called ‘‘right’’. We denote the
SA from the left to the right peer as SPIi and the SA from the
right to the left peer as SPIj, respectively. Each SA requires
two MAT entries: one for encrypting ESP packets in the
SAD-ENC MAT and one for decrypting ESP packets in the
SAD-DEC MAT.

FIGURE 14. IPsec tunnel profiles with the associated SA data generated
by the SDN controller. The configuration data in the IPsec tunnel profiles
depends on the operation mode (host-to-site or site-to-site). SA data
depends on the cipher suite that is defined in the IPsec tunnel profile.

Figure 14 depicts how the SDN controller generates con-
figuration data for the roadwarrior hosts or P4 switches. IPsec
tunnel profiles are the basis for any IPsec tunnel. As basic
information about the tunnel, they include information about
the type of IPsec tunnel (host-to-site or site-to-site) and the
allowed traffic that is set to PROTECTED via SPD rules. The
left peer (first) can be a P4 switch (in site-to-site operation
mode) or a roadwarrior host (in host-to-site operation mode).
In case of site-to-site operation mode, this field holds the
switch ID (unique identifier of the P4 switch), endpoint IP
(public IP address of the P4 switch), and network resource
(internal network behind the P4 switch). In case of host-to-
site operation mode, this field only holds the roadwarrior ID.
The right peer (second) is always a P4 switch. Therefore,
it holds the same data as in the left peer field in site-to-site
operation mode as described before. The SA field holds the
cipher suite and soft/hard packet limits. On the basis of an
IPsec tunnel profile, the SDN controller generates configu-
ration data for both SAs. In case of the AES-CTR-HMAC-
MD5 cipher suite, SA data includes keys for AES-CTR and
HMAC, register indexes, and configuration data for the SPD
and forwarding function block. In case of the NULL cipher
suite, keying material is not needed.
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In our prototype, IPsec tunnel profiles are manually
defined by an administrator. In practice, they can be gen-
erated by a software component, e.g., a network operation
platform, on the basis of user/device profiles, groups, network
resources, and permission models.

3) CONTROLLER CONNECTION
We describe the management connections in site-to-site and
host-to-site operation mode.

a: SITE-TO-SITE OPERATION MODE (P4Runtime)
Site-to-site operation mode relies on P4Runtime for manag-
ing the P4 switches. Explained in Section II-B.3, the control
plane connection to the P4 switches is established by the SDN
controller. Therefore, it holds a list of connection data (name,
address, port identity) of all assigned P4 switches.

FIGURE 15. Control plane connection between the client agent and SDN
controller. The client agent depends on the FQDN of the SDN controller
and a client certificate to establish a gRPC connection to the SDN
controller.

b: HOST-TO-SITE OPERATION MODE (gRPC)
Figure 15 depicts the connection between the client agent
running on the roadwarrior host and the SDN controller. The
required configuration data for the start of the client agent
are the FQDN of the SDN controller and the client certificate.
At start, the client agent establishes a gRPC tunnel to the SDN
controller. The gRPC tunnel is protected with TLS, i.e., the
client agent and SDN controller perform a mutual authentica-
tion using certificates and establish an encrypted connection.
Certificates can be created and deployed to all roadwarrior
hosts running the client agent and the SDN controller with
a public key infrastructure (PKI). Roadwarrior host access
can be removed by simply revoking the associated client
certificate. In addition, gRPC provides support for optional
multifactor authentication with token-based authentication
via the Google Authenticator service. After connection setup,
the client agent and SDN controller exchange configuration
and signaling data via the gRPC tunnel. The client agent
implements interfaces to interact with the roadwarrior host’s
operating system for configuration and signaling. The man-
agement connection to the P4 switch as a remote peer is
established with P4Runtime as described before.

Host-to-site operation mode requires that the SDN con-
troller is dual-homed. It has an interface to a manage-
ment network where it holds P4Runtime connections to the
P4 switches and another interface that makes it accessible via
the Internet for client agents running on roadwarrior hosts.
On the latter interface, it has an IP address that is publically

FIGURE 16. Setup procedure for a bidirectional IPsec tunnel on two
peers. The SDN controller sets up decryption and encryption for both SAs
followed by SPD and forwarding entries.

reachable via the Internet. Although mutual certificate-based
authentication protects against malicious P4-IPsec agents,
this public interface should be protected as every publically
available web service, e.g., with a firewall.

4) TUNNEL MANAGEMENT OPERATIONS
We describe the elementary management operations of tunnel
setup, tunnel renewal, and tunnel deletion that apply to both
operation modes.

a: TUNNEL SETUP
IPsec tunnel setup is a three-step process. First, the SDN
controller sets up both SAs in the SAD-DEC MATs of both
peers. Second, the SDN controller sets up both SAs in the
SAD-ENC MATs of both peers. Setting up SA entries for
decryption first ensures that no ESP packets get lost if one
peer immediately starts to send ESP packets. Last, the SDN
controller sets up the SPD and installs forwarding rules if
required.

b: TUNNEL RENEWAL
IPsec SAs have a limited lifetime, i.e., keying material needs
to be renewed on a regular basis. Both client agent and
P4 switch notify the SDN controller if an SA needs to be
renewed. For the client agent, this notification is triggered
by the kernel implementation of IPsec that sends expira-
tion messages in the case that soft and hard timeout lim-
its are reached. For the P4 switches, this is implemented
using packet counters in registers that are checked with
each packet processing within an ESP encryption or decryp-
tion function block. We adopt the principle presented by
Lopez-Millan et al. [43] that implements tunnel renewal with-
out risking packet loss.When the SDN controller received the
SA expire notification, it generates a new SA that is identified
by a new SPI. Then, tunnel renewal follows the principle of
tunnel setup as described before. First, the new SA is installed
in the SAD-DEC MAT. Second, the existing SA in the
SAD-ENCMAT is replaced by the new SA via amodify oper-
ation. Last, as it can be ensured that no packets are encrypted
using the previous SA, its entry can be removed from the
SAD-DEC MAT.
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FIGURE 17. Renewal procedure for a unidirectional SA within an IPsec
tunnel on two peers. After receiving an SA expire message, the SDN
controller installs a new decryption SA on the remote peer. Afterwards,
it replaces the expired encryption SA with new SA data. As a cleanup
step, the old decryption SA is removed.

c: TUNNEL DELETION
If an IPsec tunnel should be deleted, the SDN controller
removes the associated entries in the SPD, SAD-ENC, and
SAD-DEC MAT. This is triggered on the SDN controller,
e.g., when an IPsec profile is removed.

V. PROTOTYPICAL IMPLEMENTATION
We describe our software-based prototype of P4-IPsec.
We present the testbed environment and outline the three parts
of the implementation in detail. We publish the source code
for both parts under the Apache v2 license on GitHub [1].

A. TESTBED ENVIRONMENT
Our prototypical implementation of P4-IPsec includes a
softwarized testbed environment. We use Mininet to create
network topologies that consist of BMv2 P4 switches and
network hosts. We build it with Vagrant [79], a tool that sim-
plifies the creation and management of virtual environments.
All resources and setup steps are part of a configuration file.
Executing vagrant up in a console within the repository folder
automatically sets up and launches the testbed environment.
It includes a virtual machine running Ubuntu 16.04 with
all dependencies: libyang, sysrepo, mininet, protobuf, gRPC,
PI/P4Runtime, BMv2, and P4C. The versions of all compo-
nents can be found in the setup scripts.

B. DATA PLANE IMPLEMENTATION
We implement the P4 data plane implementation for the
BMv2 P4 software target. We extend its simple_switch archi-
tecture by externs programmed in C++ for the AES-CTR-
HMAC-MD5 and NULL IPsec cipher suites. Each cipher
suite is implemented by two externs, one for encryption
and one for decryption. For AES-CTR-HMAC-MD5, we use
OpenSSL to apply AES-CTR for encryption/decryption and
HMAC-MD5 for packet authentication. We implement the
P4 processing pipeline as P416 program. It relies on the cipher
suite externs and uses registers to store packet counters for the
SAs. We run the P4 program on our extended simple_switch
P4 target. We encapsulate our modified simple_switch

P4 target within the simple_switch_grpc P4 target so that
P4Runtime API can be used for interaction with the SDN
controller.

C. CLIENT AGENT
We implement the client agent as Python 3.6 command line
tool for Linux hosts. We integrate a gRPC client using the
gRPC library [80] as an interface to the SDN controller.
For IPsec tunnel setup, the client agent translates configu-
ration data from the SDN controller into particular XFRM
commands from the iproute2 tool to configure IPsec on the
roadwarrior host. In addition, it sets up IP routes for routing IP
traffic via the IPsec tunnel. The received and applied config-
uration data is cached so that proper teardown configuration
can be applied in case of tunnel shutdown. We implement
rekeying with the help of Netlink [81]. The client agent
monitors Netlink messages by listening on the corresponding
Netlink socket and binding to the XFRMNLGRP_EXPIRE
address so that XFRM Expire messages can be received.
When receiving an XFRMExpire message, it extracts param-
eters such as SPI and IP addresses of the tunnel endpoints and
notifies the SDN controller for tunnel renewal.

D. SDN CONTROLLER
We implement the SDN controller as a command line tool in
Python 2.7. We use the p4runtime_lib [20] to integrate the
interface to the P4 switch and the gRPC library to integrate
the interface to the client agent. The SDN controller features
a simple command line interface (CLI) for development and
testing purposes that displays information about all active
IPsec tunnels. P4Runtime and p4runtime_lib facilitate easy
implementation of individual SDN controllers for prototypes.
Nevertheless, those functions could be also integrated into
existing SDN controllers such as ONOS or OpenDaylight.

VI. PERFORMANCE EVALUATION WITH THE
SOFTWARE SWITCH BMv2
We describe the testbed environment and report the experi-
ment results performed with the P4-IPsec software prototype
introduced in Section V.

A. METHODOLOGY
We conduct the performance experiments in the testbed
environment presented in Section V-A. The testbed runs on
a Lenovo Thinkpad T480s (Intel i5-8250U CPU, 16 GB
RAM) withManjaro Linux. The Vagrant file in the repository
includes the version numbers of all software components
from the testbed environment.

Figure 18 depicts the experiment setup. S1 and S2 are
BMv2 P4 switches, H1 and H2 are Linux hosts that are
attached to them. S1 and S2 are connected via two unidi-
rectional virtual links. We do not configure any additional
delay or bandwidth limitations on these links. The traffic
between H1 and H2 is forwarded by S1 and S2. We set up
IPsec tunnels with different cipher suites and conduct TCP
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FIGURE 18. Experiment setup for evaluation of the P4-IPsec prototype on
the BMv2 switches S1 and S2.

goodput measurements between H1 and H2 using iperf in
version 3.7.

The results in the following represent measured aver-
age values with confidence intervals for a significance of
α = 5%. Thus, the true averages lie within the displayed
ranges with a probability of 1− α.

B. DATA PLANE EVALUATION
We investigate how P4-IPsec’s data plane implementation
affects the overall throughput on the BMv2 P4 software
target.

1) EXPERIMENT DESCRIPTION
We analyze TCP goodput for three different configurations.
In the first scenario, we install BYPASS rules in the SPD
so that traffic is only forwarded and not handled by IPsec.
In the second scenario, we establish an IPsec tunnel between
S1 and S2 with the NULL cipher suite. In the third sce-
nario, we establish an IPsec tunnel between S1 and S2 with
the AES_CTR_HMAC_MD5 cipher suite. Each experiment
comprises 20 runs, each with a duration of 60 s and an MTU
set to 1450 B. We configure soft and hard packet limits for
rekeying to 50000 and 51000 resulting in an average of six
rekeyings per run, three for each of the two SAs of the IPsec
tunnel.

2) RESULTS & DISCUSSION
Figure 19(a) depicts the results. For forwarding without
IPsec (BYPASS), TCP goodput is 48.90Mbit/s. For IPsec
forwarding with the NULL cipher suite, TCP goodput is
47.25Mbit/s. For IPsec forwarding with the AES_CTR_
HMAC_MD5 cipher suite, TCP goodput is 47.21Mbit/s.
Hence, the experimental results show similar TCP goodput
rates between 47.21Mbit/s and 48.90Mbit/s for all three sce-
narios. The drop in performance is caused by IPsec process-
ing, while the differences between both IPsec cipher suites are
negligible. As all three results are still similar, we allocate the
moderate overall TCP goodput to the runtime performance
of the BMv2 P4 target. The low throughput of BMv2 is due
to the fact that its use is intended for testing and not for
production purposes. Thus, the results show that the overhead
of our IPsec implementation on BMv2 only slightly reduces
the TCP goodput and the impact of encryption/decryption
operations is negligible on this platform.

C. CONTROL PLANE EVALUATION
We investigate how P4-IPsec’s controller-based operation of
IPsec affects the time needed for IPsec tunnel setup and
renewal.

1) EXPERIMENT DESCRIPTION
In common IPsec deployment, SAs are set up between
two IPsec peers using IKE message exchange. In P4-IPsec,
an SDN controller sets up and renews IPsec tunnels, which
may take longer due to controller operation and table updates
on P4 switches.

For IPsec tunnel setup, the SDN controller generates two
unidirectional SAs, installs them on both P4 switches, and
modifies the SPD MATs of both peers so that traffic is pro-
tected using IPsec. In our experiment, we measure the time
for IPsec tunnel setup. It starts when the southbound connec-
tions between the SDN controller and the two P4 switches
are established and ends with the last confirmation of the
MAT modifications on the two P4 switches. For IPsec tunnel
renewal, the SDN controller generates one unidirectional
SA and installs it on both P4 switches. Tunnel renewal is
triggered by a P4 switch if the packet counter of a SA reaches
the soft packet limit. The measurement is started on the
SDN controller when it receives the soft timeout notifica-
tion from one P4 switch and it is stopped when the SDN
controller has received all confirmations of the P4 switches
about all MAT modifications. The details of both operations
including sequence diagrams can be found in Section IV-D.4.
We recorded measurement data for IPsec tunnel setup and
tunnel renewal within the experiment on TCP goodput for the
AES_CTR_HMAC_MD5 cipher suite as described before.

In the testbed environment, latency on the management
link between the SDN controller and P4 switches is very
low as all components run on the same host and as we have
not configured any extra delay on the links. In real-world
deployments, link latencies are significant, but they impact
both IKE message exchange and controller-based operation
of IPsec. By keeping the link latencies minimal, we derive
an upper bound on potentially additional latency due to con-
troller operation and MAT modification on P4 switches.

2) RESULTS & DISCUSSION
Figure 19(b) depicts the measured averages for IPsec tunnel
setup and renewal times. Tunnel setup takes 5.02mswhile the
time for tunnel renewal is 4.38ms. These results show that the
control plane overhead is low.

To further investigate both operations, we also analyze
the durations of three major components: creating SA data,
inserting new MAT entries, and updating existing MAT
entries. Figure 19(c) depicts their average times. Creating
keying material for a unidirectional SA takes 0.084ms.
Installing a new MAT entry via a write operation takes
0.702ms. Updating an existing MAT entry takes 0.587ms.
Thus, the effort for key generation is almost negligible com-
pared to MAT modifications.
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FIGURE 19. Measurement results for experiments with P4-IPsec using BMv2 software switches in a virtual environment with almost zero link delays.
Average values are shown with confidence intervals for a significance of α = 5%.

VII. IMPLEMENTATION ON HARDWARE P4 TARGETS
In the following, we describe implementation experiences for
theNetFPGASUMEboard and EdgecoreWedge 100BF-32X
P4 switch.

A. NetFPGA SUME
We give an overview of the platform and describe
implementation experiences.

1) OVERVIEW ON PLATFORM & DEVELOPMENT
NetFPGA SUME is an open source hardware development
board for prototyping network applications. Its main part is a
Xilinx Virtex-7 690T FPGA with 4 SFP+ ports that acts as
programmable data plane. It supports throughput rates up to
100GBit/s. The NetFPGA SUME board can be programmed
via the Software Defined Specification Environment for Net-
working (SDNet) [78], a proprietary predecessor of P4 from
Xilinx. Support for P4 programmability was introduced with
the P4-NetFPGA tool [82]. First, a P4-to-SDNet compiler
translates P416 programs into SDNet. Then, the SDNet com-
piler generates hardware description language (HDL) blocks
in Verilog that can be validated in generic and platform-
specific FPGA simulations. Finally, the HDL representation
is synthesized into a hardware design to program the FPGA.
In addition to the P4 program, custom functions can be
implemented in a HDL and included in the hardware design.
Programmers may implement custom HDL blocks or inte-
grate semiconductor intellectual property cores that can be
used as P4 externs in the P4 program. The P4-NetFPGA
tool only supports the SimpleSumeSwitch architecture,
i.e., P4 programs defined for more sophisticated architectures
such as Portable Switch Architecture (PSA) need to be trans-
formed to this architecture.

2) IMPLEMENTATION EXPERIENCES
We report on implementation experiences about porting our
software-based implementation P4-IPsec for the NetFPGA

SUME board. First, P4-NetFPGA is currently limited to
packet header manipulation. P4-IPsec requires modifications
of packet payloads, i.e., we were required to parse packet
payloads as an additional header field. As P4-NetFPGA does
not support parsing variable-length header fields, the imple-
mentation is limited to packets with a fixed length. Second,
P4-NetFPGA lacks a packet streaming function for data
exchange between the P4 pipeline and P4 externs. Instead,
data between the P4 pipeline and externs is currently
exchanged via blocks of bits. As this data transfer needs to
be executed within one clock cycle of the FPGA, the data
size is limited. We observed that this limit is about 10 kbit
for one function call. This limits the maximum packet size to
be processed through a P4 extern to about 600 B. During the
synthesis, theVivado suite optimizes the hardware implemen-
tation through several algorithms. In various experiments,
we observed a practical upper bound of about 140 B for
packets. Either the hardware implementation did use more
resources than offered by the FPGA, or data transfer and
calculation within the P4 extern exceeded one clock cycle.
A packet streaming function was announced in 2018, but is
still not available. Last, we encountered severalmore general
problems with P4-SDNet and the NetFPGA SUME board.
Probably due to a bug, we were not able to access the values
of an LPM table for IP routing with our SDN controller.
We solved that problem by using exact matching tables
instead, an approach that is not acceptable for a production
implementation. In addition, we experienced several stability
problems. No matches in MATs were found when data was
written to hardware registers. Finally, wemissedmany impor-
tant details in the documentation. With hope for improved
support, we managed to implement a very limited prototype.
It only allows to apply the NULL cipher on fixed-length
packets that do not exceed a total length of 140 B.

Scholz et al. [83] report on implementation experiences
of cryptographic hashing functions in P4 data planes. The
NetFPGA SUME board is also one of the platforms examined
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where the authors present results that correspond to our
results. As a workaround, the authors propose to move the
externs subsequent to the synthesized P4 program. However,
the workaround can be applied only if the P4 program does
not rely on the output of the extern. This makes it inapplicable
to P4-IPsec. Besides, implementing this workaround requires
extensive knowledge about HDLs and FPGA programming.

B. EDGECORE WEDGE WITH TOFINO
We give an overview of the platform and describe why a
direct adoption of P4-IPsec is not feasible. We present two
workaround implementations and evaluate their performance
in experiments.

1) OVERVIEW ON PLATFORM & DEVELOPMENT
The Edgecore Wedge 100BF-32X [84], features 32 QSFP28
network ports with throughput rates up to 100Gbit/s. The
QSFP28 ports interface the Tofino switching ASIC from
Barefoot Networkswhich is fully programmablewith P4. The
Tofino ASIC connects to a CPU module via PCIe. It features
an Intel Pentium D1517 processor (1.6GHz, 4 cores), 8 GB
RAM, and a 32 GBSSD. For programming andmanaging the
Tofino ASIC, the CPUmodule runs the Barefoot P4 Software
Development Environment on top of a Linux-based operating
system. It loads and manages P4 programs during execution,
provides management APIs (e.g., P4Runtime), and exposes
an interface for network packet exchange between the P4 pro-
cessing pipeline and the CPU module. Due to its optimiza-
tion for high-speed packet processing with bandwidths up to
multiple Tbit/s in data centers or core networks, user-defined
P4 externs that may contain computation-intense functions
are not supported.

FIGURE 20. First workaround implementation. We relocate IPsec
processing to the main CPU module that interfaces the Tofino switching
ASIC via a PCIe CPU port.

2) WORKAROUND IMPLEMENTATIONS
In our first workaround implementation, we relocate the
P4 externs of P4-IPsec to the main CPU module. Figure 20
depicts the concept. We replace all P4 extern function calls in
the P4 processing pipeline by packet transfers via the CPU
port to the main CPU module. On the main CPU module,
we use the IPsec kernel functions of the Linux operating
system for IPsec processing. We implement a simple IPsec
crypto manager program that translates P4-IPsec configura-
tion from the SDN controller into IPsec configuration for

the Linux host. We implement the IPsec crypto manager in
Python 3. It relies on iproute2 commands to manage the SPD
and SAD of the Linux host.

We briefly evaluate this first workaround implementation
with experiments on latency and TCP goodput. As depicted
in Figure 20, we attach two physical hosts running Ubuntu
16.04 LTS via 100Gbit/s links to the front ports of the
Wedge switch. We enable IPsec on the link between H1
and the switch while the link between the switch and H2
remains unprotected. First, we measure the latency that is
introduced by IPsec processing and packet exchange with
the CPU module. We send 100 ICMP echo requests from
H1 to H2 and measure an average round-trip time of about
1.5ms. Second, we investigate the maximum TCP good-
put. We generate TCP transmissions with iperf3 in three
experiments, each performed with five runs and a duration
of 30 s. For getting a reference, we measure the maximum
TCP goodput between the P4 processing pipeline and the
main CPU module. Therefore, we assign an IP address to
the virtual network interface of the CPU port on the main
CPU module and run iperf3 measurements between H1 and
the main CPU module. We measure an average TCP goodput
of about 3.3Gbit/s. We consider this as upper bound for the
main CPU module. Now, we measure TCP goodput between
H1 and H2. When using the NULL cipher suite, we measure
an average TCP goodput of about 2Gbit/s. For the AES-
GCM-256 cipher suite, the average TCP goodput drops to
about 1.4Gbit/s. We repeat the experiment for 16 concurrent
IPsec tunnels and calculate the average of 10 runs with a
duration of 300 s. The maximum TCP goodput remains at
2Gbit/s for IPsec with the NULL cipher suite and 1.4Gbit/s
for IPsec with the AES-GCM-256 cipher suite. We attribute
the large differences in TCP goodput to the rather slow CPU
with a base frequency of 1.6GHz. Still, we consider this
a very reasonable performance that might be sufficient for
scenarios where only few shared network resources should
be accessed sporadically by roadwarrior hosts.

FIGURE 21. Second workaround implementation. We forward
IPsec-related flows to a Linux crypto host.

In our second workaround implementation, we forward
IPsec-related flows to a crypto host. This approach is used
by several past works on integrating IPsec with fixed func-
tion SDN data planes (e.g., [45]). As depicted in Figure 21,
we set up a Linux crypto host for offloading IPsec processing.
We deploy the IPsec crypto manager program from the previ-
ous workaround implementation as an interface between the
crypto host and SDN controller. We deploy a simple P4 pro-
gram on the Wedge switch that forwards IPsec flows based
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FIGURE 22. Average TCP goodput for both workaround implementations
and 1-16 IPsec tunnels with the AES-GCM-256 cipher suite.

on a MAT. The SDN controller writes/edits the forwarding
MAT on the Wedge switch and sends configuration messages
to the IPsec crypto manager program.

For a simple evaluation, we set up a crypto host with an
Intel Xeon Gold 6134 CPU (8 cores, 16 threads), 128 GB
RAM, and a 240 GB SSD, running Ubuntu 18.04 LTS. We
perform the same experiments as for the first workaround
implementation. The round-trip time is about 2ms which
is slightly larger than in the previous approach. Figure 22
compares TCP goodput results for IPsec tunnels with the
AES-GCM-256 cipher suite of both workaround implemen-
tations. For a single IPsec tunnel with the AES-GCM-256
cipher suite, we measure an average TCP goodput of about
4Gbit/s. It can be increased by running multiple connec-
tions over the same crypto host. For 16 parallel IPsec tun-
nels, we measure an overall average TCP goodput of about
24Gbit/s. This effect can be attributed to receive-side scaling
(RSS) of the network interface card, which can leverage mul-
tiple cores, but only one per IPsec tunnel. In case of multiple
IPsec tunnels, the overall TCP goodput can be increased
throughRSS by leveraging the processing power ofmore than
a single core. Crypto capacity can be scaled up by increasing
the number of crypto hosts connected to the switch. TCP
goodput on each crypto host can be further improved by
optimization techniques as presented in Section III-C.

Chen [85] presents an implementation of AES encryption
for Tofino-based P4 switches. It uses a novel Scrambled
Lookup Table technique that allows throughput rates of up
to 10.92Gbit/s for AES-128. However, the current concept is
limited to blockwise encryption of packets with a maximum
payload size of 16 bytes so that it is in its current form not a
suitable base for IPsec support. If subsequent versions of this
work introduce block chaining, integrating P4-IPsec could be
an interesting follow-up work.

VIII. CONCLUSION
In this work, we proposed the first implementation of IPsec
in P4. The proposed data plane implementation features ESP
in tunnel mode and provides support formultiple cipher suites
with the help of P4 externs. P4-IPsec supports automated
operation of IPsec in host-to-site and site-to-site scenarios.
IPsec tunnels are set up and managed by an SDN controller

based on predefined tunnel profiles. For interaction with
remote hosts in host-to-site scenario, we introduce a client
agent for Linux hosts. We introduced the fundamentals of
IPsec and data plane programming with P4, gave an extensive
review on related work, and presented the architecture of
P4-IPsec.

P4 programmable data planes open up the possibility of
implementing IPsec on SDN-capable data plans for the first
time. However, the implementation on P4 switches is still
challenging. For the BMv2 software switch, the implemen-
tation was straightforward, but moderate data rates make
its practical application difficult. However, the controller-
supported signaling was not a bottleneck. Due to the platform
limitations of the NetFPGA SUME board, we were not able
to build a working prototype. With the Tofino-based Wedge
switch, we were successful. Even though it does not support
P4 externs, we presented two workaround implementations
that leverage the main CPUmodule for crypto functions or an
external crypto host, respectively.

We have shown that security use cases can benefit from
P4, but crypto functions are still missing on P4 hardware
switches. Therefore, we advocate for P4 hardware targets that
either include P4 externs for those operations or offer power-
ful interfaces so that developers can run individual functions
on the CPU module of such switches. Such features have the
potential to massively foster the deployment of P4 targets in
practice and stimulate further network research.

LIST OF ACRONYMS
SDN software-defined networking
ONF Open Network Foundation
OF OpenFlow
ODP Open Data Plane
NFV network function virtualization
VNF virtual network function
SFC service function chaining
BMv2 Behavioral Model version 2
MAT match-action table
VPN Virtual Private Network
IP Internet Protocol
IPsec Internet Protocol Security
ESP Encrypted Secured Payload
AH Authentication Header
PPF packet processing function
SP security policy
SPD Security Policy Database
SA security association
SAD Security Association Database
PAD Peer Authentication Database
SPI Security Parameter Index
IKE Internet Key Exchange
IKEv2 Internet Key Exchange v2
IPComp IP Payload Compression
AE authenticated encryption
ICV Integrity Check Value
IV initialization vector
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3DES Triple Data Encryption Standard
AES Advanced Encryption Standard
CBC cipher block chaining
CTR counter
GCM galois/counter mode
HMAC keyed-hash message authentication code
SHA secure hash algorithm
TLS Transport Layer Security
PKI public key infrastructure
SoC system on a chip
FPGA field programmable gate array
NPU network processing units
ASIC application-specific integrated circuit
NIC network interface card
NPU network processing unit
APU accellerated processing unit
DPDK Data Plane Development Kit
SDNet Software Defined Specification Environment

for Networking
HDL hardware description language
HLIR high-level intermediate representation
RTL Register Transfer Level
PSA Portable Switch Architecture
TTL time to live
INT in-band network telemetry
LPM longest-prefix matching
CLI command line interface
FSM finite state machine
API application programming interface
LLDP Link Layer Discovery Protocol
MACsec Media Access Control Security
RSS receive-side scaling
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