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ABSTRACT Feature selection, which eliminates irrelevant and redundant features, is one of the most
efficient classification methods. However, searching for an optimal subset from the original set is still
a challenging problem. This paper proposes a novel feature selection algorithm named hybrid improved
dragonfly algorithm (HIDA) which combines the advantages of both mRMR and improved dragonfly
algorithm (IDA) in order to generate promising candidate subset and achieve higher classification accuracy
rate. Firstly, to generate promising subset, features with small weight have chance to be selected into
candidate subset with a small probability in mRMR. Secondly, to balance the exploitation and exploration
capabilities of IDA, dynamic swarming factors are proposed to balance global and local capability. Lastly,
to enhance the exploitation capability of IDA, quantum local optimum and global optimum are introduced in
the position updating mechanism. The performance of HIDA is investigated on ten gene expression datasets
and eight UCI data sets from the UCIMachine Learning Data Repository. Results show that the performance
of HIDA is superior to BBA, BDA, CDA, LBPSO, MPMDWOA and MSMCCS.

INDEX TERMS Feature selection, hybrid optimization, dragonfly algorithm, mRMR, classification.

I. INTRODUCTION
Real-life datasets are often characterized by a large number of
irrelevant or redundant features. The combination of features
requires testing different subsets to find the optimal one [1].
This approach is highly time or space consuming. Mining
large data requires the help of machine learning algorithms
because of the increasing trend of high-dimensional data
collection [2]. Feature selection is able to find a subset of
features to decrease the number of features without degrading
the prediction accuracy of the classifier [3], [4].

Feature selection algorithms are divided into three cate-
gories, filter methods [5], wrapper methods [6], and hybrid
methods [7]. Filter methods analyze the internal characteris-
tics of data regardless of machine learning. The advantages
of filter methods are low computational cost and suitable
for high-dimensional data. The famous Maximum Relevance
Minimum Redundancy (mRMR) algorithm [8] and Reli-
efF [9] are representative filter methods. Wrapper methods
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utilize machine learning to get higher classification accuracy
with computational overhead.

The meta-heuristic algorithms are very successful machine
learning algorithms to solve various optimization prob-
lems [10]. From Fig.1, the meta-heuristic algorithms are
divided into two families which are called individual-based
algorithms and population-based algorithms. The well-
known individual-based algorithms are hill climbing [11],
iterated local search [12], and simulated annealing [13].
Population-based algorithms can be classified into three
main categories including evolutionary algorithms, swarm-
based algorithms, and physical phenomena algorithms.
Some of the recently proposed evolutionary algorithms
are biogeography-based optimization algorithms [14], evo-
lutionary membrane algorithms [15], and human evolu-
tionary model algorithms [16]. Some of the well-known
swarm-based algorithms include Particle Swarm Optimiza-
tion (PSO) [17], Genetic Algorithm (GA) [18], Ant Colony
Optimization (ACO) [19], Bacterial Foraging Optimization
(BFO) [20], Artificial Bee Colony (ABC) [21], Cuckoo
Search (CS) [22], Whale Optimization Algorithm [23], [24]
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FIGURE 1. The classification of meta-heuristic algorithms.

and Dragonfly Algorithm (DA) [25]. The DA is regarded
as a successful algorithm that outperforms other well-known
optimizers due to its simplicity and efficiency [25]. The most
recent physical phenomena algorithms in this category are
Henry Gas Solubility Optimization [26]–[28], Gravitational
Search Algorithm [29], Artificial Chemical Reaction Opti-
mization. Algorithm [30], Ray Optimization [31], Central
Force Optimization [32], Kinetic Gas Molecules, and Gases
Brownian Motion Optimization [33].

Among these meta-heuristic algorithms, PSO and GA are
well-known optimizers. Compared to PSO, high exploitation
assists DA algorithm to rapidly converge towards the global
optimum. Compared to GA, DA algorithm appropriately bal-
ances exploration and exploitation to handle difficulty in
challenging search space. Therefore, in this paper, DA is
selected as a wrapper method for feature selection.

There are some efficient evolutionary feature selection
approaches, such as variable-size cooperative coevolutionary
particle swarm optimization algorithm (VS-CCPSO) [34],
binary differential evolution with self-learning (MOFS-BDE)
[35], two-archive multi-objective artificial bee colony algo-
rithm (TMABC-FS) [36], and return-cost-based binary
FFA (Rc-BBFA) [37]. However, VS-CCPSO, MOFS-BDE,
TMABC-FS and Rc-BBFA are not suitable for high-
dimensional datasets. Memory based Hybrid Dragonfly
Algorithm (MHDA) introduces internal memory to overcome
the premature convergence of DA [38]. However, balancing
local and global search capability of DA is not taken into con-
sideration in the MHDA. To accelerate the convergence rate
of DA, chaotic maps are employed to adjust five behaviors
of dragonfly for high-dimensional data in Chaotic Dragonfly
Algorithm (CDA) [39]. However, the chaotic weights of five
behaviors are not able to balance exploration and exploitation
ability in CDA. To overcome the drawback of premature con-
vergence, a novel hybrid dragonfly algorithm combined with
differential evolution (Hybrid DA-DE) for solving global
optimization problems is proposed [41]. However, Hybrid
DA-DE is not suitable for high-dimensional data.

The Hybrid feature selection algorithm has the advantages
of both filter and wrapper algorithm [53]. The hybrid feature
selection algorithm has two-stage. In the first stage, the fil-
ter algorithm is used to reduce the number of features and
remove some irrelevant features. Forming candidate feature
subsets is beneficial to improve computational efficiency in
the next stage. In the second stage, the candidate feature

subsets obtained in the first stage are used as inputs, and
the wrapper is used to obtain the desired number of features
and higher classification rate. To find the optimal feature
sets, some hybrid feature selection algorithms are proposed.
Zheng et al. propose a hybrid feature selection algorithm
which uses improved mRMR and modified whale optimiza-
tion algorithm [42]. Zheng et al. present a hybrid feature
selection algorithm based on a new filter algorithm and the
improved cuckoo search algorithm [43]. Unler et al. come
up with a hybrid feature selection algorithm based on parti-
cle swarm optimization (PSO) and mutual information [44].
Akadi et al. put up forward a two-stage selection algorithm
by MRMR and Genetic Algorithm (GA) [45]. A two-stage
feature selection algorithm combining IG (Information Gain)
approach and Binary Particle Swarm Optimization (BPSO)
is proposed [46]. However, the subsets obtained from the
above filter algorithms are always fixed combination and the
diversity of population initialization is not rich enough. Thus,
it is prone to premature convergence at local optimum in the
above algorithms.

To sum up, three shortcomings are not considered in the
studies mentioned above. Firstly, the subsets are fixed com-
bination, because low-ranking features that associate with
the best fitness have no chance to be randomly selected into
candidate subset in mRMR. Hence, mRMR is easy to fall
into a local optimum. Secondly, DA utilizes fixed weights
to adjust swarming factors, thus the importance of local and
global search capabilities is equal in thewhole search process.
The exploration capability in the early stage and exploita-
tion capability in the later stage are not guaranteed. There-
fore, fixed weights are not able to balance local and global
optimum capabilities. Lastly, the best fitness of the current
dragonfly and the best fitness of dragonflies are not taken
into consideration in the position update of DA, so DA fails
to guide dragonflies to potential candidate solutions that are
associated with the best fitness. Therefore, the exploitation
ability of DA is weak.

To address the above problems, we propose a novel fea-
ture selection algorithm named hybrid improved dragonfly
algorithm (HIDA). Firstly, to avoid falling into a local opti-
mum, features with small weight are randomly selected into
candidate subset with a small probability which is decreased
with iterations in mRMR. Therefore, the diversity of popula-
tion initialization of IDA is rich. Secondly, to balance local
and global optimum capabilities, dynamic weights which is
consist of the separation weight, the alignment weight, the
cohesion weight and the enemy weight are decreased with
iterations. Four weights adjust the exploration ability of DA.
The exploration capability in the early stage and exploita-
tion capability in the later stage are guaranteed by dynamic
weights. Lastly, to enhance the exploitation ability of DA,
the concept of quantum optimal solution of current dragonfly
and optimal solution of the current population are presented.
Therefore, potential candidate solutions that are associated
with the best fitness have a greater probability to be stored
for further exploitation stage.
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To sum up, three corresponding improvements are pre-
sented in HIDA as follows.

1. The diversity of candidate subset is enriched to avoid
falling into a local optimum.

2. To balance global and local capability of HIDA, dynamic
weights of swarming factors are used to adjust weights of four
behaviors.

3. To enhance the exploitation capability of HIDA, the
concept of quantum pbest and gbest are presented.

The rest of our paper is organized as follows: In section 2,
we introduce the basic theories of our research. In section 3,
we come up with a hybrid improved dragonfly algorithm
called HIDA. In section 4. We evaluate the performance
obtained with three improvements. In section 5, a conclusion
is illustrated in detail.

II. THEORETICAL BACKGROUNDS
In this section, we introduce a filter algorithm and a wrapper
algorithm. A filter algorithm is mRMR and a wrapper algo-
rithm is DA.

A. DRAGONFLY ALGORITHM
Dragonfly algorithm (DA) is inspired by the hunting and
migration mechanisms of idealized dragonflies. The hunting
mechanism is known as static swarm behavior in which the
dragonflies search for food sources over a small area by the
formation of a small group of dragonflies. The migration
mechanism is known as dynamic swarm behavior which
is characterized by a massive number of dragonflies fly-
ing in one direction over long distances. The static and
dynamic swarming behaviors of dragonflies represent the
exploration and exploitation phases of meta-heuristic opti-
mization, respectively.

The behaviors of dragonflies follow the principles of sep-
aration, alignment, cohesion, attraction towards the food,
and distraction from the enemies. To model the swarming
behaviors of dragonflies, the mathematical position of DA
can be explained as follows.

Xi = (x1i , x
d
i , . . . , x

D
i ) (1)

where i = 1, 2, 3 . . . ,N , xdi corresponds to the position of
the ith dragonfly in the d th dimension of the search space, D
is the number of dimensions and N is the number of search
agents.

Separation (Si) represents the static collision avoidance of
individuals from other neighboring search individuals, this
behavior is mathematically modeled as Eq. (2).

Si = −
N∑
j=1

X − Xi (2)

Alignment (Ai) corresponds to the velocity matching of
individuals to other neighboring search individuals, this
behavior is mathematically modeled as Eq. (3).

Ai =

∑N
i=1 Vi
N

(3)

Cohesion (Ci) indicates to the individuals towards the
neighboring center of the mass, this behavior is mathemat-
ically modeled as Eq. (4).

Ci =

∑N
i=1 Xi
N

− X (4)

where Xi and Vi correspond to the position and velocity of
the ith individual, respectively. X refers to the position of the
current individual and N denotes the number of neighboring
individuals.

In the DA, the fitness and position of food source are
supposed to be updated using the best candidate(attraction).
In addition, the fitness and position of the enemy should be
updated using the worst candidate(distraction). The attraction
of the ith individual Fi towards the food source is math-
ematically modeled as Eq. (5). The distraction Ei of the
ith individual from enemies is mathematically modeled as
Eq. (6):

Fi = F+ − X (5)

Ei = E+ + X (6)

X is the position of the current individual, F+ represents
the position of the food source and E+ represents the enemy’s
position.

DA uses two vectors to update the position of a dragon-
fly, the step vector (1X ) and the position vector (X ). The
step vector represents the movement direction of dragonflies,
which is similar to the velocity vector in PSO. The step vector
is modeled as Eq. (7):

1X t+1i = (sS ti + aA
t
i + cC

t
i + fF

t
i + eE

t
i )+ wX

t
i (7)

where t is the iteration counter, s is the separation weight,
S ti is the separation of the ith individual, a is the alignment
weight, Ati is the alignment of ith individual, c indicates the
cohesion weight, C t

i is the cohesion of the ith individual, f
is the food factor, F ti is the food source of the ith individual,
e is the enemy factor, E ti is the position of enemy of the ith
individual and w is the inertia weight.

If dragonfly has at least one dragonfly in the neighborhood,
the position of the dragonfly is updated as Eq. (8). If there is
no dragonfly in the neighborhood radius, the position of the
dragonfly is updated using Levy Flight equation as given in
Eq. (9).

Xt+1 = Xt +1Xt+1 (8)

Xt+1 = Xt + levy(d)Xt (9)

where d is the dimension of position vectors.
The Levy flight is calculated in Eq. (10).

levy(x) = 0.01×
r1 × σ
|r2|

(10)

where r1 and r2 are two random numbers in [0,1], β is a
constant (equal to 1.5 in this work), and σ is calculated in
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Eq. (11).

σ =

 0(1+ β)× sin(πβ2 )

0( 1+β2 )× β × 2(
β−1
2 )

1/β

(11)

where 0(x) = (x − 1)!

B. mRMR
Peng proposed Maximum relevance minimum redun-
dancy (mRMR) filter method in 2015 [47]. The mRMR
method uses Mutual information (MI) which is used to
calculate feature correlation and redundancy in two phases.
In the first phase, the MI is applied to calculate the relevancy
between the label and the feature. In the second phase, the
redundancy between each of the two features is calculated.
The mathematical position of mRMR can be explained as
follows.

X = (x1, xi, . . . , xD) (12)

where xi is a feature of feature set X , and D is the number of
features.

S = (s1, s2 . . . , sM ) (13)

where sj is a selected feature of X , and M is the number of
selected features.

R = (r1, r2, . . . , rW ) (14)

where rm is a remained feature of X , W is the number of
remained features and D = M +W .
First, the mRMR method calculates the relatancy (Rl)

between the label and the feature, with the largest mutual
information value of feature being selected.

Rl =
1
M

 M∑
j=1

I
(
Sj,C

)
+ I (rm,C)

 (15)

where I (si,C) and I (rm,C) are the mutual information value
between label (C) and feature.

C = (C1,Cn, . . . ,CH ) (16)

where Cn is the label of X , and H is the number of label.
Then, the mRMR method measures the redundancy (Rd)

between every two features.

Rd =
1
M2

M∑
j=1

I (Sj, rm) (17)

where I (Sj, rm) is themutual information value between every
two features.

Finally, themRMRmethod selects the feature of maximum
relevancy minimum redundancy (mRMR) from the remain-
ing feature sets.

mRMR = Rl − Rd =
1
M

(

 M∑
j=1

I (Sj,C)+ I (rm,C)


−

1
M

M∑
j=1

I (Sj, rm)) (18)

Because
M∑
j=1

I (Sj,C) and 1
M is constant, the formula sim-

plified into formula(19).

mRMR = I (rm,C)−
1
M

∑
sj∈S,rm∈R

I (sj, rm) (19)

III. THE PROPOSED ALGORITHM
A. IMPROVED DRAGONFLY ALGORITHM (IDA)
1) QUANTUM PBEST AND GBEST
In DA, all the positions of dragonflies are updated according
to Eq. (8) and Eq. (9). This position updating mechanism
leads to premature convergence because the dragonflies are
not allowed to keep track of previously obtained potential
solutions. Therefore, in order to overcome the aforemen-
tioned limitation of the DA, pbest and gbest are introduced
in IDA. pbest is the best fitness value obtained so far by
a dragonfly while gbest is the best fitness value obtained
so far by all dragonflies in the neighborhood. Besides, IDA
integrates quantum physics to update the position of the drag-
onflies. During each iteration, the fitness value of a dragonfly
is compared with the pbest value in current population. Better
fitness value is saved to pbest. The best fitness value obtained
so far by all dragonflies is saved to gbest value. A dragonfly
updates its position as shown in the following formula (20).

1X t+1i = (sS ti + aA
t
i + cC

t
i + fF

t
i + eE

t
i )

+wX ti + C1r1(MPti − X
t
i )

∗ ln(1/u)+ C2(1− r1)(PG − X ti ) (20)

MPti =
1
N

N∑
i=1

pti (21)

r1, u ∼ (0, 1) (22)

where C1 and C2 represents the cognitive and social parame-
ters respectively, C1 and C2 are set to 2 by default, Pti and PG
represents the best fitness of the i th dragonfly and the best
fitness of the swarm upto t th iteration respectively. N is the
number of instances.

2) ADAPTIVE PARAMETERS
DA utilizes fixed parameters to adjust swarming factors.
Therefore, DA can’t balance local and global search capa-
bilities. In order to overcome this shortage, dynamic curves
are proposed to tune parameters of swarming factors. In the
early optimization stage, IDA explores a huge search space
to avoid premature convergence. In the later optimization
stage, IDA efficiently exploits small regions to refine the final
solutions. Because too many parameters of IDA need to be
adjusted, the factors with the same change trend are designed
to the same curve distribution. The parameters (the separation
weight s, the alignment weight a, the cohesion weight c and
the enemy factor e are mathematically modeled in eq. (23).
Fig. 2 demonstrates the values of weights vary with iterations.
First, the weights are set at a relatively high value and declines
slowly to prevent blinding follow-up and falling into local
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FIGURE 2. Adaptive parameters.

optimum. Then the curve rapidly goes down to slow posi-
tion in order to balance exploration and exploitation ability.
Last, the parameters decrease slowly to enhance exploitation
ability.

f (t) = Init(1−
1

1+ e−0.1(t−50)
) (23)

where t is the number of iterations and Init is the initialization
of four parameters.

Fig. 3 illustrates the process of IDA. t is the number of
iterations and T is the max number of iterations. First, we cal-
culate classification accuracy of position vectors using SVM
and update food source, enemy, pbest and gbest. Second, the
separation weight s, the alignment weight a, the cohesion
weight c and the enemy factor e are decreased adaptively
using formula (23). Third,1x is updated using all parameters
in formula (20). Finally, position vectors are updated based on
their classification accuracy rate.

B. HYBRID IMPROVED DRAGONFLY ALGORITHM (HIDA)
The integration of the filter algorithm (mRMR) and the
wrapper algorithm (IDA) leads to a Hybrid Improved
Dragonfly Algorithm (HIDA). mRMR selects features with
maximum relevancy minimum redundancy, the subsets are
always fixed combinations. Low-ranking features have no
chance to be selected into candidate subset. It has been recog-
nized that the combinations of individually good features do
not necessarily lead to good classification performance. Thus,
a dynamic number of features are selected for HIDA. From
Fig.4, the x-coordinate is the order of features from mRMR,
the y-coordinate is the probability of the feature which will
be selected. If the probability is greater than ε, the feature
is selected to initialization of IDA. The top-ranking feature
has higher probability of being selected. Each dragonfly in
the population initialization of IDA is the subset which is
obtained from mRMR. The diversity of population ensures
that at least one subset in the population is able to contain
all interacting features which are associated with label. The

FIGURE 3. The flowchart of IDA.

FIGURE 4. Adaptive selected probability p.

mathematical formulas are formulated in eq. (24) and (25).

p = −(1+ rand) ∗
1
π
arctan(2 ∗ x/D)+ 1 (24)

where p is the selected probability, x is the feature set which
is obtained by mRMR and D is the number of features.{

if p > ε, x(i) = 1
if p > ε, x(i) = 0

(25)

The larger dimensionality of dataset is, the larger ε is.
In Fig.5, Every solution is characterized as a single dimen-

sional vector, and the length of the vector is the number of
features in the dataset. Every cell of the vector contains two
values (1 or 0). Value 1 depicts that the corresponding feature
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FIGURE 5. Adaptive selected probability.

FIGURE 6. The flowchart of HIDA.

is chosen while value 0 represents that the feature is not
selected.

Fig. 6 illustrates the process of IDA. First, all variables
are initialized. t is the number of iterations, T is the max
number of iterations, S is the number of selected features, G
is the feature set of selected features, F is the feature set of
remained features. Second, we use mRMR to construct a fea-
ture subset which has maximum relevancy minimum redun-
dancy. Thirdly, Low-ranking features are randomly selected
to a feature subset with small probability using formula (23).
Finally, given a subset, IDA is applied to generate a promising
candidate subset. The first judgment of ‘‘t < T’’ is used to
generate candidate subsets for mRMR, and second judgment
of ‘‘t < T’’ is used to control the number of iterations for
IDA.

IV. EXPERIMENT RESULTS
In this section, we perform comprehensive experiments to
compare the HIDA algorithm with BBA [48], BDA [25],
CDA [39], LBPSO [40], MPMDWOA [42] and
MSMCCS [43] methods on ten different gene expression
datasets and eight UCI datasets.

A. DATASETS DESCRIPTION AND PREPROCESSING
To evaluate the usefulness of the HIDA approach, we carried
out experiments on five gene expression datasets [49] and
eight UCI datasets from the UCI Machine Learning Data

TABLE 1. Benchmark data.

TABLE 2. Parameter settings.

Repository [50], [51]. The characteristics of datasets are sum-
marized in Table 1.

B. PARAMETER SETTINGS
The parameter setting is introduced in Table 2 according to
the literatures. The number of particles for five algorithms is
set to 50, and the maximum number of iterations is set to 100.
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The radial base function (RBF) is used as the kernel function
of the SVM model [52]. In the following experiments, cross
validation is made up of 10 folds. 9 folds are used for training
and the last one is used for testing. All of the codes are imple-
mented in MATLAB R2018b and run on a Window 10 PC
with Intel Core i5-3470K 3.20 GHz CPU and 16 GB RAM.

According to the initialization of six parameters of HIDA,
four parameters (s, a, c and e are decreased with the iteration
number in formula (23) while two parameters (w and f )
are increased with iteration number in formula (26). Fur-
thermore, we present a threshold ε. ε is adjusted depending
on the dimensionality of dataset in formula (27). For low-
dimension dataset, setting a small value to enrich the diversity
of candidate subset. For high-dimension dataset, setting a
large value to save running time.

f (t) = −Init(1−
1

1+ e−0.1(t−50)
) (26)

where t is the number of iterations and Init is the initialization
of two parameters (w and f ).

ε = 1− 0.5 ∗ rand ∗
1
D

(27)

where D is the number of features.

C. EXPERIMENT RESULTS
The experiments are tested through implementing BBA,
DBA, CDA, LBPSO, MPMDWOA, MSMCCS, and HIDA
using MATLAB. Due to the efficiency of SVM algorithm,
we adopt SVM in HIDA. Four criteria are used including Acc,
average selected features, AUC and F indicator. For balanced
dataset, we often use the Acc as the criterion. But Acc is not
enough for imbalanced problems. AUC is an indicator used
tomeasure the classification performance in imbalanced data.
F indicator is a comprehensive measure for balancing recall
and precision. The Acc, AUC and F indicator are computed
by the following four formulas.

Acc =
TP+ TN

TP+ FN + TN + FP
(28)

AUC =
1+ TPrate − FPrate

2
(29)

Fβ =
(1+ β2) ∗ TPrate ∗ PPrate
β2 ∗ PPrate + TPrate

(30)

TPrate =
TP

TP+ FN
(31)

PPrate =
TP

TP+ FP
(32)

FPrate =
FP

TN + FP
(33)

where TP is the number of positive instances which are clas-
sified correctly and FP is the number of negative instances
which are misclassified. β is a coefficient which is used to
adjust the important degree of recall comparedwith precision.
β is usually set to 1, and it means that recall and precision are
important equally.

TABLE 3. The average classification accuracy rate (%) obtained from
three algorithms.

TABLE 4. The average classification accuracy rate (%) obtained from
seven algorithms.

From Table 3, it is clear that HIDA shows the best perfor-
mance among all the methods on all datasets except Ozone.
HIDA has higher accuracy rate compared to the other meth-
ods. Similarly, the average selected features of HIDA is lower
than other methods. Thus, the proposed subset generation
improves HIDA a lot. Besides, Acc and NumF of IDA out-
perform BDA on most of the datasets. Take 9-Tumors for
instance, Acc and NumF of IDA are 65.67 and 267.8 respec-
tively, while Acc and NumF of BDA are 60.24 and 342.1
respectively.

Table 4 shows the Acc of seven algorithms in 18 datasets.
Table 5 and Table 6 show and the average number of selected
features and max number of selected features respectively.
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TABLE 5. The average selected features obtained from seven algorithms.

TABLE 6. The maximum selected features obtained from seven
algorithms.

The performance of HIDA is better than the other six meth-
ods. In Table 4, it can be observed that Acc of HIDA is
superior to other algorithms in all datasets except Ozone
Level Detection. The of Ozone Level Detection is lower
than the best result while the number of average selected
features is superior to MSMCCS which gets the best per-
formance among five algorithms. In Table 5, we can find
that MPMDWOA, MSMCCS and HIDA get one, two and
fifteen best average selected features separately. In DLBCL
dataset, HIDA provides 100% accuracy by using 19 attributes
only, at the same time MPMDWOA show 97.5% accuracy
and 153.3 attributes. The result shows that HIDA outperforms
other algorithms in both classification accuracy and selected
attributes for the same dataset.

In addition to Acc and average selected features,
Tables 7 and 8 show F1 and AUC of seven algorithms
in 18 datasets. HIDA outperforms all algorithms in 15 and 16

TABLE 7. The average F1 result obtained from seven algorithms.

TABLE 8. The average AUC result obtained from seven algorithms.

datasets in both F1 and AUC respectively. Inspecting Table 5,
It can be analyzed that HIDA achieves superior F1 results
in fifteen out of eighteen datasets. In Table 8, BDA does
not outperform HIDA over most datasets in terms of AUC ,
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FIGURE 7. Typical convergence curves of the Seven algorithms on 18
datasets.

whereas it performs better than others on Secom datasets with
an insignificant difference. Moreover, it is worth noting that
HIDA outperforms other algorithms over fifteen datasets.

The computational complexity of HIDA is O(T ∗(D2
+

N ∗D + N ∗S)). T represents the maximum number of iter-
ations, N represents the number of populations, D represents
the number of features in the data set, and S represents
the time taken to execute the SVM classifier. In the table,
N ∗D represents the computational complexity of the wrapper
algorithm position update in one iteration,N ∗S represents the
computational complexity of the SVM classifier in one iter-
ation, and O(D2) represents the computational complexity of
the filter algorithm in one iteration. The computational com-
plexity ofMPMDWOAandMSMCCS are the same asHIDA.
BBA, BDA, CDA, LBPSO are wrapper algorithms, the com-
putational complexity of four algorithms is O(T ∗(N ∗D +
N ∗S)). Therefore, the computational complexity of the hybrid
algorithm is higher than the wrapper algorithm.

Additionally, in order to better validate the superior conver-
gence behavior of HIDA on test datasets, Fig.7 is provided
to demonstrate the convergence behavior of five algorithms
on 18 datasets. By directly drawing curves of classifica-
tion accuracy rate with the iterative number, we can see
the classification accuracy rate is increased monotonously

TABLE 9. The comparison based on Wilcoxon signed-rank test on Ozone
data set.

FIGURE 8. Box plots for classification accuracies of the Seven algorithms
on 18 datasets.

in each iteration until level off. As it can be observed from
these figures that HIDA converges fast compared to other
algorithms and achieves best classification accuracy rate in
most datasets. The results demonstrate the strong exploitation
ability of HIDA in the later stage of optimization.

To further assess HIDA, boxplots for classification accu-
racies are obtained in comparison with the other methods.
These plots are shown in Fig.8. The plots show that HIDA
is better than the rest of the methods considered in most of
the cases.

Table 9 shows that six pairs of Wilcoxon signed-rank
tests are made on Ozone data set. With the significant level
0.05, it can be detected the performance of HIDA is statis-
tically significant compared to BBA, BDA, CDA, LBPSO,
MPMDWOA and MSMCCS.
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D. DISCUSSION
According to the above observations, it can be concluded
that the performance of HIDA is superior to the other algo-
rithms for feature selection. The main reason for the good
performance of HIDA is the integration of mRMR and IDA.
On the one hand, IDA is able to enhance the exploitation and
exploration capabilities. One the other hand, the proposed
subset generation enriches population diversity and helps
HIDA jump out of local optimum.

Firstly, Acc and NumF of IDA outperform BDA on most
of the datasets in Table 3. IDA has higher accuracy rate com-
pared to the other methods, because adaptive quantum opti-
mum enhances the exploitation capability of IDA. Secondly,
due to high accuracy and minimized feature size selected of
HIDA in Table 4 and Table 5, we can conclude that HIDA
significantly enhances the exploration of DA. Lastly, by ana-
lyzing the results ofF1 andAUC in Table 7 and Table 8, HIDA
outperforms all algorithms in 15 and 16 datasets in both F1
and AUC respectively. We can say that random selection
plays a complementary role in enhancing exploration in the
HIDA algorithm besides adaptive quantum optimum which
enhances exploitation. Moreover, F1 and AUC indicators are
appropriate to measure imbalanced classification results, thus
HIDA has an excellent performance in resolving imbalanced
classification problems.

Despite efficient results generated by HIDA, yet it main-
tains certain limitations because of the nature of the hybrid
algorithm whose computational complexity is higher than
the wrapper algorithm. Moreover, mRMR sequentially con-
structs the feature subset by including one feature at a time.
As a result, the mutual information of a feature is calculated
and used to weigh the feature based on the feature subset
available. Therefore, there is a dependence on the feature
subset construction sequence in mRMR, and mRMR is not
able to achieve high classification accuracy rate.

V. CONCLUSION
Due to the low classification accuracy rate of DA, a novel
HIDA optimization algorithm which is combined with
mRMR is proposed for feature selection. Firstly, a novel
subset generation with random selection improves the clas-
sification accuracy rate of HIDA. Secondly, each dragonfly
is designed to keep track of its coordinates with the addition
of internal memory in quantum space. The novel position
updatingmechanism is able to balance local and global search
capabilities of HIDA. Lastly, to enhance the exploitation
capability of DA, HIDA utilizes dynamic parameters to adjust
swarming factors.

To demonstrate the effectiveness of HIDA, experiments
have been conducted on 8 UCI and 10 microarray datasets.
Compared with the other six algorithms, HIDA is able to
escape from local optima. Although HIDA doesn’t have the
best performance in all datasets, the five criteria of HIDA are
better than other algorithms in all microarray datasets. HIDA
is more suitable for the high dimensional dataset. The results
verify that the integration of IDA andmRMR improves HIDA
significantly.
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