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ABSTRACT In open traffic environments, humans still have to remain in the control loop of vehicle due to the
insufficient of the existing technologies and their high costs. For the realization of cooperation between the
human and the automatic driving system, the determination of the time when automatic driving is necessary is
very important. To avoid unnecessary intervention when the driver has the control authority of vehicle, a new
driving capability-based transition strategy was proposed, which comprehensively considers the driver’s
correction ability and the driving risk. The transition time from the human driver to the automatic driving
system is determined by an unreliable domain (UD), whose boundary is modeled according to the driving
data recorded by a driving simulator and statistically described by a log-normal distribution. Furthermore,
an adaptive algorithm is designed to update the parameters of UD boundary online to make this strategy
suitable for different drivers. This UD-based transition strategy is validated by several tests on the driving
simulator. The bench test results show that the individual driving characteristic can be identified by the
adaptive algorithm in time, the transition time determined by UD is more accurate, and sufficient time is
reserved for the correction carried out by the automatic driving system.

INDEX TERMS Automatic driving, human-machine cooperation, driving capability, correction ability,

driving risk.

I. INTRODUCTION

Traffic safety has always been an area of social concern, espe-
cially with the ever-increasing number of vehicles [1]. Driver
error, the result of visual distraction or fatigue, is considered
as a major contributor to traffic accidents. Hopes are being
pinned on automatic driving technologies for their potential
to enhance the sensitivity of driver to risk [2]-[4], help deal
with dangerous traffic conditions [5]-[9], and even realize
driving without human [8], [9]. However, due to the shortage
of current automatic driving technologies and the high costs
[10], driverless cars have not achieved the large-scale com-
mercial applications. For the open and complicated traffic
scenarios, a human driver still has to stay in the control loop of
vehicle [11], [12]. So a cooperation realized by integration of
both a human and a machine pilot has drawn much attention
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recently, because it allows them to be in the control loop of
vehicle concurrently [13].

One way to combine the human and the machine con-
trol is to continuously allocate the control authority among
them according to the evaluation of the driver’s status.
For both collision avoidance and lane-keeping conditions,
Benloucif et al. designed a haptic shared driving control strat-
egy [14]. But Winter et al. argues that the driving ability
of driver diminishes with the application of such continuous
shared systems and that it is critical for a cooperative driving
system to ensure that the driving assistance is supplied only
when the driver requires it indeed [15]. To avoid unnecessary
assistance, evaluations of driver state, driving intention, and
collision risk are all integrated into the cooperative driving
system. The controls by the driver and the automated system
are combined to generate the final input to the vehicle using
the statistical optimization algorithm in [16] and fuzzy logic
in [17]. Using a similar structure, Chen et al. designed a
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cooperative scheme for intersections considering both driver
intention and risk [18]. The constraint of vehicle dynamic
stability is further considered in [19]. Such cooperation strate-
gies depend heavily on the reliable predictions of driver
intention and driving trajectory. These are very challenging
because of the dynamicity, uncertainty, and randomness of
traffic [20].

Another method is to switch among the automatic driving
system and the human according to the state of driver
[21] or driving risk [22]. Tran et al. focused on the detection
of fatigue, based on which a switching logic was designed to
transmit the control authority from the driver to the machine
pilot [23]. In that research, the fatigue is detected by com-
bination of both steering operation and facial features of
driver. A better detection accuracy of fatigue is achieved by
combination of several types of signals with an intelligent
classifier. Pohl et al. proposed a structure to realize cooper-
ation for the lane-keeping task, whose control authority of
steering is determined by the visual distraction of driver [24].
The head position and eye movement are combined together
to detect the visual distraction. To enhance the adaptabil-
ity and robustness of detection for the driver’s distraction,
Enache et al. fused the information of steering torque with
the posture of driver body [25]. This cooperative system for
steering control is applicable for different vehicle speeds and
a variety of roads. Since both fatigue and distraction easily
cause an accident, Benloucif et al. described these two driver
states by a binary variable respectively, i.e., “critical fatigue
or not” and “‘eye-off-ad or not”’. Then a comprehensive logic
was designed to combine these two driver states together [26].

These switching strategies for cooperative driving based on
driver’s state have some disadvantages. First, the physiolog-
ical measurement equipment is intrusive to drivers. It may
disturb the normal driving process of driver, which is bad
for traffic safety. Moreover, the usability and acceptability of
such systems are also a problem. Furthermore, even if we can
get the accurate information for ““eye-off-road or not”, a false
judgement still may be generated by such short behavior
of driver as adjusting the safety belt. Sentouh et al. was
already aware of this when developing the switching logic
and suggested a mandatory three-second delay to prevent
such false interventions [27]. Another one is that driver
state is not entirely equivalent to the driver’s capability of
keeping the vehicle in safe driving conditions. This implies
that a distracted driver still can carry out the driving task
safely, especially under the condition that the driving task
is extremely simple. On the other hand, when the traffic
condition is complicated enough, a wrong manipulation can
also be performed by an attentive and skilled driver [28]. For
instance, it is found from the studies of Liang et al. that the
lateral driving ability of driver may be improved by cognitive
distraction [29]. Moreover, each driver has its own driving
manner [30] and so a cooperative driving system should be
adaptable to various drivers.

In this article, to increase the accuracy and adaptability per-
formance of switching logic from manual to automaticdriving,
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FIGURE 1. Scheme of driving capability-based transition strategy.

a new index is designed to measure the driver’s correction
ability, which is further integrated with the index of driving
risk to construct a two-dimensional space for the evaluation
of driving capability comprehensively. Then, a personalized
unreliable domain (UD) is presented to design the switching
logic from the manual driving to automatic driving. The
boundary of the UD is modeled using the log-normal dis-
tribution according to the simulated driving data. Further-
more, an adaptive algorithm is designed to identify individual
characteristics and update the UD parameters online.

The rest of the paper is organized as follows: Section II
introduces the fundamentals of the driving capability-based
cooperative driving strategy; Section III establishes a person-
alized UD that can adapt to various driving styles and detect
the switching time; in Section IV, the proposed strategy is
validated and analyzed using a bench test; and Section V
concludes the paper.

II. DRIVING CAPABILITY-BASED TRANSITION STRATEGY
With a cooperative switching structure, a new strategy for
the transition from manual to automatic driving (shown in
FIGURE 1) is proposed in consideration of the follow-
ings [27]-[29]: (1) All data required to evaluate the driving
capability is in the information of vehicle and traffic, because
these information includes all operations of driver; (2) It is
critical for a cooperative driving system to guarantee that
the assistance from an automatic driving is only supplied in
a critical situation. Otherwise, the driver’s ability tends to
diminish; (3) Accordingly, if the driver can correct the vehicle
to a safe condition even the driving risk increases, the control
authority of vehicle still should be given to driver.

Since the measurement of driver’s state requires addi-
tional wearable equipments or is sensitive to the environment
[23]-[26], only the signals obtained by the onboard sensors
are used to determine the switching time. To avoid unneces-
sary interventions when the driver has the ability to correct
the vehicle state, a new index called “‘correction ability”
is designed and integrated with the index of driving risk to
determine when to assist the driver. Here, the driving capa-
bility is used to comprehensively measure the driving risk
and the correction ability of driver. Though only two types of
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indexes are considered, other human factors, such as fatigue
and distraction, can be measured by them indirectly. Because
if the driver state regresses to an unacceptable condition,
the driving risk will increase and his/her actions also may
deviate from the normal ones.

With the proposed measurement indexes, a
two-dimensional evaluation space including both correction
ability of driver and driving risk is set up to comprehensively
evaluate the driving status. The former is to measure the
driver’s ability to keep the vehicle in safe driving conditions.
The latter characterizes the risk of collision with other road
objects. Automatic driving is preferred under the condition
that the correction ability of driver is not enough and the
collision risk is comparatively high. Considering these fun-
damentals, the following switch-based cooperative logic is

designed:
X €R, Automaticdriving & )
Xg =
Otherwise, Manualdriving, d &

Here, x4 €R? is the driving status, ¢., &, are the correction
ability and driving risk respectively, and € is UD (Shadow
area in FIGURE 1) which is a set composed of all unreli-
able driving states. Being different from the shared control
strategy studied in [31] and [32], this cooperation strategy
switches the control authority of vehicle among the human
driver and the automatic driving system. If the driver status is
judged to be out of UD, only the human driver can control the
vehicle. On the contrary, the human driver will be replaced
by the automatic driving system totally. How to construct
Q is investigated in Section III Here the transition logic for
lateral and longitudinal cooperation are conducted separately,
but they have the same formula as (1). This implies that the
steering is controlled by the automatic driving system, while
the powertrain/braking may still be manipulated manually.
Compared with existing switching strategies, this provides
assistance only when the condition is dangerous and the
driver cannot overcome the risk. Moreover, with the adap-
tive algorithm for updating the UD parameters introduced in
Section III. C., this logic can adapt to various driving styles.

A. MEASUREMENT INDEX OF DRIVING CAPABILITY

For the development of advanced driver assistance systems,
such as forward collision warning system and lane departure
warning system, several types of indexes have been proposed
to determine the trigger time of warning. In those researches,
the time to collision (TTC) [30] and the time to line crossing
(TLC) [33] are widely used for the evaluation of longitudinal
and lateral driving risk, respectively. Therefore, in this article,
TTCi (TTC is replaced by TTCi to avoid dividing by zero)
and TLC are used to measure the driving risk:

Lateral : TLC = (dp — L/2) / (vsina)
Longitudinal : TTCi = v, /d, 2)

Here, d; is the distance from vehicle centroid to lane bound-
ary, L is the width of vehicle body, v is the vehicle speed,
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« is the angle between driving direction and road direction,
v, and d, are the relative speed and distance respectively.

Though there exist many indirect or direct approaches to
detect and evaluate the driver state [21], correction ability is
difficult to characterize since it measures the driver’s ability
to manage the vehicle in risky traffic scenarios. There are few
studies about the measurement of correction ability. In this
article, to propose the evaluation index of driver’s correction
ability, the following assumptions are made:

(1) A driver has particular driving commands when he/she
drives in a specific traffic scenario.

(2) As well, the actual driving command of a driver will
be similar with the desired one when he/she has enough
manipulation ability.

Therefore, the deviation of the actual driving command
from the desired one is chosen to evaluate the correction
ability:

Lateral : €.j, = |84 — Sl
Longitudinal :€., = |a; — apm| 3)

Here, €., and €., are the longitudinal and lateral correction
abilities, 8, and a, are the actual steering angle and longitu-
dinal acceleration, §,, and a,, are the desired steering angle
and longitudinal acceleration, respectively.

The desired driving commands are calculated by the
driver’s model. Referring to the analysis conducted by
Wang et al. about the factors affecting the lateral driv-
ing behavior [33], the same signals including relative yaw
angle, vehicle speed, road curvature and lateral distance are
selected as the inputs of the lateral driving model. Referring
to [34], which used only range and relative velocity as
the inputs to the longitudinal model, road curvature and
speed of ego-vehicle are further added to cover more com-
plicated conditions. Since the behavior of driver is ran-
dom, nonlinear and individual in real traffic conditions,
the Artificial Neural Network for Nonlinear Autoregressive
Exogenous Process (ANN-NARX) is selected to model the
driver behavior because of its advantages of both ANN and
NARX [35]. Moreover, it is known from the previous studies
that a driver’s response time is around 0.45-1 s [37], so an
input delay of 0.7 s is added to ANN-NARX. This model
calculates the desired driver inputs and will be trained by
Levenberg—Marquardt [36] using the simulated driving data
in Section III. B.

lll. PERSONALIZED UNRELIABLE DOMAIN DESIGN
With the measurement indexes for driving capability
presented in Section II. A., the following UD for cooperation
is proposed:
TTCi > TTCi and
ﬂlo = _
Eclo = laq — am| > Oclo
Q, = {TLC < TLC and €.y = 84 — 6l > Gcla} 4)
Here, ), and ©,, are the UDs for lateral and longitudinal
cooperation, 0., and o, are the thresholds of cor-
rection ability for lateral and longitudinal cooperation,
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FIGURE 2. Driver simulator for data collection and validation.
(a) Displayed traffic scenario. (b) System structure. (c) Driving trajectory.

TLC and TTCi are the limits of driving risk for lateral
and longitudinal cooperation, respectively. The actual driving
commands of driver, a, and §,, can be obtained from the
onboard network. The desired control values, a,, and §,,,
are calculated by the ANN-NARX driver model trained in
Section III. C. It is known from the previous studies that dif-
ferent drivers have obvious individual driving characteristics.
So this UD-based transition strategy should not only find the
necessary assistance more accurately but also be applicable
to different users.

A. DRIVER SIMULATOR AND TEST SCENARIO
To analyze the influence of driving style on UD and train
the driver model, a driver in loop test platform was set up
and used to acquire the driving data for safety, efficiency
and cost. The driver simulator is set up as FIGURE 2 (a),
where the commercial software for the simulation evaluation
of automatic driving systems, Prescan, is adopted to simulate
the traffic scenario and the vehicle dynamical behavior is
provided by a real-time simulator from dSPACE including
the hardware system, MicroLab, and the vehicle dynamical
model, ASM [39].

The road length is about 70 km and there exist several
curves with different curvatures as shown in FIGURE 2 (¢).
When conducting the tests, such vehicles as buses, passenger
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cars and trucks are deployed and run randomly. The surround-
ing vehicles are limited to the velocities under 160 km/h, and
accelerate/decelerate in the range of [—O.Sg, 0.5 g], where g
is the gravitational acceleration.

Here, the driver simulator is used to acquire the driv-
ing data and validate the proposed cooperation strategy in
consideration of the following factors:

(1) The driving capability will be degraded by distraction
and accordingly a collision easily happens. This leads to
critical problem of experiment safety if the real vehicle test is
adopted;

(2) The driver is disturbed by many unknown and
uncontrollable factors in real traffic environments. This
causes difficulty on the analysis of driving capability under
different conditions.

B. TRAINING OF DRIVER MODEL

It is known from (4) that a driver model should be established
firstly to calculate the index for correction ability. Ten drivers,
including 3 females and 7 males, have participated in the tests.
All of them have driven no less than 1,500 miles and held the
licenses no less than 2 years. The driver controls the vehicle
naturally, and no interference is permitted.

The statistical results of the simulated driving data are
compare with the naturalistic driving one in FIGURE 3. The
natural driving data is collected in Chongqing, China [6].
The trajectory is about 30 km including highways, urban
expressways and roundabouts, and a total of 20 sections of
driving data are recorded. As shown in FIGURE 3, the over-
all distributions of vehicle states are similar. The naturalistic
driving scenario is relatively more steady because the tra-
jectory is mainly composed of highways and expressways.
On the contrary, the behavior of road users in the simulated
scenarios is generated randomly, and so the traffic scenario is
more dynamical.

To characterize the driving behavior, an ANN-NARX
model with 1 hidden layer and 10 neurons in each hidden
layer is used and the simulated driving data is divided into
train set and test set with the ratio of 7:3. Table 1 shows the
mean square error (MSE) of the trained ANN-NARX model.
It is concluded from the result that the trained model can
predict the driving behavior accurately for both longitudinal
and lateral motions.

C. ADAPTIVE ALGORITHM FOR INDIVIDUAL

DRIVING STYLE

To avoid triggering assistance incorrectly, the designed UD
should exclude all normal and safe driving conditions. There-
fore, it is the best to construct the UD using the data under
both abnormal and normal driving conditions. It should also
be considered that the driver’s behavior is less certain and
less consistent especially under critical and abnormal sce-
narios. This is bad for the convergence and stability of
training process, so the data recorded under normal driving
conditions by the driving simulator is used to determine
the boundary of UD (See section III. A.). The statistical
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FIGURE 3. Comparative results of simulated and naturalistic driving data.
(a) Vehicle acceleration. (b) Vehicle speed. (c) Yaw rate of vehicle.
(d) Deviation of vehicle centroid from centerline.

TABLE 1. Accuracy of driver model.

Lateral [deg?]  Longitudinal [m%/s*]
Training MSE 0.189 0.0129
Test MSE 0.186 0.0130
Average MSE 0.188 0.0129

results related to correction ability and driving risk are shown
in FIGURE 4.

It is found from the statistical results in FIGURE 4
that all driving capability indices accord with the
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FIGURE 4. Statistical results of driving capability. (a) Lateral driving risk.
(b) Longitudinal driving risk. (c) Lateral correction ability. (d) Longitudinal
correction ability.

log-normal distribution. This makes it possible to identify the
real time boundary of UD for the adaptability of the transition
strategy to different users. The parameters of a log-normal
distribution can be obtained from the sample values by

. -
w= glnsi, o’ = N1 ; (Ing; — p)? (5)

where u and o are the mean and variance, &; is the sample
value and N is the number of samples. Then the cumulative
density function (CDF) is

F (Ing) =

Ine 7(1[12,“)2
/ e 27 /Inedi (6)

—00

1
V2ro
where F (Ing) is the CDF.
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In FIGURE 4, the fitted distribution functions for
different measurement indexes are represented by the red
ones. With these distribution functions, the UD’s bound-

ary can be obtained by a confidence value and the inverse
CDF as

g=ef '@ )

where p is the predefined confidence value. For a new
sample ¢;, the probability that ¢; is smaller than ¢ is p. For
different indexes of driving capability, the calculation process
of UD’s boundary is the same as (5)~(7), but the used sample
value is different. Here, the confidence value of the longitu-
dinal driving risk, the longitudinal and the lateral correction
ability is set to p = 0.95. But the confidence value is set to
p = 0.05 for the lateral driving risk, since its UD is smaller
than the threshold (See the definition of £;, in (4)).

It is known that the driving styles of different drivers may
be quite different, so this UD-based cooperative strategy is
required to adjust its parameters adaptively according to the
actual driving data in time. The following adaptive algo-
rithm is designed to calculate the CDF parameters of UD
boundary recursively with new values at the current sample
time k [38]:

Inggp 1 + Ne—1 i1

M= 1+ Ni—q
Ni—1
akz = akz_l + TIN (Ingg—_1 — pi—1)* (8)

With (8), only the data at the former and current sampling
periods is needed and it is not necessary to store all historical
data.

D. ADAPTABILITY TO DIFFERENT DRIVERS

The key consideration of this study is that even the driver
is distracted, he/she may still have the ability to manage the
vehicle in a risk-free state especially when the traffic scenario
and the driving task are very simple. It is necessary to deal
with the individual difference of this ability when designing
the cooperative driving system. The main of the designed
cooperative strategy is the UD, and the interactive process
for updating UD parameters during the bench test is shown
in FIGURE 5 (Only two drivers are selected as an example).

From the results shown in FIGURE 5, the following can
be seen:

(a) Although the predefined boundary of UD doesn’t
accord with the corresponding driver, the estimated
parameters of UD boundary converges after 900 s;

(b) Since different drivers always have different driving
characteristics, the boundary parameters of UD for Drivers
1 and 2 are not the same.

It can be concluded from those results that the designed
statistical model of the UD boundary with the online updating
algorithm described by (6)—(8) can not only estimate the
boundary parameters of UD, but also identify the individu-
ality of different driving behaviors.
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FIGURE 5. Updating of UD parameters. (a) Lateral driving risk.
(b) Longitudinal driving risk. (c) Lateral correction ability.
(d) Longitudinal correction ability.

IV. APPLICATION VALIDATION

This section validates the proposed switch-based strategy
for the transition from manual to automatic driving using
the driving simulator with the same traffic scenario
(See FIGURE 2). It is different from fatigue that distraction
is difficult to be activated consciously and measured quan-
titatively. Since multiple resources of the driver including
visual, manual and cognitive are needed cooperatively to
carry out a visual-manual (VM) task, this type of distraction
is adopted to simulate distraction during the bench tests [40].
The designed VM task requires the driver to perform a calcu-
lation on a mobile phone, which is placed at his/her side. The
computational complexity reflects the degree of degradation
of driving capability. Another 10 drivers participated in the
bench validation. There are 3 females and 7 males ranging

VOLUME 8, 2020



F. Tang et al.: Driving Capability-Based Transition Strategy for Cooperative Driving

IEEE Access

Transition initiated

Minimum range by cooperative system

Range =22.6 m Range =16.2m Range =3.81m
W ) e\ R
ﬁw}/// ‘ M»/}}U/ = J\.__nv/)}///b\zﬂl
T T T T T T T ?
20+ b
_I5F b
g
L 10 Bydriver | g, 1
I N RLEEELELE I By cooperation | TNl
S e N
S5E N, .
0 1 1 1 1 1 1
75.5 76 76.5 77 77.5 78 78.5 79l 79.5
Time (s) T . Range =0 m
Rear end crash by driver
(2)
0 s 10
< /f* T, > Transition initiated
£ Transition initiated ~ “eeenid g
e ER
< Driver & Dri
E ............. Cooperation i) river
O 2 ------------- COOperathn
S 5 0
< o
10— ' : > ‘ : : :
76 77 78 76 71 78 79
Time (s) Time (s)
(b) ©

FIGURE 6. Longitudinal cooperative driving. (a) Longitudinal cooperation scenario. (b) Acceleration. (c) Velocity.

in age from 23 to 48. All of them have driven no less than
1,500 miles and held the licenses no less than 2 years.

Before the test, to ensure the convergence of the estimation
of the boundary parameters and be familiar with the driving
simulator, the participant drives naturally for about 20 min
without the VM task. When carrying out the tests, the par-
ticipant is asked to conduct 45 VM tasks by a voice signal
randomly to ensure that he/she is unaware of the distraction
task in future. Given that if the duration of distraction is too
long, an accident easily happens [41], the maximum duration
of distraction task is limited to be smaller than 15 s.

A. ACCURACY OF UD-BASED TRANSITION STRATEGY
Since a false negative event is that there is no driving risk in
real and the driving status is also outside of UD. This is the
normal driving process of human driver, which constitutes a
very high proportion of the experimental data by comparison
with other types of events. To ensure the significant of statis-
tical index, the false negative events are not considered and
the following ones are used to analyze the performance of
UD-based transition strategy:

o TP (True positive): A TP event is that the driving status
is in the UD, and at the same an actual high-risk event
occurs, such as rear-end collision and lane departure.

o FP (False positive): An FP is an event that the driving
status is classified to be in UD wrongly, but there doesn’t
exist any risk.

o TN (True negative): A TN event is that a real driving risk
occurs, but the driving status is outside of UD.
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This part focuses on the accuracy of the UD, which is
evaluated by the following statistical index:
Ag = Nrp/ (N7P + NFpP + N1N) )]

Here, A, is the accuracy, Nrp, Nyp and Nyy are the num-
ber of FP, TP and TN, respectively. To test the accuracy
of UD-based detection for driving capability objectively,
even when the driving status is in UD, the assistance from
the automatic driving system will not be carried out. The
high-risk events, i.e., rear-end crash and lane departure are
chosen as the objective index.

During all tests, there are totally 275 real lane departures
and 251 are successfully identified by UD and the detection
accuracy is 91.3%. For the longitudinal driving, there are
139 rear-end collisions and UD detects 123 with an accuracy
of 88.4%. By integration of the correction ability with the
driving risk, the unnecessary assistance is successfully pre-
vented and so there is no FP event.

To further analyze the relationship between the driver state
and the high-risk events, the lateral driving events are cat-
egorized as shown in IV-B. Here, if the driver is asked to
perform a VM task, the driver is considered as distracted
until the task is completed. The result shows that there exist
105 distractions during which the driver still can control the
vehicle within the lane. This implies that the driver may
have sufficient ability to control the vehicle even he/she is
distracted. Accordingly, the switching accuracy can benefit
from the introduction of the index of correction ability of the
driver.
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TABLE 2. Lane departure and distraction events.

Type Number
Departure with distraction 367
Departure without distraction 134
Distraction without departure 105
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FIGURE 7. Lateral cooperation. (a) Lateral cooperation scenario.
(b) Steering angle. (c) TLC.

B. PERFORMANCE OF COOPERATION SYSTEM

It can be concluded from the test results in section IV. A.
that the new index for the evaluation of driving capability can
accurately identify the switching time. Here, the driving pro-
cess of the UD-based cooperation is further tested to validate
that whether enough correction time is reserved to drive the
vehicle to a risk-free state by the automatic driving system.
Since the transition logic from manual to automatic driving
is focused by this study, the trained ANN-NARX model in
section III. B. acts as the automatic driving control algorithm
after transition to realize the whole cooperation system. Some
typical longitudinal and lateral cooperative driving scenar-
ios are selected as examples and shown in FIGURE 6 and
FIGURE 7, respectively.
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FIGURE 6 shows a longitudinal cooperative driving
scenario. In this scenario, the driver is distracted at about
75.5 s by a VM task, which lasts about 3 s. After distrac-
tion, the driver loses the ability to evaluate rear-end col-
lision risk and the distance decreases gradually. At about
78.7 s, the driver completes the task and presses the brake
pedal immediately and firmly to avoid collision. Although
the deceleration reaches maximum road adhesion, a collision
still occurs at about 79.1 s because the relative distance is too
short to stop the vehicle safely. If assistance is triggered by the
driver state, the automatic driving algorithm will be activated
at about 75.5 s. From FIGURE 6 (b), it can be seen that in the
early stage of distraction, the predicted acceleration is close
to the driver’s command, which means that the driver still has
the ability to remove the driving risk and assistance is not
necessary. The UD activates the automatic control algorithm
at about 76.9 s, after which the acceleration decreases notice-
ably and reaches maximum road adhesion at about 79.2 s.
As shown in FIGURE 6 (a), the clearance between the two
vehicles is 3.81 m after stopping, which is enough to ensure
safety. From the results in FIGURE 6 (b) and (c), the driving
authority is changed smoothly from manual to automatic.

FIGURE 7 shows a lane departure scenario. The vehicle
departs gradually from its lane at about 123 s because the
driver is distracted at 120 s. The distraction task lasts more
than 2 s, and the driver tries to control the vehicle to the
center of the lane after 122.2 s. Because it is too dangerous
to turn the steering wheel sharply, the vehicle departs from
the lane anyway. At the earlier stage of distraction, as shown
in FIGURE 7 (c) the TLC is larger and the risk of lane
departure is very low. With an increase in distraction time,
the TLC decreases to less than 1.5 s at about 121 s, which is
always considered dangerous [33]. But the automatic control
algorithm is not activated by the UD until 121.5 s because the
predicted steering angle is still close to the driver command
and the driver has the ability to correct the vehicle state,
as show in FIGURE 7 (b). Then, the vehicle gradually returns
to the center of the lane and the TLC is greater than zero
during the complete lateral cooperative driving process. This
implies that the vehicle does not enter the adjacent lane
(See FIGURE 7 (¢)).

V. CONCLUSION AND FUTURE WORK

In this article, a new evaluation index of correction ability
is designed and further integrated with the driving risk to
formulate a two-dimensional space for the evaluation of driv-
ing capability. Based on this, a statistical model was set up
for a UD boundary to realize adaptation to various driving
styles. From bench test results and analysis, the following
conclusions are achieved:

(1) The proposed UD could accurately detect the time
when assistance is need by integration of the driver’s correc-
tion ability with the driving risk.

(2) The statistical model of the UD boundary can identify
an individual driving style. The updating algorithm for the
parameters of the UD boundary was convergent and could
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complete the identification process within an acceptable
time.

(3) The UD-based strategy for transitioning from manual
to automatic driving was effective. Both longitudinal and lat-
eral risk events could be identified and avoided successfully,
and the transition process from manual to automatic was
sufficiently smooth.

Some open questions are worthy to be further investigated
as follows:

(1) This study is based on the data acquired from the
simulated driving system, which is not totally the same as the
real one. In the practical traffic, the driving behavior may be
more complicated.

(2) The decrease of driving capability is simulated by the
VM tasks in this study, which is just one of the factors reduc-
ing the driving capability. It is better to evaluate the designed
cooperative driving strategy considering more factors such as
fatigue, drugs, alcohol and so on.
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