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ABSTRACT Parameters identification of isolated wind-diesel power systems (WDPS) is a significant issue
in stability analysis of the power system as well as guaranteeing the power generation through the control
system. In this article, enhanced whale optimization algorithms (EWOA) are proposed to deal with the
parameter identification problem of a WDPS system. The proposed EWOA effectively tackles the premature
convergence problem of WOA by splitting the population into two subpopulations and updating the position
of each whale according to the position of the best agent in its current subpopulation, the position of the
other subpopulation’s best agent, and the position of the best neighboring agent. Furthermore, fractional
chaotic maps are embedded in the search process of EWOA to increase its performance in terms of
accuracy. For validation purposes, the proposed algorithms are applied to identify the unknown parameters of
WDPS, where different statistical analyzes and comparisons are carried out with other recent state-of-the-art
algorithms. Simulation results confirm that the algorithms have less deviation in parameter estimation, more
convergence speed, and higher precision in comparison with other algorithms.

INDEX TERMS Optimization, parameter identification, whale optimization algorithm, wind-diesel power

system.

I. INTRODUCTION
Renewable energy systems have received extensive attention
during the past few decades due to their extensive positive
effects on air pollution through decreasing greenhouse-gas
emissions to the atmosphere [1]-[3]. With the daily growth
of technology throughout the world, the demand for constant
and reliable power is increasing significantly. Among all
renewable energy resources, wind power generation technol-
ogy has become the leading power supplying system to deal
with this surging power demand [4]-[7]. Isolated wind-diesel
power systems (WDPSs) are practical solutions to supply
power for the remote facilities, islands, and rural communities
where their connection to the central energy supply system is
disconnected or somehow limited [6].

Isolated wind-diesel power systems consist of many parts
consisting of semiconductors, electronic components, and
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mechanical gears, which are all inevitably prone to changes
in their characteristic variations due to aging and faults. This
may lead to reduction in efficiency of the system over time.
Since the isolated WDPS has contributed a small yet crit-
ical portion of the world’s power production, it is vital to
guarantee the power generation through reliable and authentic
control strategies [8]. To provide an accurate control system,
it is crucial to describe the exact behaviour of the WDPS
under operation using an accurate model. The model must
closely represent the behaviour of the system, while the
accuracy of the model mainly depends on its parameters. Low
precision of the system parameters will cause significant error
and failure in the control system [9]. Hence, precise parameter
identification of the system is a necessity. However, it has
found to be a complicated and challenging task due to the
highly nonlinear structure of the system.

The parameter identification can be considered as an
optimization problem having an appropriate criterion, which
is a function of estimation error of the system parameters.
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Various optimization techniques have been utilized to han-
dle this problem. Traditional optimization methods, such
as Gradient Descent [10] and Newton Raphson [11], seem
to be inefficient due to their dependency on initial condi-
tions and differentiating the objective function. Alternatively,
meta-heuristic methods have been proven to be practical
approaches to deal with different parameter identification
problems [12]—[25] as well as practical optimization prob-
lems [25]-[28]. A parameter estimation strategy using whale
optimization algorithm (WOA) was investigated to develop a
precise fuel cell model [12]. A modified bacterial foraging
algorithm was also investigated to identify the parameters
of fractional-order systems [13]. Aiming at enhancing the
exploration and exploitation performances of the basic grav-
itational search algorithms (GSA), improved GSAs were
proposed in [14], [15] for precisely identifying the param-
eter of water turbine regulation systems. Improved ant lion
optimization algorithm augmented with particle swarm opti-
mization [17], and modified GSA [18] were also proposed
for parameter identification of hydraulic turbine governing
systems. Various optimization algorithms have been intro-
duced and implemented to identify the photovoltaic (PV)
parameters [19]-[24]. To name a few, modified cat swarm
optimization algorithm [22], improved JAYA optimization
algorithm [23], and flexible particle swarm optimization
algorithm with an elimination phase [20] for parameters
estimation of one-diode and two-diode PV models, as well
as sunflower optimization for three-diode PV model [24].
Considering the aforementioned literature, the significant
performance of optimization algorithms in parameter identi-
fication of industrial systems is apparent, which has attracted
an emerging interest among researchers to develop and inves-
tigate more efficient methodologies.

The whale optimization algorithm as one of the most
recent evolutionary algorithms motivated by the hunting
behaviour of humpback whales [29], has been utilized for
distinct optimization problems in recent years [30], [31]. The
spiralling mechanism represents the exploitation phase con-
sisting of encircling the prey and the spiral bubble-net feeding
manoeuvre; while, the exploration phase is carried out by a
random search for prey. Although WOA is proven to yield
superior performance over many optimization algorithms in
terms of solving complex optimization problems [32], [33],
it still suffers from premature convergence when it comes to
solving large-scale problems, which defects its performance.
Consequently, various modifications have been reported in
the literature to enhance its exploration and exploitation
capabilities and achieve better performance. Authors in [34]
developed the WOA based on Pareto dominance to solve
multiobjective optimization problems. This algorithm used
an exterior archive as a storage for the non-dominated solu-
tions detected during the optimization mechanism. Taking
advantage of a cosine function-based nonlinear dynamic
strategy, a modified WOA was proposed in [35] to equilibrate
the exploitation and exploration abilities to enhance the
algorithm’s efficiency for solving large-scale optimization
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problems. In [36], a refraction-learning-based WOA aug-
mented with a modified Logistic-model-based conversion
parameter update rule was developed to make a trade-off
between diversity and convergence during the search process
of WOA when solving high-dimensional problems. In this
context, in order to solve the premature convergence of WOA
and modify the exploration process, an enhanced WOA based
on quadratic interpolation was proposed [37]. In addition,
modified versions of WOA have achieved remarkable results
in other applications, such as water resources demand esti-
mation [38], maximizing the power capture of variable-speed
wind turbines [39], task allocation [40], parameter identifi-
cation of solar cell diode model [41], quadratic assighment
problem [42], terminal voltage control of fuel cells [43],
and short-term natural gas consumption prediction [44].
Although these modifications have yielded some perfor-
mance enhancements to the conventional WOA, they still
suffer from other drawbacks such as lack of exploitation
accuracy [36]-[39], [40], lack of exploration accuracy and
getting stuck in local optima [34], [39], [41], [42], [44], and
low convergence rate [34], [35], [38]-[41], that need to be
adequately addressed.

In this article, modified versions of WOA algorithm
with/without fractional chaotic map, namely, the enhanced
WOA (EWOA) and fractional chaotic EWOA (FC-EWOA),
are proposed. In the proposed algorithms, to enhance the
convergence of WOA, the population is efficiently divided
into two equivalent subpopulations, and each agent updates
its position in respect of the position of the best agent,
so-called the leader, in its current subpopulation, the posi-
tion of the other subpopulation’s leader, and the position
of the best neighboring agent. Due to the ergodic and non-
repetition behaviours of chaotic maps, the combination of
integer-order chaotic maps and meta-heuristic algorithms has
proved to deliver significant improvements to the perfor-
mance of algorithms [45], [46]. On the other hand, incorpo-
ration of fractional calculus with chaotic maps have enriched
the dynamical behaviour of maps by demonstrating dif-
ferent distributions in comparison with integer-order coun-
terparts [47]-[52]. According to the investigation results
reported in the literature, the main superiorities of fractional-
order chaotic maps compared with the integer-order chaotic
maps can be summarized as (i) wider chaotic regions can be
achieved due to the addition of fractional-order [50], (ii) more
random chaotic sequences, more stability, and higher level of
security are guaranteed [50], [51], and (iii) better ergodicity
and distribution characteristic are illustrated [52]. In this
context, researchers have deployed fractional chaotic maps
to enhance the performance of optimization algorithms, such
as fractional chaotic ensemble particle swarm optimizer [50]
and fractional flower pollination algorithm [53]. Thus, in this
study, incorporation of fractional-order variant of the chaos
maps into the proposed EWOA is developed to boost its per-
formance. Comparative investigations, along with different
statistical analyzes are performed to testify the behaviour of
the proposed algorithms through parameter identification of
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isolated WDPS. According to the results achieved, the pro-
posed strategies not only enhance the exploitation ability, but
also expedite the convergence speed of the basic WOA.

This article is established into the following sections. The
problem of WDPS identification is described in Section 2.
The new enhanced fractional chaotic whale optimization
algorithms are proposed in Section 3. Section 4 illustrates
the comparative behaviour evaluation of the proposed algo-
rithms through parameter identification of WDPS. Section 5
provides conclusions.

Il. WDPS MODEL

A standalone hybrid WDPS is considered, consisting of static
VAR compensator (SVC) which provides the required reac-
tive power, isolated load, synchronous generator (SG), and
induction generator (IG) driven by diesel engine and wind
turbine (WT), respectively. As Fig. 1 depicts, the SG con-
nected to the diesel generator (DG) form the diesel generator
set, where it acts as a local grid for the wind system, which is
formed by a connection of the IG and the WT.

DG SG

Diesel generator set

Consumer loads

VAR
AN

WT IG

SvC

Wind system

Bus bar

FIGURE 1. The block diagram of isolated WDPS.

The reactive-power balance of the system under steady-
state condition can be expressed as follows [8], [54]:

Osvc + 0sg = 016 + 0L (1

where Osg and Qsyc denote the reactive powers generated
by DG and SVC, respectively; Oy, is the demanded reactive-
power-load, and Qjg is the required reactive power by the
generator. It is assumed that the WDPS has a reactive power
load change AQp. Thanks to the impact of the SVC and
AVR controllers, due to the change in the system terminal
voltage AV, the required reactive power will change, and
also the reactive power generation system will increase as
AQsvc + AQsg. Therefore, the net reactive power surplus
in the system can be represented as [8]:

AQnet = AQsvc + AQsGg — AQic — AQL (2)

The reactive-power control transfer function diagram for
the WDPS is depicted in Fig. 2. Accordingly, by assuming
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FIGURE 2. The reactive-power control transfer function diagram for the
WDPS.

the existence of small perturbations, the complete linearized
model of the system can be achieved as follows (see [55] for
more details).
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where AEf denotes the small changes in the SG exciter
voltage, AV, is the amplifier output voltage, Tg stands
for the exciter time constant, AVy is the feedback voltage,
Tr and KF denote the time constants and the stabilizer gain,
respectively. AV,,r denotes the small changes in the reference
voltage, T and AE[I are the internal armature time constant
and small changes in the voltage under transient condition,
respectively, T, represents the SVC average dead time of
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zero crossing, and ABgsyc and AB’SVC stand for the small
deviations in the reactive susceptances of the SVC under
steady-state and transient conditions, respectively. Ty, is the
thyristor firing delay time, A« denotes the small thyristor
firing angle changes, Ty and Ky show the terminal voltage
time and gain constants, respectively, and K, is the thyristor
firing gain.

1lIl. PROPOSED ENHANCED FRACTIONAL CHAOTIC WOA
A. THE BASIC WOA

The WOA is an interesting nature-inspired algorithm moti-
vated by the hunting behavior of humpback whales [29].
This algorithm mimics the attacking mechanism of a swarm
of whale individuals to solve optimization problems, where
the position of each whale indicates the feasible solution.
The WOA consists of three stages: (a) encircling the prey,
(b) spiral bubble-net feeding maneuver, (c) search for the
prey, where the first two phases represent the exploitation
process, and the last phase represents the exploration. As the
whales recognize the location of the prey, they dive deep
and start creating bubble-nets in a spiral pattern around the
prey and simultaneously swim-up to the surface. During the
prey encircling phase, each whale encircles the target prey
and maintains a candidate solution, and the best solution is
determined. Correspondingly, other individuals update their
positions with respect to the best search agent. This behavior
at iteration 7 is represented as:

® = [pA* (1) — A (1) 4)
A+ =A@1)—¢d 5)

where the symbol |-| denotes the absolute value, ¢ and 7
represent the coefficient parameters, A and A* denote the
position vector of the current agent and the best solution
acquired so far, respectively. The parameters n and ¢ are also
calculated as:

{=kKkn—« (6)
n=qu 7

where « is the damping coefficient, which linearly decreases
from 2 to 0 with respect to iteration number, ¢ is a constant
value, which is set to 2, and v € [0, 1] is a random value.

The bubble-net behavior consists of two strategies, namely,
the shrinking encircling mechanism and the spiral position
update. In the first approach, the coefficient parameter ¢
varies in the range [—«, k] and k € [0, 2], thus, by setting
random values for ¢ € [—1, 1] the new search agent can be
located between its original position and the position of the
current best agent. In the second approach, the agent’s new
position is updated regarding the position of the prey and the
agent according to the following spiral equation:

A+ 1) = De cos 2me) + A* (1) ®)

where the distance between the ith agent and the prey is
computed by P = |A* () — A (t)‘, the constant § defines
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the shape of the logarithmic spiral, and ¢ € [—1, 1] is a ran-
dom value. In order to simultaneously perform the shrinking
circling together with the spiral-shape movement, a random
probability coefficient is adopted that updates the position of
agents during the optimization process by choosing between
the following two mechanisms:

A*(t) — ¢ D ify <05

A+ =12 -
( ) e cos 2me) + A*(t) ify > 0.5

©))
where ¥ € [0, 1] is a random value.

In order to perform the exploration process, the search
agents need to adequately far-off the best agent and try to
search randomly through the search space. To this end, ¢ is
randomly chosen either greater than 1 or less than —1, and
the agents update their positions regarding randomly chosen
agents rather than the best agent so far. The mathematical
behavior of the exploration process is expressed by:

® = [nAana (1) — A (1) (10)
AG+1) = Apng (1) — ¢ P (11)

where ]\mnd refers to a randomly selected agent from the
current population.

B. FRACTIONAL CHAOTIC MAPS

Chaos theory studies the behavior of iterated functions that
return random values in each iteration. Chaotic functions
are highly sensitive to initial conditions, such that any small
difference in initial conditions yield to divergent in the
generated sequence of values. The integration of chaotic
functions into optimization algorithms have demonstrated
promising improvements in the speed of convergence of the
algorithms and the solutions diversity. Thus, they have been
widely studied for global optimization and engineering prob-
lems [45], [46]. Different chaotic maps are introduced in the
literature [56], due to their interesting characteristics such as
a) the chaotic maps are generated by a deterministic dynamic
rule, b) the time series is bounded between upper and lower
limits, c) they act aperiodic, and d) the sequence is dependant
to the initial condition.

Considering the above-mentioned characteristics, chaotic
maps can effectively increase the exploration power of
the stochastic search processes, which make them perfect
replacements for the existing random generators. Thus, in this
article, three fractional chaotic maps are embedded to adjust
k in the proposed EWOA algorithm, namely FC-EWOA. The
fractional chaotic maps including the Fractional

Sine map [57], the Fractional Logistic map [57], and the
Fractional Tent map [58], together with their relationships
and distributions are listed in Table 1.

C. PROPOSED FC-EWOA

Although the WOA is an efficient optimization algorithm
in dealing with global optimization and engineering prob-
lems [30]-[33], but yet, it has the main shortcoming that
is premature convergence, which leads the algorithm to
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TABLE 1. Fractional chaotic maps within the range (0, 1).

f Map Name Mathematical Representation 0 Parameters
’ 0
r(t=j c=25
1 Fractional Logistic 0., =0,+ F? ) 1_((]; j:ll'))g/l (1 —0/,1) 0.3 03
@)= -] 7 =0.
- o=38
2 Fractional Sine 0.,=0+ c ) 21—'(( /T ;)) sin (49/71 - 1) 0.3 08
\r)=I(t—j+ =4
1 r(t-j+7) o=19
3 Fractional Tent ), =06+ z min((cr—l)@,il,o—(a+l)0 l) 0.3
r(o)=r(t-j+1) ! ! =06

get trapped into local optima easily. Many studies have
been addressed in the literature to overcome this defi-
ciency [34]-[44]. In this article, enhanced whale optimization
algorithms, namely EWOA and FC-EWOA, are proposed.

The EWOA consists of modifications to the position
update procedure, which will be discussed, and the
FC-EWOAs are modified versions of EWOA, which incorpo-
rate fractional chaotic maps into the search process of EWOA.
Here, the proposed fractional chaotic EWOA algorithms are
denoted by FCI-EWOA (with logistic map), FC2-EWOA
(with sine map), and FC3-EWOA (with tent map). Through
the exploitation process of WOA, each agent updates its
position based on the position of the best agent, which reduces
the diversity of the population, leading to a low convergence
rate. The population is efficiently divided into two semi-
independent subpopulations with the same number of agents,
where the best agent in each subpopulation is determined.
To address the convergence problem in WOA, the position
of each agent is updated in terms of three factors, namely
the best agent’s position in its current subpopulation, the best
agent’s position in the other subpopulation, and the neighbor-
ing agent’s position denoted by nbest that have better fitness
than itself. This behavior can be expressed as follows:

& = [n3Rest (0 = K (1)
+ A5 0-A o|+nAto-Aw| a2

where ]\’f and ]\3 represent the position of the best agents
in the current and the other subpopulation, respectively.
Z\nbest denotes the position of the neighboring agent with
better fitness, and 1; = g;v are the coefficient parameters,
where {q1, q2, ¢3} = {2, 1, 0.5}. Therefore, we have:

N
7\(t+1)=]lVZ(]\f(t)—§i&>), N=2 (3)

i=1
where the coefficient parameter¢; is computed as:

Gi=kni—k, i=1,2 (14)

Remark 1: The convergence speed of the algorithm through
the exploitation process depends on the parameters g, g2
and ¢3. Higher values of ¢; result in faster movement of the
agents towards A} and less exploitation accuracy. On the
other hand, although lower values of g; leads to better
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exploitation accuracy, the convergence rate would be reduced.
Higher values of ¢ attracts the agents to move towards
the other subpopulation (A specifically), while the current
subpopulation has not been well-exploited. Therefore, lower
values of g, decreases the impact of K; on the agents’
position update procedure, which reduces the diversity of
the solutions. Similar to g, lower values of ¢3 decreases
the diversity of the solutions due to the lower impact of
Anpesr On the agents’ update procedure. Alternatively, higher
values of g3 increase the diversity, but the agents get misled,
which reduces the convergence rate and the accuracy of the
algorithm.

As it is apparent, the basic WOA and the proposed EWOA
consist of several arbitrary selected variables that notably
affect the algorithm performance. The most key variable is
the linearly decreasing damping coefficient k € [0, 2], which
is a crucial factor in the convergence rate of FC-EWOA. Thus,
here, this variable is chaotically tuned. In this regard, « is
chaotically varied between 0 and 2, instead of being linearly
decreased with respect to the iteration number as follows:

Q) = (Kz ~ 2 G- m) NG ()
where (Q — k), represents the chaos damping coefficient that
follows the distribution of the FC-maps stated in Table 1 with
index f € {1, 2,3}, denoting the fractional chaotic maps,
T and t are the number of the total and the current iterations,
respectively. On the other hand, «j and «; are the upper and
the lower values of «, and NCr is defined as:

(F — Chy — min (F — Chf)) W —p)

16
max(F—Chf)—min(F—Chf) +p (16)

NCr =

where ' — Chy is the considered fractional chaotic map,
min(F — Chy) and max(F — Chy) represent the minimum
and the maximum distribution range of the fractional chaotic
maps, respectively, and p = 0.6 and ¥ = 0.9 are the
normalization interval ranges.

In FC-EWOA, the position of each agent through the
bubble-net procedure is calculated as:

K(t‘i‘l):H&)wt

2e5€cos(2ne)+7\;"(t), i=1,2 (17)

where C_IS,O[ = (&’1 &2) and &D,' = ‘j\l* 1) — A ).
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Similar to the basic WOA, in order to calculate the new
position of the agents, the random probability coefficient
¥ € [0, 1] is chosen between the shrinking circling and the
spiral-shape movement.

As the exploitation process completes, the two subpopu-
lations are merged into one population, and the best agent
is evaluated. Consequently, the position of every agent can
be updated in terms of the whole population, which leads to
more random movements through the exploration process.
The mathematical behavior of the exploration process is
as stated in (10) and (11), with the chaos damping coef-
ficient given in (15) instead of « € [0,2]. In sum-
mary, the pseudo-code for the proposed FC-EWOA can be
presented in Algorithm 1. Moreover, the flowchart of the
FC-EWOA is depicted in Fig. 3.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, comparative performance evaluations of
the new algorithms are conducted through mathematical
benchmark functions and parameter identification of isolated
WDPS. In this regard, the comparisons are carried out with
eight well-established meta-heuristic algorithms, including
the GSA [58], the firefly algorithm (FA) [59], the grey
wolf optimizer (GWO) [60], the bacterial foraging optimiza-
tion (BFO) [61], the bat algorithm (BA) [62], the flower
pollination algorithm (FPA) [63], the dragonfly algorithm
(DA) [64], and the basic WOA [29]. The parameters settings
of the optimization algorithms under comparison are tabu-
lated in Table 2. For each algorithm, 100 independent runs are
performed with a population size of 50. In the performance
evaluation section, the dimension of all test problems is set
to D = 50. Besides, the maximum number of function
evaluations (NFEs) of 10, 000 x D and 20,000 are set as the
stopping criteria for benchmark functions optimization and
parameter identification evaluations, respectively.

TABLE 2. Parameter settings for the algorithms.

Algorithm Parameters

GSA [58] a=20limit=2,p=35

FA [59] y=09,8, =18a=025w0=095
GWO [60] ¢, =[25~05],w=[09~04],N, =20

BFO[61] N, =5N,=2N, =10,a=02P, =025

re

BA [62] {a,y} €[0.9-0.975],¢ €[-1,1], f €[0,2]

FPA [63] p=08y=00,41=15

DA [64] w€[09~02],c=0.1,a=0.1,s=0.L,e=1,f =1
WOA [29] §=10,x €[0,2],¢ €[-1,1]

EWOA §=10,¢ e[-L1],x €[0,2]

FCI-EWOA 6 =10,¢ € [71, 1] , k = Fractional Logistic map
FC2-EWOA 6 =10,¢ € [71, 1], & = Fractional Sine map
FC3-EWOA & =10,¢ €[-1,1], x = Fractional Tent map

A. PERFORMANCE EVALUATION
To testify the performance of the proposed algorithms,
8 problems adopted from the CEC2017 benchmark test
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Algorithm 1 Pseudo-Code for the Proposed FC-EWOA

1:  Objective function f(x), X; = (x1, X2, ..., X4)
Set the position of whale individuals randomly;
Assess the fitness values for each individual;
NFE=NFE+1;
Divide the population into two subpopulations, and
assign the leaders and members;
A* = the best search agent in each subpopulation;
while (stopping criterion)

for every search agent
9: Update the chaos damping coefficient using (15);
10:  Update ¢, n, €, and ;
11:  Evaluate ® using (12);
12:  if-1¢y < 0.5

S A

13: if-2¢] <1

14: Update the current search agent’s position
using (13);

15: NFE=NFE+1;

16: elseif-2 [¢| > 1

17: Merge the subpopulations into one
population;

18: Update the current search agent’s position

using (10) and (11) with chaos damping
coefficient (15);

19: NFE=NFE+1;

20: Rank the whale agents and determine the
current best agent (A™);

21: Define the subpopulations and assign the
leaders and members;

22: end if-2

23:  elseif-1 y > 0.5

24: Update the position of the current search agent

using (17);

25: NFE=NFE+1;

26: end if-1

27: end for

28: Rank the whale agents;

29: Determine the current best agent (A*) in each

subpopulation;

30: end while

suite are used as objective functions. The test problems are
considered with various difficulty levels and categorized as
unimodal functions, simple multimodal functions, hybrid
functions, and composition functions with the search range
of [—100, 100], as illustrated in Table 3. The experimental
results obtained by the algorithms are shown in Table 4, where
standard deviation (S.D) represents the standard deviation,
and the best minimum mean value achieved for each function
is highlighted in bold.

The test results in Table 4 show that the proposed
algorithms exhibit the best performance on all functions.
FC1-EWOA performs significantly better than all other algo-
rithms with 6 best results on (f>, f3, f1, f6, f7. f3), followed by
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FIGURE 3. The proposed FC-EWOA flowchart.

TABLE 3. The definition of considered CEC2017 benchmark problems.

Functions
Shifted and Rotated Bent Cigar Function
2 Shifted and Rotated Sum of Different
Power Function
Shifted and Rotated Rosenbrock’s Function
Shifted and Rotated Levy Function
Hybrid Function 1 (N=3)
Hybrid Function 7 (N=5)
Composition Function 4 (N=4)

Type S
Unimodal Function

Simple Multimodal
Function

Hybrid Function

Composition

o N[N ks W

Function Composition Function 8 (N=6)

FC2-EWOA with 2 best results on (f, f5). From Table 4 and
based on the overall performance ranking of all algorithms,
FCI1-EWOA is the best algorithm, followed successively by
FC2-EWOA, FC3-EWOA, EWOA, GWO, WOA, GSA, FA,
BFO, BA, FPA, and DA.
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For better demonstration of performance comparisons,
the convergence curves of average best solutions of the pro-
posed algorithms and other algorithms on the 8 selected
benchmark problems are depicted in Fig. 4. According to
Fig. 4, the proposed EWOA and its fractional versions
demonstrate the fastest rates of convergence throughout the
early stages in comparison to other methods, which illustrates
one of the superiorities of the proposed algorithms. Another
superiority is their capability to deal with multimodal, hybrid,
and composition functions. As is clearly shown in Fig. 4, the
proposed algorithms maintain excellent search abilities both
globally and locally, while other algorithms are mostly gotten
trapped into local optimum prematurely. Besides, although in
the first stages, the convergence of FC1-EWOA is relatively
slower than the other three proposed algorithms, in 6 prob-
lems it surpasses them in the middle stages.

To sum up, as stated in Table 4 and can be seen in Fig. 4,
the proposed algorithms demonstrate the best performance
in terms of convergence rate and optimization, followed by
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TABLE 4. Experimental results of considered CEC2017 benchmark functions with D=50.

Algorithm
g /. 5 1, 1 [ /i /; £
GSA Mean 1.67E+02 1.38E+05 2.38E+02 2.66E+01 3.87E+01 2.28E+03 2.57E+03 2.97E+02
S.D. 3.15E+03 2.23E+05 1.36E+02 1.75E+01 2.38E+01 1.50E+02 1.61E+02 2.38E+01
FA Mean 1.88E+02 2.93E+06 4.63E+02 2.54E+01 4.10E+01 2.30E+03  1.03E+03  2.67E+02
S.D 246E+02 2.42E+05 2.37E+01 1.39E+00 1.08E+01 1.78E+02 3.51E+02 8.49E+01
GWO Mean 2.95E+03 1.31E+05 2.41E+02 2.12E+01 2.75E+01 1.43E+03 3.23E+02 1.78E+02
S.D 1.58E+03 341E+06 1.38E+02 1.32E+02 8.36E+00 8.11E+02 4.36E+01 2.03E+01
BFO Mean 3.94E+02 4.90E+05 2.67E+02 3.80E+02 5.19E+02 2.86E+03 1.47E+03 2.85E+02
S.D 1.39E+02 2.17E+05 2.11E+01 898E+01 1.43E+02 6.83E+01 8.74E+02 2.75E+01
BA Mean 3.75E+03  3.17E+06  1.74E+03 2.46E+02 4.87E+01 4.38E+03 5.39E+03  3.16E+03
S.D 5.14E+02 4.65E+05 2.16E+02 3.61E+02 2.09E+01 2.74E+02 2.07E+02 2.48E+02
FPA Mean 3.46E+03 1.68E+07 2.41E+03 2.57E+02 4.66E+02 4.94E+03 4.68E+03 3.28E+03
S.D 2.14E+03  1.13E+06  2.24E+02  1.39E+03 1.41E+01 1.38E+03 2.84E+02 1.17E+02
DA Mean 5.16E+03  249E+07 3.39E+03 548E+02 5.74E+02 5.13E+03  6.94E+03  6.61E+03
S.D 2.20E+03 2.74E+06 2.07E+02 246E+02 1.04E+02 238E+03 236E+02 3.29E+02
WOA Mean 2.13E+02 2.18E+05 1.68E+02 2.18E+01 3.38E+01 2.12E+03 2.37E+02 2.05E+02
S.D 4.06E+01 1.48E+05 223E+01 2.74E+00 2.38E+00 1.18E+02 1.16E+01  6.14E+01
EWOA Mean 1.51E+01 3.16E+04 1.81E+01 1.62E-01 1.34E+01  3.15E+02 2.48E+01 1.37E+01
S.D 3.27E+01 248E+04 1.79E+00 2.03E-02  2.68E+00 2.84E+01 3.16E+01 4.58E+01
FCI-EWOA Mean [1.15E+01 1.27E+04 1.32E+01 1.25E-02 1.15E+01 2.22E+01 1.05E+01 1.00E+01
S.D 1.03E+00 2.44E+02 1.14E+00 2.60E-04  1.74E+00 2.26E-01 2.55E+00 2.15E+00
FC2-EWOA Mean 1.11E+01 1.37E+04 145E+01 1.34E-02 1.12E+01 2.33E+01 1.16E+01 1.21E+01
S.D 2.18E+00 2.41E+02 141E+00 231E-04 1.75E+00 2.78E+00 2.29E+00 1.29E+01
FC3-EWOA Mean 1.37E+01  1.34E+04 1.36E+01 1.49E-02  1.24E+01 2.36E+01 1.24E+01 1.34E+01
S.D 2.30E+00 2.37E+02 1.26E+00 2.40E-04 2.04E+00 3.28E-01 2.61E+00 2.31E+00

GWO, WOA, GSA, and FA, which deliver better results in
comparison with other methods under study.

B. PARAMETER IDENTIFICATION OF WDPS

The parameter identification of isolated WDPS is conducted
in this sub-section. This problem is transformed as an opti-
mization problem, where the goal is to identify the parameters
such that the difference between the actual and current data
is minimized. Therefore, we consider the following objective
functions, which are the mean square error (MSE), the mean
absolute error (MAE), the root mean square error (RMSE),
respectively.

MSE = 1 ﬁ:E (AQsG, AQsvc, AQiG, x)?
N &~ ’ ’ ’

(18)
=1
N
MAE = iZE~|AQ AQsve, AQig, x| (19)
N — 1 SG7 SVCv IGa
P
N 172
MSE = iZE (AQsG, AQsve, AQiG, x)* (20)
N ' 1 k) k) £

i=1
where x is the solution vector consisting of sixteen identified
parameters, E(AQsg) = (AQSG,actual - AQSG,identified)s
E(AQsvc) = (AQsvc,actmal — AQsvC,identified), and
E(AQ16) = (AQJG,actual — AQIG,identified)-

In Table 5, we list the actual parameters values and the
search ranges of unknown parameters for the WDPS. The
comparative performance evaluation results of the proposed
methods for the WDPS parameter identification problem with
respect to other algorithms are presented in Tables 6 and 7.
According to Table 6, the proposed EWOA and FC-EWOA
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TABLE 5. The parameters values and range (lower and upper
boundaries).

Param. LB UB Value Param. LB UB Value

K, 0 5 0.1500 T, 0 5 1.0600E-04
K, 0 5 0.7932 K, 0 5 1.0000

K, 0 20 6.2214 T; 0 5 0.7500

K, 20 20 -7.3589 T, 0 5 0.5500

K, 0 5 0.1260 T, 0 5 0.7150

K 0 5 1.4780 K, 0 5 0.5000

K, 0 5 1.0000 T, 0 5 0.0050

T, 0 5 0.0017 K, 0 5 0.4464

algorithms can obtain more accurate parameters for the
WDPS system.

Table 7 shows the applied error metrics together with their
corresponding standard deviation, such that the best results
indicating the minimum error is emphasized in bold. From
Table 7, we observe that the error values obtained by the
proposed EWOA algorithms are remarkably less than other
methods.

Besides, the FC1-EWOA demonstrates the best perfor-
mance among all algorithms by achieving the least possible
identification error value in terms of MAE, RMSE, and MSE.
Results manifest the superiority of the proposed EWOA and
FC-EWOA algorithms, yielding outstanding parameter iden-
tification performance with 16 accurate identified parameters
achieved out of 16 parameters, followed by GWO and WOA
with 3 and 2 accurate parameters, respectively.

It is worth pointing out that the results accuracy is com-
puted and presented to eight and four decimal places, respec-
tively. To intuitively compare and analyze the quality of the
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FIGURE 4. The convergence curves of the average best solutions obtained by algorithms.
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TABLE 6. Parameters identification comparison.

Parameter K K, K, K, K. K, K T,
GSA 0.1418 0.7670 6.1218 -7.3330 0.1168 1.4575 0.9534 0.0022
FA 0.1395 0.7679 6.1256 -7.3317 0.1151 1.4561 1.0310 0.0025
GWO 0.1438 0.7851 6.1684 -7.3416 0.1260 1.4638 1.0284 0.0017
BFO 0.1389 0.7653 6.0816 -7.3308 0.1130 1.4511 0.9516 0.0008
BA 0.1365 0.7558 6.0153 -7.3107 0.1109 1.4326 0.9358 0.0004
FPA 0.1378 0.7634 6.0210 -7.3260 0.1118 1.4440 1.0413 0.0031
DA 0.1340 0.7510 6.0137 -7.2841 0.1109 1.4206 0.9379 0.0031
WOA 0.1421 0.7720 6.1420 -7.3350 0.1208 1.4610 0.9681 0.0017
EWOA 0.1500 0.7932 6.2214 -7.3589 0.1260 1.4780 1.0000 0.0017
FC1-EWOA 0.1500 0.7932 6.2214 -7.3589 0.1260 1.4780 1.0000 0.0017
FC2-EWOA 0.1500 0.7932 6.2214 -7.3589 0.1260 1.4780 1.0000 0.0017
FC3-EWOA 0.1500 0.7932 6.2214 -7.3589 0.1260 1.4780 1.0000 0.0017
Parameter T, K, T, T, T, K, T, K,
GSA 1.4114E-04 0.9017 0.7356 0.5062 0.7026 0.4741 0.0061 0.4320
FA 8.1670E-05 0.9146 0.7316 0.4938 0.7019 0.4723 0.0036 0.4301
GWO 1.2912E-04 1.0761 0.7500 0.5211 0.7087 0.4816 0.0042 0.4412
BFO 7.9804E-05 1.1025 0.7318 0.4951 0.7005 0.4716 0.0067 0.4316
BA 6.5841E-05 1.1158 0.7206 0.4738 0.6946 0.4670 0.0074 0.4234
FPA 7.6701E-05 1.1123 0.7284 0.4860 0.7000 0.4703 0.0031 0.4250
DA 6.1059E-05 0.8876 0.7238 0.4703 0.6910 0.4666 0.0028 0.4228
WOA 1.3660E-04 1.0884 0.7390 0.5107 0.7150 0.4820 0.0040 0.4384
EWOA 1.0600E-04 1.0000 0.7500 0.5500 0.7150 0.5000 0.0050 0.4464
FCI-EWOA 1.0600E-04 1.0000 0.7500 0.5500 0.7150 0.5000 0.0050 0.4464
FC2-EWOA 1.0600E-04 1.0000 0.7500 0.5500 0.7150 0.5000 0.0050 0.4464
FC3-EWOA 1.0600E-04 1.0000 0.7500 0.5500 0.7150 0.5000 0.0050 0.4464
TABLE 7. Parameters identification comparison.
Error Value MAE S.D RMSE S.D MSE S.D
GSA 1.5940E-02 3.0354E-04 2.0067E-01 4.6684E-03 6.1678E-04 1.5115E-06
FA 1.3863E-02 4.3005E-04 2.0265E-01 6.4871E-04 2.2354E-04 2.1625E-07
GWO 3.5716E-03 2.2160E-05 6.1628E-02 2.2168E-04 3.1396E-05 5.1356E-08
BFO 2.8400E-02 1.3459E-03 5.8150E-01 5.4820E-03 2.0014E-03 2.2135E-05
BA 1.0845E-01 2.2684E-03 3.0625E-01 2.7921E-03 3.3610E-03 1.3418E-05
FPA 5.6904E-02 4.1035E-04 1.6700E-01 4.8152E-04 5.1654E-04 2.2165E-07
DA 2.5684E-01 2.2227E-02 6.3851E-01 1.6840E-03 7.8208E-05 2.1147E-07
WOA 1.2655E-03 2.2135E-05 1.7000E-02 4.2965E-04 4.0842E-05 1.8859E-09
EWOA 1.6284E-21 1.8537E-25 6.4733E-20 2.3685E-22 2.8810E-26 3.1680E-30
FCI-EWOA 0.0000E+00 0.0000E-+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
FC2-EWOA 1.2326E-32 0.0000E+00 2.3685E-30 0.0000E+00 0.0000E+00 0.0000E+00
FC3-EWOA 7.8886E-31 0.0000E+00 6.4165E-30 0.0000E+00 0.0000E+00 0.0000E-+00

solutions from a statistical point of view, Table 8 provides
the comparative Friedman test [65] results, where the column
“Rank” denotes the performance order of the algorithms. The
results regarding the Friedman test show the superiority of
the proposed algorithms in comparison with others, which
verifies the above conclusion again. In order to test the con-
formity between the real and the estimated WDPS parame-
ters, the transient responses of Qsg, Osvc, and Qjg for a 5%
step increment in the reactive power load are illustrated in
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Figs. 5-7. The results reveal the accuracy and quality of the
estimated parameters and simultaneously validate the feasi-
bility of the proposed algorithms. According to the results,
the largest deviations between the transient responses with the
actual and the estimated parameters are demonstrated by BA.

In addition, although the GWO and WOA algorithms
demonstrate better fitting results compared with BA, yet,
the accuracy of their results is markedly less than the
proposed EWOA and FC-EWOA, which again, indicates

140871



IEEE Access

Y. Mousavi et al.: Enhanced Fractional Chaotic WOA for Parameter Identification of Isolated WDPSs

——Measured
0.04 - - :GWO i
A - - BA
N --==WOA
0.02 i --—-EWOA i
______________________________ e FC1-EWOA
a
o 0
(2
O ...............................
b .
-0.02
-0.04
0.06 . | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

FIGURE 5. The DG-generated reactive power with a 5% step increment in
the load reactive-power (transient response).

T T T

Measured
0.1 - - :'GWO i
- - BA
—-=-WOA
0.05 i
>
Q
@]
7
¢} 0 1
<
-0.05 ]

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

FIGURE 6. The SVC-generated reactive power with a 5% step increment
in the load reactive-power (transient response).

the remarkable performance of the proposed algorithms.
Fig. 8 depicts the average convergence profile of the objective
function for the proposed algorithms in comparison with
other methods. From Fig. 8, it can be observed that the
proposed EWOA and FC-EWOA algorithms demonstrate
significantly higher convergence speed than others.

Accordingly, the proposed FC-EWA algorithms converge
to the minimum value of MSE within 2000 function eval-
uations, followed by the proposed EWOA with 3600 func-
tion evaluations, indicating the exceptional performance of
the proposed algorithms. On the other hand, although other
methods could not achieve the minimum MSE value, still
GWO, WOA, GSA, and FA demonstrated more desirable
performance compared to BFO, FPA, BA, and DA.

The convergence rates of the WDPS parameters are
depicted in Fig. 9, yielding more searching accuracy and
faster convergence speed of the proposed algorithms in con-
trast with other algorithms. The aforementioned comparisons
demonstrate that utilizing the proposed strategy presented
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TABLE 8. Friedman statistical test results.

Algorithm Score Rank
GSA 5.1664 8
FA 5.0168 7
GWO 4.4850 5
BFO 5.4990 9
BA 6.5758 11
FPA 6.1699 10
DA 7.1200 12
WOA 4.9782 6
EWOA 1.1480 4
FCI-EWOA 1.0000 1
FC2-EWOA 1.0125 2
FC3-EWOA 1.0178 3

in subsection 3.3 and embedding the FC-maps with the
proposed algorithm affects the accuracy and enhances the
performance of the basic WOA.
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V. CONCLUSION

Accurate modelling and appropriate controller design for the
isolated WDPS require accurate identification of the model
parameters. For this purpose and aiming at the main disadvan-
tage of the whale optimization algorithm, which is premature
convergence, four novel enhanced WOA algorithms are intro-
duced. The proposed EWOA develops the position update
procedure of WOA such that more accurate exploitation
behavior is achieved. Besides, to enhance the performance of
EWOA in terms of accuracy, three different fractional chaotic
maps are taken into account in the search process of WOA.
Efficiency and superiority of the proposed algorithms are val-
idated via parameter identification of WDPS in comparison
with other algorithms. Results confirm the remarkable per-
formance of the proposed algorithms with respect to solution
precision and speed of convergence.
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