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ABSTRACT Remote sensing image classification plays a significant role in urban applications, precision
agriculture, water resource management. The task of classification in the field of remote sensing is to map
raw images to semantic maps. Typically, fully convolutional network (FCN) is one of the most effective deep
neural networks for semantic segmentation. However, small objects in remote sensing images can be easily
overlooked and misclassified as the majority label, which is often the background of the image. Although
many works have attempted to deal with this problem, making a trade-off between background semantics
and edge details is still a problem. This is mainly because they are based on a single neural network model.
To deal with this problem, a convolutional deep network with regions (R-CNN), which is highly effective for
object detection is leveraged as a complementary component in our work. A learning-based and decision-
level strategy is applied to fuse both semanticmaps from a semanticmodel and an object detectionmodel. The
proposed network is referred to as Mask-R-FCN. Experimental results on real remote sensing images from
the Zurich dataset, Gaofen Image Dataset (GID), and DataFountain2017 show that the proposed network
can obtain higher accuracy than single deep neural networks and other machine learning algorithms. The
proposed network achieved better average accuracies, which are approximately 2% higher than those of any
other single deep neural networks on the Zurich, GID, and DataFoundation2017 datasets.

INDEX TERMS Deep fusion, deep semantic segmentation, fully convolutional network, object detection,
remote sensing.

I. INTRODUCTION
With the fast development of sensor technologies, it is easier
to obtain remote sensing images, which play an increasingly
important role in urban applications, such as rapid urban
mapping [1], hazard and health monitoring [2], and earth
observation [3], [4]. To achieve these tasks, it is necessary to
design an effective model with high accuracy and robustness
for the classification of remote sensing images. Owing to the
fastest-growing deep learning techniques [5], it is possible to
build automatic classifiers on big data processing platforms,
such as Apache Spark [6], along with powerful computing
capacity, which is distributed and in parallel for the analysis
of remote sensing images [7], [8]. Recent studies indicate that
convolution neural networks (CNNs) can effectively learn
feature representations and help with several tasks, such
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as large-scale image recognition [9]–[13], object detection
[14]–[17], and semantic segmentation [18]–[21]. Recent
advances have proved that CNN is an effective method
for extracting mid/high-level features from remote sensing
images [22].

The semantic segmentation tasks of remote sensing are
usually based on hyperspectral [23]–[26] and multispec-
tral [27]–[29] remote sensing images. Hyperspectral images
generally have tens or hundreds of bits of spectral infor-
mation per pixel. Shallow supervised algorithms based on
single pixels in remote sensing such as SVM [20], decision
tree [30], and random forest [31] work well on these datasets.
Unlike hyperspectral images, multispectral images usually
have higher resolution but only contain certain channels such
as RGB-NIR (near infrared), SWIR (short wave infrared),
and TIR (thermal infrared); they may seem similar to nat-
ural images. Shallow supervised algorithms based on a sin-
gle pixel do not consider contextual information around the
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given pixel. They can classify hyperspectral RS images well
but find it difficult to classify multispectral remote sensing
images via a single pixel. Many works have tried to design
using contextual information and have resorted to shal-
low supervised algorithms in order to classify single pixels
[32], [33]. They have been proven to classify multispectral
images efficiently but certain problems remain, such as being
too dependent on expert knowledge or providing extracted
features inferior to those available using deep learning.

In recent years, CNNs have been widely exploited for
segmentation of remote sensing data [34], [35]. A former
popular segmentationmethod based on deep learning is called
patch classification [36], [37], in which features are usually
extracted from the surrounding pixels to classify the central
pixel. Usually the deep neural networks are first used to
extract features and then the shallow supervised methods are
applied to classify the central pixel. However, such methods
have the problem of high computation effort. The main cause
for this is the existence of the fully connected layers. In 2014,
the fully convolutional network (FCN) [38] was proposed
which allows for the elimination of the fully connected layers
at the end of network. This structure has been widely applied
in remote sensing [39], [40]. The subsequent semantic seg-
mentation method adopted this structure, which can also be
called end-to-end classification. There are two different archi-
tectures of this end-to-end classification method. The first
is the encoder-decoder architecture [41], [42]. The encod-
ing process gradually reduces the location information and
extracts the abstract features through the pooling layer, and
the decoding process gradually restores the location informa-
tion by upsampling or deconvolution. Usually, there is a direct
link between the encoder and decoder [43]. The second archi-
tecture is the dilated convolution, which does not consider
the pooling layer. Typically, in [44], the dilated convolution
uses expanded convolution to aggregate multi-scale informa-
tion, called ‘‘context module’’. However, dilated convolution
architecture requires a large memory and has a heavy compu-
tational burden.

Although deep learning methods have been successfully
applied in the segmentation of remote sensing images, certain
new problems are still associated with it. A significant prob-
lem is that small objects usually cannot be well classified by
these methods. Few works have tried to improve the segmen-
tation of small objects, such as SegNet [41], DeepUNet [45],
and DeepLab [46]; however, the effect of the improvement is
limited. Although these algorithms can solve the problem of
small object segmentation to some extent, they still suffer the
problem of making a trade-off between background seman-
tics and edge details [37], [47]. This is mainly because they
are based on a single neural network model. Deep fusion has
become one of the fastest growing research directions in the
field of remote sensing. Generally, there are two forms of the
deep learning-based fusion method: the decision-level fusion
and the feature-level fusion. The simplest way to achieve
feature-level fusion using deep learning is to stack multiple
channels from different imaging methods on a single data

cube, followed by the application of the regular training strat-
egy [36]. Another way to fuse features of spatial information
in deep neural networks is to extract different types of spatial
filters and concentrate them as the joint features to make the
final prediction [48], [49]. However, these methods suffer
from lack of additional data and inability to utilize large-scale
pretrained model. Compared to feature-level fusion methods,
decision-level fusion methods use an explicit way to learn the
final fusion layer using the land maps generated by several
single networks. From the perspective of the fusion type,
the decision-level fusion can be divided into two types: post-
processing and learning-based. In the first case, different
networks infer different land maps; the outputs are fused in
the subsequent step for post-processing [50]. In the second
case, before learning the land maps from different networks,
a few randomly initiated layers or pretrained layers are con-
nected to the backend of all outputs to learn an optimal result.
Experiments in [51] showed that learning-based methods can
obtain better fusion results than the direct-fusion methods.
Our method is based on decision-level and learning-based
fusion. We use object detection model as a complementary
descriptor since it is a powerful tool to retrieve these small
objects that were lost. Object detection in remote sensing usu-
ally refers to the identification of bounding boxes of interest
(such as tanks, airplanes, and harbors) in a satellite image
and their classification by the correct labels [52], [53]. The
current object detectionmethods can be divided into two cate-
gories: the two-stage and one-stage methods. In the two-stage
method, extraction is first applied to generate region pro-
posals in the entire image, and then the regions are cropped
to extract features for prediction. The region-based CNN
(R-CNN) [54] is the first of its kind that proves that CNNs
can greatly improve the performance of object detection using
PASCAL [55]. The subsequently proposed R-CNNs such as
fast-RCNN [56] and faster-RCNN [57] continue to utilize the
same structure as R-CNN. Unlike the two-stage approach,
the YOLO [58]–[60] series methods model object detection
as a regression problem with an end-to-end training network.
During prediction, only one inference is required to obtain the
bounding boxes and category labels. Because there is only
one inference, one-stage methods run faster than two-stage
methods but have lower detection accuracy.

Considering the advantages of both segmentation and
object detection, we propose here a deep neural network
fused architecture to better classify the remote sensing images
by combining the pixel-based FCN and object-based Mask-
RCNN [61]. Mask-RCNN is able to automatically detect
objects in the images and assign a semantic label to each
object (a predefined region). In addition, for each object,
an instance segmentation strategy is applied in Mask-RCNN
to make a pixel-level prediction. Here, the proposed network
is referred to as Mask-R-FCN. The classification results are
fused in the decision level by two deep neural networks
(DNNs) for the proposedMask-R-FCN. Experimental results
on real remote sensing images from Zurich [20], GID [21],
and DataFountain2017 show that the proposed network can
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FIGURE 1. Architecture of the proposed Mask-R-FCN network.

obtain higher accuracy than a single DNN, such as FCN,
as well as many machine learning algorithms.

This article is organized as follows. Section II describes the
proposed Mask-R-FCN for the classification of remote sens-
ing images by combining the pixel-based FCN and object-
based Mask-RCNN. Section III presents the experimental
results for the comparison of different methods. Discussion
and conclusion are given in Section IV.

II. METHODOLOGY
To better classify small objects in urban remote sens-
ing images, a deep fused network is designed by com-
bining the pixel-based FCN [38] and the object-based
Mask-RCNN [61]. The classification results are fused at the
decision level. The architecture of the proposed model is
shown in Fig. 1. In the following sections, the architectures of
FCN and Mask-RCNN are firstly described, following which
the proposed Mask-R-FCN network is introduced.

A. SEMANTIC SEGMENTATION
FCN is an end-to-end classifier and the architecture can
be adapted by fine-tuning to other deep networks, such as
VGGNet [11]. The general architecture of an FCN is depicted
in Fig. 2. For convenience, we reduce the number of convo-
lutions and skip connections. Each layer of data in a convo-
lutional layer is a three-dimensional array of size h× w× d ,
where h and w are the spatial dimensions, and d is the fea-
ture or channel dimension. The input is the image, with pixel
size h×w, and d spectral channels, where d is usually equal to
3 for RGB remote sensing images or 4 for NIR-RGB remote
sensing images.

FIGURE 2. A typical architecture of FCN.

FCN updates network parameters according to a softmax
loss. The loss function is the sum of the pixel-level softmax
loss on the spatial map of the last layer. The loss function is
described as

l(x; 2) =
∑
ij

l ′(xij, 2ij), (1)

where x denotes the predicted map while θ denotes the real
semantic map. l ′ is the softmax loss for each pixel.
Usually, large amounts of raw images cannot be trained

simultaneously due to memory limitations and the time con-
sumption of the process. In our experimental dataset, the aver-
age size of the images is 1100×1150 pixels, so a considerable
amount of memory and time-cost are required to train even
a small batch using FCN. In addition, if an entire image is
taken as a sample during training, the number of samples
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can be too small (less than 20), leading to an overfitting
problem. Accordingly, raw images are usually cropped to
smaller fixed-size patches for the training data by using slid-
ing windows. Overlapping is allowed to increase the number
of training data and enhance the robustness of the model.

FCN can provide a pixel-level prediction. Its output layer
has the same size as the input, i.e., h × w. FCN first down-
samples the input to a smaller size and then upsamples the
activations to the same size as that of the inputs, as shown
in Fig. 2. Deconvolution is usually used to implement the
upsampling operation, which directly conducts a transposed
convolution on the feature map. But in FCN, a variant of
the deconvolution is used. This variant first performs an
uppooling operation on the feature map and then conducts
a convolution.

In addition, skip connections are introduced into the net-
work, which allows the process of decoding to fuse abstract
semantic information from different depths of encoding lay-
ers and preserve the location information, which is usually
lost in the step-by-step process of the pooling operations.

B. OBJECT DETECTION
R-CNN is designed for object detection (detecting localiza-
tion of the object and distributing a label to each region
proposal) within an image. Because our experimental datasets
are meant for the task of semantic segmentation, and each
image of this dataset is annotated by pixel-level labels, pre-
processing is required to construct a new dataset to cater the
task of object detection. We follow the common architecture
of Mask-RCNN. First, a global feature map is generated by
several convolutional layers and subsequently, the map is fed
into three different branches. The first branch inherits the
region proposal network (RPN). The RPN generates candi-
date region proposals and refines the bounding boxes for the
first time. Next, an RoI align operation is applied on the global
feature map according to the predicted coordinates from the
RPN. The aligned features finally go through two parallel
branches, one for predicting pixel-level classification on each
bounding box and the other for predicting categories and
confidences for each candidate. The former adds a ‘‘head’’
module behind RoI align, which scales up the output of RoI
align to enhance the accuracy of the mask prediction.

In addition, unlike the traditional FCN’s softmax loss for
each category, the mask branch uses average binary cross-
entropy loss for the k-th predicted Mask. Here, k denotes the
number of categories. In general, Mask-RCNN uses a multi-
task loss. The loss consists of three parts: classification loss,
boundary loss, and mask loss:

L({pi, ti,mi}) =
1
Ncls

∑
i

Lcls(pi, p∗i )

+ λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i )

+
1

Nmask

∑
i

Lmask (mi), (2)

where Ncls denotes the number of categories, Lcls represents
the category loss function. The category loss function is
described as

Lcls(pi, p∗i ) = −log[pip
∗
i + (1− p∗i )(1− pi)], (3)

where pi denotes the confidence with which the target is
recognized as an object and p∗i is a binary function, the output
of which is 1 if the target is a real object, otherwise it is 0.
In other words, only when the object in the i-th bound is a
positive example will it contribute to the category loss.

The bounding-box regression loss function is repre-
sented as

Lreg(ti, t∗i ) = smoothL1

=

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

}
. (4)

In addition to the above two types of loss functions,
the mask branch in Mask-RCNN uses an average binary
cross-entropy loss function, which is described as

Lmask = −[mi × log(m∗i )+ (1− m)log(1− m∗i )], (5)

wheremi represents the confidence that the object is predicted
as the target, and m∗i represents the i-th ground truth mask.
Using the binary cross-entropy loss function avoids competi-
tion between classes. The classification task is only assigned
to the classification loss function, and the mask layer only
distinguishes specific small classes in the mask.

C. INTEGRATING MODULE
A strategy for integration is applied to both the pixel-level and
object-level semantic results. This is called ‘‘decision-level
fusion’’. Our approach is primarily based on learning-based
fusion.
The definition of the training samples in the fusion module

can be seen in Fig. 3. For each bounding box predicted from
Mask-RCNN, the relevant features will be acquired in the
penultimate layer of the mask branch, which is a feature map
with the size of 14×14×256. Then the corresponding features
are obtained from the penultimate layer of FCN which are
cropped by the coordinates of the bounding box. Because the
sizes of both feature maps are mismatched, an ROI pooling
step will be used for both to generate feature blocks of the
same size. Then, both feature maps can be stacked into a
single cube along the axis of the channel. After the stacking
operation, we flatten the cube into a single vector and fed
them into two fully connected layers.
The network used in fusion module is a fully connected

network. Because there training samples are few, a simple
two-layer fully connected network with two hidden layers
is used. The number of unions of both hidden layers are
128 and 256. The output layer is a binary value activated
by the sigmoid function for determining if the corresponding
regions should cover the output maps of FCN. The fusion
module updates network parameters according to binary
cross-entropy loss.
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FIGURE 3. The definition of training samples in fusion module. The fusion feature is generated by features from both the semantic and
object detection modules. The label is defined by comparison of both modules.

FIGURE 4. Image patch examples from Zurich dataset. The above row shows the original RGB-NIR remote sensing images, and the
corresponding row below shows the ground truth of the semantic label. The class legend is given at the bottom.

III. EXPERIMENTS
To validate the proposed method, we conduct experiments
on three different remote sensing datasets. These experiments
share the same setting.

A. DATA DESCRIPTION
To verify the semantic segmentation performance of the pro-
posedMask-R-FCNmodel, we choose the Zurich dataset [20]
that provides land-cover maps of very high-resolution (VHR)
satellite images. There are 20 image chips from a single large
QuickBird image acquired in 2002 over Zurich, Switzerland,

and each image chip is pansharpened to 0.6m resolution. This
dataset contains 8 land-use categories covering roads, build-
ings, trees, grass, bare soil, water, railways, and swimming
pools. The average size of each image is 1000× 1150 pixels
and each image has 4 channels of RGB and NIR. An example
along with the dataset is shown in Fig. 4.

B. DATA PREPROCESSING
1) PREPARING DATASETS FOR SEMANTIC SEGMENTATION
We first convert the original RGB-like labels to one-hot
coding for each image in the Zurich dataset. We use the
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FIGURE 5. A demonstration for sliding windows.

data augmentation strategy on the original dataset. In general,
when training FCN, considering the memory and training
speeds, the common size of the input image is 256 × 256.
However, the average size of our image is 1000 × 1150 for
Zurich dataset, 7200 × 6800 for GID, and 4000 × 4000
for DataFountain2017. Therefore we use the sliding window
approach to segment the original image. To further increase
the number of data samples and improve robustness of the
model, we narrow the stride while using the sliding win-
dow for segmentation, which causes window overlap in the
samples. The aforementioned strategy is illustrated in Fig. 5.
Among the segmented images, we randomly choose the ones
from a single chip for testing and the rest of the images are
considered as training data. In order to take advantage of
the existing powerful network trained on large-scale data,
we only use the RGB channels of the original images for
segmentation. The reason is that the natural images usu-
ally have only three channels. Another method is to use
RGB-NIR images to train the network from scratch; however,
this method brings a drop in the classification accuracy. The
possible reason is that the network often has millions of
parameters, and the small-scale remote sensing dataset cannot
train effectively; this usually leads to an overfitting problem.

2) PREPARING DATASETS FOR OBJECT DETECTION
The dataset used in our study is annotated at pixel level.
However, because of the object detection task, the dataset
should be annotated at the object level. To meet this require-
ment of using a Mask-RCNN, each of the object regions
should be annotated at the pixel-level. Therefore, the algo-
rithm proposed in our article uses a traversal method to gen-
erate all the bounding boxes from the semantic map. Because
the bounding boxes are derived from the pixel-level map,
in addition to being assigned object-level labels, they are
naturally annotated at the pixel-level. Some examples derived
by our algorithm are illustrated in Fig. 6. In the process
of preparing small object dataset, a threshold value of δ is
given. If the number of valid pixels within the labeled object
(the valid pixels include pixels which are non-background)
exceeds δ, this object will be removed from the candidate
training dataset; otherwise, the object will be retained. After
the above operations for each candidate box generated by
the algorithm, the final training dataset includes only a list
of candidate boxes containing small objects. By doing so,

FIGURE 6. Examples generated by the algorithm. In the algorithm,
the horizontal bounding boxes are used while the aim of this task is to
accurately localize the instance in terms of a horizontal bounding box in
the (xmin, ymin, xmax, ymax) format. The ground truths for object
detection task are generated by calculating the axis-aligned bounding
boxes. Some examples of horizontal bounding boxes generated by the
algorithm can be seen in the two semantic maps.

the input size of training samples is limited, so that the
model can focus more on the detection of small objects;
we set δ to 4000.

C. EXPERIMENTAL DETAILS
1) BASELINE FCN MODEL
Webuild our semantic segmentationmodel on an FCN frame-
work that first downsamples the input, upsamples the encod-
ing output, and subsequently classifies the output. The input
images are processed to a fixed size of 256 × 256. We refer
to FCN-8s, which uses the VGG network as the base network
for extracting deep features, when training FCN. FCN-8s was
proved most effective in the original article among FCN-8s,
FCN-16s, and FCN-32s. We use the pretrained models for
which the input has three channels, even though the Zurich
images have four NIR-RGB channels. This is because the
general pretrained model is always trained on natural images,
which have three RGB channels. An attempt is also made
to train a model from scratch by using RGB-NIR images.
The network is trained end-to-end for 100 epochs on the
training splits from the Zurich dataset. The input size of all
the deep learning algorithms is 256 × 256. The models are
trained by the stochastic gradient descent (SGD) with a mini-
batch size of 16 and a fixed learning rate of 0.0001. Each
layer uses leaky rectified linear functions as their activation
functions. We adopt a standard data augmentation scheme
including random rotation and random scaling. We did not
use a color transform because this augmentation is used for
RGB images. RGB in Zurich data actually refers to the digital
number (DN) value, which is the brightness value of a pixel in
a remote sensing image. Using a color transform may break
the relationship between categories and pixel bands.

2) OBJECT DETECTION MODEL
Here we use Mask-RCNN as our baseline object detection
model. To be consistent with FCN, we use 256×256 as input
size, which is helpful for the final fusion step. Performing pre-
processing in a way similar to FCN, we use a sliding window
of 256×256 and a stride of 80 to segment the object-annotated
maps. For a bounding box that spans two patches, we simply
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cut it into two parts along the boundary. This is done for most
remote sensing images because object classification results
of land use are less affected by the integrity of the target
object, for example, water, grass, trees and so on. In our initial
experiment, overfitting may easily take place when train-
ing the model from scratch with only thousands of training
examples, for which the channel is of the NIR-RGB type.
We removed the infrared channel and used only the RGB
channels to train the model, in order to use the pretrained
model verified on the existing PASCAL VOC [55] and MS
COCO datasets [62]. We adopt the same data augmentation
scheme in this article [63] which is intended for small object
detection. In addition, we apply several strategies, including
‘‘strict in’’ and ‘‘strict out,’’ so that Mask-RCNN focuses on
small object detection.

‘‘Strict in’’: the first strategy mentioned above limits the
size of input data and makes the model focus on the detection
of small objects. Moreover, we modify the anchor parameter
of Mask-RCNN. The anchor parameter is used to set the size
of predefined boxes, which adds a priori to the model. This
priori assumes the rough size of the candidate box that may
appear on each cell. The training difficulty can be reduced by
a priori to speed up the convergence of the model. Another
advantage of the predefined boxes is that the model can be
more inclined to detect objects with the same size as that of
the predefined boxes. To make the model be more inclined to
detect small objects, we changed the original anchor parame-
ter, whichwas (32, 64, 128, 256, 512), to (8, 16, 32, 64, 128).

‘‘Strict out’’: the loss function of Mask-RCNN contains
lmask loss. Only when the intersection over union (IoU)
between the generated candidate box and the real target box
exceeds a certain threshold (the original threshold is 0.7), will
the candidate box contribute to Lmask loss. Because the pur-
pose of Mask-R-FCN is to improve the accuracy of semantic
segmentation with small object pixels, we pay more attention
to the accuracy and confidence of small object pixels rather
than the recall of small objects. Here, we raise the threshold
value of IoU to 0.8.

During prediction, we also apply some strategies to fil-
ter candidate boxes. Usually, Mask-RCNN produces a large
amount of candidate boxes, and the same object may be
crossed or covered by multiple candidate boxes. The pur-
pose of Non Maximum Suppression (NMS) is to reserve
an optimal candidate box for each target. There are two
parameters: minimum confidence and NMS threshold. When
the confidence of a candidate box is lower than the minimum
confidence, it will be removed. The NMS threshold is a judg-
ment threshold for NMS algorithm. If the rest of the candidate
boxes have IoU over this threshold, the candidate boxes will
be removed. The original minimum confidence and NMS
threshold are set to 0.7 and 0.3, respectively. Here, because
our goal is to obtain a candidate box with better confidence,
we set the minimum confidence to 0.8 and the NMS threshold
to 0.2.When the minimum confidence increases, the reserved
candidate boxes have higher probabilities to contain objects.

When the NMS threshold decreases, the candidate boxes with
large overlap will be removed.

3) MODEL FUSION
Before training the fusion layers, the features and the seman-
tic maps of all the split patches need to be generated through
FCN andMask-RCNN. The generated output is subsequently
used to construct our training and testing samples for the
fusion model. The procedure is as follows: First, for each
bounding box generated by Mask-RCNN, on its semantic
segmentation branch, the corresponding features extracted by
the network are selected. For FCN, according to the coordi-
nates of the bounding box of the former network, the relative
coordinates of FCN‘s feature map are computed, and the
corresponding feature area is selected. We then apply RoI
pooling to both features, to pool them into the same fixed-
size cubes. Then, we stack the two cubes and flatten them
into a single vector, which is a training example. Additionally,
each training example has a binary label value indicating
whether the semantic map of the bounding box generated by
Mask-RCNN should cover the corresponding area of FCN’s
semantic map. This binary value is given as follows: it is set
to one if the overwriting can boost the accuracy. Otherwise,
it is set to zero. An example can be seen in Fig. 7. The fusion
model is simply composed of two fully connected layers,
of which the parameters are randomly initialized. We use the
Adam optimizer to train the network and the learning rate is
set to 0.0001.

FIGURE 7. Definition of fusion data label. Here, AC stands for accuracy.

During prediction, we also apply an NMS algorithm to
filter candidate boxes to cover the baseline semantic maps.
The algorithm here is slightly different from the original
one. There are also two parameters: minimum coverage con-
fidence and pixel-level NMS threshold (pNMS threshold).
When the output probability from the fusion network of a
candidate box is lower than the minimum coverage confi-
dence, it will not be used to cover the result of semantic
segmentation. Instead of judging whether the boundaries of
the remaining candidate boxes overlap with the current can-
didate box, we can directly judge whether the segmentation
instances overlap. The pNMS threshold is set to 0, i.e., as long
as there are duplicate pixels between the reserved candidate
boxes and the current candidate box, these reserved candidate
boxes will be removed.

D. EVALUATION PROTOCOL
During evaluation, we use different metrics to evaluate
FCN, Mask-RCNN and fusion model. In the case of FCN,
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we adopted the leave-one-out strategy, wherein we trained
FCN on 19 images and tested on the held-out image. Each
time we selected an image as a test set, we conducted
20 groups of experiments. For each experiment, we computed
the accuracy by employing the following metrics: overall
accuracy (OA), average accuracy (AA) and the F1 score (F1).
The first metric describes the overall accuracy based on all the
chips and is computed as the percentage of correctly assigned
pixels over the total number of all pixels. The average accu-
racy represents the average metric of per-class accuracy. For
each class, we add the number of correct predictions and
compute the percentage of the total number of correct pre-
dictions made per-class. Next, we compute the average per-
class accuracy. The third metric considers the precision and
recall of the classification model. The F1 score represents the
weighted average of the model precision and recall with a
maximum of 1 and a minimum of 0. For model fusion during
training, we use the common precision to evaluate the fusion
of accuracy and testing. For model evaluation, we compute
both the precision and the same metrics as for FCN. To evalu-
ate the model fusion strategy, we compared the fusion results
with some baseline networks experiments conducted in our
study and some obtained from other studies. The comparative
experiments were performed with the following models: the
proposed Mask-R-FCN fusion model, FCN baseline model,
learned RP, and CNN-KNN.

E. QUANTITATIVE RESULTS
1) STUDY ON ZURICH DATA
The proposed Mask-R-FCN network was validated by real
remote sensing images from Zurich, Switzerland, obtained
in 2002 [20]. The spatial resolution of the images was sub-
meter, and there were 4 channel features, i.e., NIR-RGB. The
semantic images contained eight categories, i.e., roads, build-
ings, trees, grass, bare soil, water, railways, and swimming
pools.

We compared our results to segmented maps from raw
images with several methods including CNN-KNN [64],
learned RP [20], and FCN baseline. For the comparison
with learned RP [20], the authors used data-specific reg-
ularities to learn a discriminative conditional random field
(CRF) using structured support vector machines (SSVM);
the CRF is leveraged to model the segmentation problem.
However, the learned RP method continues to suffer from
low classification accuracy and requires appreciable effort to
set up feature extraction rules. The author of CNN-KNN [64]
designed a custom CNN as the feature extractor. The input
image is first cut into patches with a size of 64 × 64 and
then fed into the CNN extractor. To this end, a supervised
method is used as a classifier. A significant improvement
can be seen in this experiment; however, since it is a two-
stage method and needs to extract and classify the features
of each patch, the efficiency of this method may be relatively
reduced as it is time consuming.Moreover, since it is a custom
network, it does not leverage the advantage of pretrained

model trained on large-scale data. We also compared our
results with those of a few other previous works based on the
Zurich dataset [20].

In the experiments, the pretrained FCN in the context of the
VGG16was adopted, and training data were exploited to fine-
tune all layers of FCN-VGG via back-propagation algorithm.
We also conducted an experiment using RGB-NIR data to
train FCN network from scratch. The experimental results are
shown in Tab. 2. We denote FT-FCN as the fine-tuned FCN
and FS-FCN as FCN trained from scratch. It can be seen from
the results that the average accuracy of the network trained
from scratch is worse than that of the fine-tuned network. The
reason may be that a large-scale network often has millions
of parameters, and using only a small-scale remote sensing
image dataset to train such a large network often leads to
the problems of overfitting and local minimum. Although
there is a decrease in average accuracy, we can see that in
some categories the accuracies have been improved, such as
water and grass. The possible reason is that the near-infrared
channel always has high reflectivity for vegetation, water, and
soil. To leverage the advantages of fine-tuned network, we use
the pretrained FCN as the fusion submodule.

TABLE 1. Average accuracies for different image sizes from Zurich
dataset.

We adopted the same leave-one-out strategy as in [20].
In each round of experiments, we used 19 pictures as the
training dataset and the remaining 1 as the validation dataset.
Part of the detailed results can be seen in Tab. 1. In each
round of experiments, the experimental results vary in AA.
Referring to the previous work, we average the AAs of all
results in each round. The final average accuracy is 80.11%.
The classification maps of some rounds are shown in Fig. 8.

In the object-based R-CNN, a fine-tuning ResNet is
adopted as the CNN network and the fully connected output
layer of 1000 cells is replaced by a 9-cell output layer for the
remote sensing images used in the experiments. The overall
accuracies are detailed in Tab. 2. The classification results
are significantly improved by using deep neural networks
compared to shallow machine learning algorithms and the
proposed Mask-R-FCN obtains the best results compared to
single deep networks.

To investigate the improvement of the after-fusion strat-
egy in the classification of small objects, the AAs based on
different categories are shown in Tab. 2. The accuracy of
the proposed method is significantly improved in some cate-
gories with high probability of the existence of small objects,
such as roads, soil, trees, pools, and especially buildings
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FIGURE 8. Classification maps generated by fine-tuned FCN and FCN trained from scratch.

TABLE 2. Classification accuracies for each class by using different methods from Zurich dataset.

and rails, which are increased by 5.4% and 9.64% respec-
tively. However, the accuracy of grass and water decreases,
especially for water, for which the accuracy decreases by
3.47%. This is probably because the proposed Mask-R-FCN
method introduces some noise, which leads to false detec-
tion of small objects. In general, compared to FCN, the AA
increases by 2.17% by using the fusion strategy, and also
exceeds CNN-KNN and LEARNED RP 20M. The classifi-
cation maps before and after fusion are shown in Fig. 10. Our
Mask-R-FCN conducts the fusion strategy on the FT-FCN.

One can see that the result of FCNmodel may easily overlook
some small objects such as trees, buildings, and some small
regions of grass. The after-fusion result, which can generally
recall these small objects, exhibits better accuracy than the
before-fusion result. However, there are also several errors in
coverage that lead to decreased accuracy. The recall, preci-
sion, and F1 values for each class are given in Tab. 3. From
the results, it can be seen that after fusion, recalls of most
categories increased, but precisions increased and decreased
half-by-half. F1 values increased slightly. The inference time
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TABLE 3. Recalls, Precisions, and F1 scores for each class before and after fusion on Zurich data.

FIGURE 9. Image patch examples from GID. The upper row shows the original RGB-NIR remote sensing images and the
corresponding row below shows the ground truth of the semantic label. The class legend is given at the bottom.

values for FCN andMask-RCNN on a single patch are 170ms
and 30ms, respectively.

2) STUDY ON GAOFEN IMAGE DATASET
In this section, we evaluate our method on the Gaofen Image
Dataset (GID) [21]. GID is a high-resolution dataset for
land cover classification tasks. This dataset consists of two
parts: a five-class large-scale land classification dataset and
a 15-class fine-grained land classification dataset. In total,
there are 150 high-resolution Gaofen-2 (GF-2) images
acquired from more than 60 different cities in China [21]
from 5 December 2014 to 13 October 2016. Fig. 9 shows
some examples of the original images and the correspond-
ing ground truths. We chose the second part as our exper-
imental dataset. This part contains ten, each with a size
of 6800 × 7200. We randomly selected eight images as the
training set and two images as the test set. We adopted the
same data preprocessing as for the Zurich dataset.

Tab. 4 lists the recall, precision, and F1 score for each class.
In the experiment, the last two images were selected as test
sets. When counting the number of categories, it was found
that the last two images did not contain industrial land, paddy

FIGURE 10. Classification maps generated by before- and after-fusion
stages on Zurich dataset. The black double arrows point to the examples
of the before- and after-fusion results.

fields, dry cropland, or lake categories. These categories were
excluded when calculating recall, precision, and F1 scores.

From the results, it can be seen that after fusion, recalls
of most categories increased. In particular, urban residential
and shrub land increased by approximately 2%. The results
after fusion also showed significant precision improvement
in most categories, including arbor woodland, which gained
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TABLE 4. Recalls, Precisions, and F1 scores for each class before and after fusion on GID.

a 3% improvement. For F1 scores, all categories showed
slight increases. The categories of rural residential, irri-
gated land, garden plots, and rivers were poorly predicted.
However, after fusion, some results were still retrieved in
garden plots.

3) STUDY ON DataFountain 2017
To validate the generalization performance of the model
further, the same experiment was conducted on a remote
sensing image dataset with lower resolution. This data set
is a competition data set relative to DataFountain from
2017 taken in southern China, with a resolution of 8 meters.
Detailed information can be obtained at https://www.
datafountain.cn/competitions/270.

The classification results were obtained by shallow
machine learning algorithms, i.e., random forest, SVM, and
other deep learningmodels, such as the fine-tuned FCNby the
remote sensing images, a patch-based CNN with five layers
owing to the shortage of labeled remote sensing data, and our
Mask-R-FCN method.

TABLE 5. Average accuracies on DATAFOUNTAIN2017 dataset by using
different methods.

The results are shown in Tab. 5. Since Datafountain2017 is
a competition dataset, no groundtruth for each class is pro-
vided available and only an average accuracy was returned
based on the results we provided. The upper results come
from shallow models based on single pixels. These results
are generally poor. The lower results are all based on deep
models. The proposed Mask-R-FCN network can obtain
higher accuracy than using a single DNN, such as FCN and
other shallow machine learning algorithms. This proves that
the effective fusion mechanism is also good at improving
the accuracy of classification in remote sensing images with
lower spatial resolution.

IV. CONCLUSION
Single deep neural networks usually suffer from making a
trade-off between background semantics and detailed seman-
tics. In attempting to better classify background pixels,
semantic segmentation models usually exhibit poor perfor-
mance for pixels within small objects. An object detection
method could avoid the problem of insensitivity to small
objects. In our work, a Mask-R-FCN deep fusion network
was proposed by combining the pixel-based FCN and the
object-based Mask-R-CNN to reduce the difficulty of small
object segmentation. The semantic labels provided by FCN
were modified at the decision level by the results provided
by Mask-R-CNN. A strategy of model fusion was proposed
to learn whether the instance segmentation results should be
used to cover the map of the interest of FCN.

Experiments were performed on real remote sensing
images from Zurich and China. The results demonstrated that
the proposed Mask-R-FCN network outperformed compared
to other deep learning networks, such as single FCNs and
other machine learning algorithms. The average accuracy
obtained by our method on the Zurich dataset was 82.28%,
which is approximately 2% higher than that of other single
DNNs. On the GID dataset, there were significant improve-
ments in most categories. According to the experimental
results, our proposed method performs well on datasets with
lower spatial resolution such as DataFountain2017.

Other domains also have the same problem of misclassi-
fying the pixels belonging to small objects. Further studies
can investigate the effectiveness of our proposed method on
natural image datasets. Although the proposed method can
improve performance in categories of small-scale regions,
it brings slight drops on categories of large-scale regions.
Further study will be done to search for optimal parameters
to improve the accuracies of both small-scale and large-scale
classes.
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